This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/CurNurb.c
Campbell Barton f02a746f56 ==Python API==
added .smooth setting to CurNurb's

so you can do....
for curNurb in Curve.Get('foo'): curNurb.smooth = True
2007-11-10 11:05:44 +00:00

1099 lines
28 KiB
C

/*
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Stephen Swaney, Campbell Barton, Ken Hughes
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "CurNurb.h" /*This must come first */
#include "BKE_curve.h"
#include "BDR_editcurve.h" /* for convertspline */
#include "MEM_guardedalloc.h"
#include "gen_utils.h"
#include "BezTriple.h"
/* Only for ME_SMOOTH */
#include "DNA_meshdata_types.h"
/*
* forward declarations go here
*/
static PyObject *M_CurNurb_New( PyObject * self, PyObject * args );
static PyObject *CurNurb_oldsetMatIndex( BPy_CurNurb * self, PyObject * args );
static int CurNurb_setMatIndex( BPy_CurNurb * self, PyObject * args );
static PyObject *CurNurb_getMatIndex( BPy_CurNurb * self );
static PyObject *CurNurb_getFlagU( BPy_CurNurb * self );
static PyObject *CurNurb_oldsetFlagU( BPy_CurNurb * self, PyObject * args );
static int CurNurb_setFlagU( BPy_CurNurb * self, PyObject * args );
static PyObject *CurNurb_getFlagV( BPy_CurNurb * self );
static PyObject *CurNurb_oldsetFlagV( BPy_CurNurb * self, PyObject * args );
static int CurNurb_setFlagV( BPy_CurNurb * self, PyObject * args );
static PyObject *CurNurb_getType( BPy_CurNurb * self );
static PyObject *CurNurb_oldsetType( BPy_CurNurb * self, PyObject * args );
static int CurNurb_setType( BPy_CurNurb * self, PyObject * args );
static PyObject *CurNurb_getKnotsU( BPy_CurNurb * self );
static PyObject *CurNurb_getKnotsV( BPy_CurNurb * self );
static PyObject *CurNurb_getPoints( BPy_CurNurb * self );
/* static PyObject* CurNurb_setXXX( BPy_CurNurb* self, PyObject* args ); */
static int CurNurb_setPoint( BPy_CurNurb * self, int index, PyObject * ob );
static int CurNurb_length( PyInstanceObject * inst );
static PyObject *CurNurb_getIter( BPy_CurNurb * self );
static PyObject *CurNurb_iterNext( BPy_CurNurb * self );
PyObject *CurNurb_append( BPy_CurNurb * self, PyObject * value );
static PyObject *CurNurb_isNurb( BPy_CurNurb * self );
static PyObject *CurNurb_isCyclic( BPy_CurNurb * self );
static PyObject *CurNurb_dump( BPy_CurNurb * self );
static PyObject *CurNurb_switchDirection( BPy_CurNurb * self );
static PyObject *CurNurb_recalc( BPy_CurNurb * self );
static PyObject *CurNurb_getFlagBits( BPy_CurNurb * self, void *type );
static int CurNurb_setFlagBits( BPy_CurNurb * self, PyObject *value, void *type );
char M_CurNurb_doc[] = "CurNurb";
/*
CurNurb_Type callback function prototypes:
*/
static int CurNurb_compare( BPy_CurNurb * a, BPy_CurNurb * b );
static PyObject *CurNurb_repr( BPy_CurNurb * self );
/*
table of module methods
these are the equivalent of class or static methods.
you do not need an object instance to call one.
*/
static PyMethodDef M_CurNurb_methods[] = {
/* name, method, flags, doc_string */
{"New", ( PyCFunction ) M_CurNurb_New, METH_VARARGS | METH_KEYWORDS,
" () - doc string"},
/* {"Get", (PyCFunction) M_CurNurb_method, METH_NOARGS, " () - doc string"}, */
/* {"method", (PyCFunction) M_CurNurb_method, METH_NOARGS, " () - doc string"}, */
{NULL, NULL, 0, NULL}
};
/*
* method table
* table of instance methods
* these methods are invoked on an instance of the type.
*/
static PyMethodDef BPy_CurNurb_methods[] = {
/* name, method, flags, doc */
/* {"method", (PyCFunction) CurNurb_method, METH_NOARGS, " () - doc string"} */
{"setMatIndex", ( PyCFunction ) CurNurb_oldsetMatIndex, METH_VARARGS,
"( index ) - set index into materials list"},
{"getMatIndex", ( PyCFunction ) CurNurb_getMatIndex, METH_NOARGS,
"( ) - get current material index"},
{"setFlagU", ( PyCFunction ) CurNurb_oldsetFlagU, METH_VARARGS,
"( index ) - set flagU and recalculate the knots (0: uniform, 1: endpoints, 2: bezier)"},
{"getFlagU", ( PyCFunction ) CurNurb_getFlagU, METH_NOARGS,
"( ) - get flagU of the knots"},
{"setFlagV", ( PyCFunction ) CurNurb_oldsetFlagV, METH_VARARGS,
"( index ) - set flagV and recalculate the knots (0: uniform, 1: endpoints, 2: bezier)"},
{"getFlagV", ( PyCFunction ) CurNurb_getFlagV, METH_NOARGS,
"( ) - get flagV of the knots"},
{"setType", ( PyCFunction ) CurNurb_oldsetType, METH_VARARGS,
"( type ) - change the type of the curve (Poly: 0, Bezier: 1, NURBS: 4)"},
{"getType", ( PyCFunction ) CurNurb_getType, METH_NOARGS,
"( ) - get the type of the curve (Poly: 0, Bezier: 1, NURBS: 4)"},
{"append", ( PyCFunction ) CurNurb_append, METH_O,
"( point ) - add a new point. arg is BezTriple or list of x,y,z,w floats"},
{"isNurb", ( PyCFunction ) CurNurb_isNurb, METH_NOARGS,
"( ) - boolean function tests if this spline is type nurb or bezier"},
{"isCyclic", ( PyCFunction ) CurNurb_isCyclic, METH_NOARGS,
"( ) - boolean function tests if this spline is cyclic (closed) or not (open)"},
{"dump", ( PyCFunction ) CurNurb_dump, METH_NOARGS,
"( ) - dumps Nurb data)"},
{"switchDirection", ( PyCFunction ) CurNurb_switchDirection, METH_NOARGS,
"( ) - swaps curve beginning and end)"},
{"recalc", ( PyCFunction ) CurNurb_recalc, METH_NOARGS,
"( ) - recalc Nurb data)"},
{NULL, NULL, 0, NULL}
};
/*
* methods for CurNurb as sequece
*/
static PySequenceMethods CurNurb_as_sequence = {
( inquiry ) CurNurb_length, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) CurNurb_getPoint, /* sq_item */
( intintargfunc ) 0, /* sq_slice */
( intobjargproc ) CurNurb_setPoint, /* sq_ass_item */
0, /* sq_ass_slice */
( objobjproc ) 0, /* sq_contains */
0,
0
};
static PyGetSetDef BPy_CurNurb_getseters[] = {
{"mat_index",
(getter)CurNurb_getMatIndex, (setter)CurNurb_setMatIndex,
"CurNurb's material index",
NULL},
{"points",
(getter)CurNurb_getPoints, (setter)NULL,
"The number of curve points",
NULL},
{"flagU",
(getter)CurNurb_getFlagU, (setter)CurNurb_setFlagU,
"The knot type in the U direction",
NULL},
{"flagV",
(getter)CurNurb_getFlagV, (setter)CurNurb_setFlagV,
"The knot type in the V direction",
NULL},
{"type",
(getter)CurNurb_getType, (setter)CurNurb_setType,
"The curve type (poly: bezier, or NURBS)",
NULL},
{"knotsU",
(getter)CurNurb_getKnotsU, (setter)NULL,
"The The knot vector in the U direction",
NULL},
{"knotsV",
(getter)CurNurb_getKnotsV, (setter)NULL,
"The The knot vector in the V direction",
NULL},
{"smooth",
(getter)CurNurb_getFlagBits, (setter)CurNurb_setFlagBits,
"The smooth bool setting",
(void *)ME_SMOOTH},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*
Object Type definition
full blown 2.3 struct
if you are having trouble building with an earlier version of python,
this is why.
*/
PyTypeObject CurNurb_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"CurNurb", /* char *tp_name; */
sizeof( CurNurb_Type ), /* int tp_basicsize, */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) CurNurb_compare, /* cmpfunc tp_compare; */
( reprfunc ) CurNurb_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
0, /* PyNumberMethods *tp_as_number; */
&CurNurb_as_sequence, /* PySequenceMethods *tp_as_sequence; */
0, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
0, /* hashfunc tp_hash; */
0, /* ternaryfunc tp_call; */
0, /* reprfunc tp_str; */
0, /* getattrofunc tp_getattro; */
0, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
0, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
0, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
0, /* traverseproc tp_traverse; */
/* delete references to contained objects */
0, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
0, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc ) CurNurb_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) CurNurb_iterNext, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_CurNurb_methods, /* struct PyMethodDef *tp_methods; */
0, /* struct PyMemberDef *tp_members; */
BPy_CurNurb_getseters, /* struct PyGetSetDef *tp_getset; */
0, /* struct _typeobject *tp_base; */
0, /* PyObject *tp_dict; */
0, /* descrgetfunc tp_descr_get; */
0, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
0, /* initproc tp_init; */
0, /* allocfunc tp_alloc; */
0, /* newfunc tp_new; */
/* Low-level free-memory routine */
0, /* freefunc tp_free; */
/* For PyObject_IS_GC */
0, /* inquiry tp_is_gc; */
0, /* PyObject *tp_bases; */
/* method resolution order */
0, /* PyObject *tp_mro; */
0, /* PyObject *tp_cache; */
0, /* PyObject *tp_subclasses; */
0, /* PyObject *tp_weaklist; */
0
};
/*
compare
in this case, we consider two CurNurbs equal, if they point to the same
blender data.
*/
static int CurNurb_compare( BPy_CurNurb * a, BPy_CurNurb * b )
{
Nurb *pa = a->nurb;
Nurb *pb = b->nurb;
return ( pa == pb ) ? 0 : -1;
}
/*
factory method to create a BPy_CurNurb from a Blender Nurb
*/
PyObject *CurNurb_CreatePyObject( Nurb * blen_nurb )
{
BPy_CurNurb *pyNurb;
pyNurb = ( BPy_CurNurb * ) PyObject_NEW( BPy_CurNurb, &CurNurb_Type );
if( !pyNurb )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"could not create BPy_CurNurb PyObject" );
pyNurb->nurb = blen_nurb;
return ( PyObject * ) pyNurb;
}
/*
* CurNurb_repr
*/
static PyObject *CurNurb_repr( BPy_CurNurb * self )
{ /* used by 'repr' */
return PyString_FromFormat( "[CurNurb \"%d\"]", self->nurb->type );
}
/* XXX Can't this be simply removed? */
static PyObject *M_CurNurb_New( PyObject * self, PyObject * args )
{
return ( PyObject * ) 0;
}
/*
* Curve.getType
*/
static PyObject *CurNurb_getType( BPy_CurNurb * self )
{
/* type is on 3 first bits only */
return PyInt_FromLong( self->nurb->type & 7 );
}
/*
* Curve.setType
*
* Convert the curve using Blender's convertspline fonction
*/
static int CurNurb_setType( BPy_CurNurb * self, PyObject * args )
{
PyObject* integer = PyNumber_Int( args );
short value;
if( !integer )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected integer argument" );
value = ( short )PyInt_AS_LONG( integer );
Py_DECREF( integer );
/* parameter value checking */
if (value != CU_POLY && value != CU_BEZIER && value != CU_NURBS)
return EXPP_ReturnIntError( PyExc_ValueError,
"expected integer argument" );
/* convert and raise error if impossible */
if (convertspline(value, self->nurb))
return EXPP_ReturnIntError( PyExc_ValueError,
"Conversion Impossible" );
return 0;
}
/*
* CurNurb_getKnotsU
*
* returns curve's knotsU in a tuple. Empty tuple is returned if curve
* isn't Nurbs or it doesn't have knots in U
*/
static PyObject *CurNurb_getKnotsU( BPy_CurNurb * self )
{
if(self->nurb->knotsu) {
int len = KNOTSU(self->nurb);
int i;
PyObject *knotsu = PyTuple_New(len);
if( !knotsu )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"could not get CurNurb.knotsU attribute" );
for(i = 0; i < len; ++i)
PyTuple_SetItem(knotsu, i,
PyFloat_FromDouble(self->nurb->knotsu[i]));
return knotsu;
}
return PyTuple_New(0);
}
/*
* CurNurb_getKnotsV
*
* returns curve's knotsV in a tuple. Empty tuple is returned if curve doesn't have knots in V
*/
static PyObject *CurNurb_getKnotsV( BPy_CurNurb * self )
{
if(self->nurb->knotsv) {
int len = KNOTSV(self->nurb);
int i;
PyObject *knotsv = PyTuple_New(len);
if( !knotsv )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"could not get CurNurb.knotsV index" );
for(i = 0; i < len; ++i)
PyTuple_SetItem(knotsv, i,
PyFloat_FromDouble(self->nurb->knotsv[i] ));
return knotsv;
}
return PyTuple_New(0);
}
static PyObject *CurNurb_getPoints( BPy_CurNurb * self )
{
return PyInt_FromLong( ( long ) self->nurb->pntsu );
}
static PyObject *CurNurb_getFlagBits( BPy_CurNurb * self, void *type )
{
return EXPP_getBitfield( (void *)&self->nurb->flag,
(int)type, 'h' );
}
static int CurNurb_setFlagBits( BPy_CurNurb * self, PyObject *value,
void *type )
{
return EXPP_setBitfield( value, (void *)&self->nurb->flag,
(int)type, 'h' );
}
/*
* CurNurb_append( point )
* append a new point to a nurb curve.
* arg is BezTriple or list of xyzw floats
*/
PyObject *CurNurb_append( BPy_CurNurb * self, PyObject * value )
{
return CurNurb_appendPointToNurb( self->nurb, value );
}
/*
* CurNurb_appendPointToNurb
* this is a non-bpy utility func to add a point to a given nurb.
* notice the first arg is Nurb*.
*/
PyObject *CurNurb_appendPointToNurb( Nurb * nurb, PyObject * value )
{
int i;
int size;
int npoints = nurb->pntsu;
/*
do we have a list of four floats or a BezTriple?
*/
/* if curve is empty, adjust type depending on input type */
if (nurb->bezt==NULL && nurb->bp==NULL) {
if (BPy_BezTriple_Check( value ))
nurb->type |= CU_BEZIER;
else if (PySequence_Check( value ))
nurb->type |= CU_NURBS;
else
return( EXPP_ReturnPyObjError( PyExc_TypeError,
"Expected a BezTriple or a Sequence of 4 (or 5) floats" ) );
}
if ((nurb->type & 7)==CU_BEZIER) {
BezTriple *tmp;
if( !BPy_BezTriple_Check( value ) )
return( EXPP_ReturnPyObjError( PyExc_TypeError,
"Expected a BezTriple\n" ) );
/* printf("\ndbg: got a BezTriple\n"); */
tmp = nurb->bezt; /* save old points */
nurb->bezt =
( BezTriple * ) MEM_mallocN( sizeof( BezTriple ) *
( npoints + 1 ),
"CurNurb_append2" );
if( !nurb->bezt )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError, "allocation failed" ) );
/* copy old points to new */
if( tmp ) {
memmove( nurb->bezt, tmp, sizeof( BezTriple ) * npoints );
MEM_freeN( tmp );
}
nurb->pntsu++;
/* add new point to end of list */
memcpy( nurb->bezt + npoints,
BezTriple_FromPyObject( value ), sizeof( BezTriple ) );
}
else if( PySequence_Check( value ) ) {
size = PySequence_Size( value );
/* printf("\ndbg: got a sequence of size %d\n", size ); */
if( size == 4 || size == 5 ) {
BPoint *tmp;
tmp = nurb->bp; /* save old pts */
nurb->bp =
( BPoint * ) MEM_mallocN( sizeof( BPoint ) *
( npoints + 1 ),
"CurNurb_append1" );
if( !nurb->bp )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"allocation failed" ) );
memmove( nurb->bp, tmp, sizeof( BPoint ) * npoints );
if( tmp )
MEM_freeN( tmp );
++nurb->pntsu;
/* initialize new BPoint from old */
memcpy( nurb->bp + npoints, nurb->bp,
sizeof( BPoint ) );
for( i = 0; i < 4; ++i ) {
PyObject *item = PySequence_GetItem( value, i );
if (item == NULL)
return NULL;
nurb->bp[npoints].vec[i] = ( float ) PyFloat_AsDouble( item );
Py_DECREF( item );
}
if (size == 5) {
PyObject *item = PySequence_GetItem( value, i );
if (item == NULL)
return NULL;
nurb->bp[npoints].alfa = ( float ) PyFloat_AsDouble( item );
Py_DECREF( item );
}
else {
nurb->bp[npoints].alfa = 0.0f;
}
makeknots( nurb, 1, nurb->flagu >> 1 );
} else {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of 4 or 5 floats" );
}
} else {
/* bail with error */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of 4 or 5 floats" );
}
Py_RETURN_NONE;
}
/*
* CurNurb_setMatIndex
*
* set index into material list
*/
static int CurNurb_setMatIndex( BPy_CurNurb * self, PyObject * args )
{
printf ("%d\n", self->nurb->mat_nr);
return EXPP_setIValueRange( args, &self->nurb->mat_nr, 0, 15, 'h' );
}
/*
* CurNurb_getMatIndex
*
* returns index into material list
*/
static PyObject *CurNurb_getMatIndex( BPy_CurNurb * self )
{
PyObject *index = PyInt_FromLong( ( long ) self->nurb->mat_nr );
if( index )
return index;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"could not get material index" );
}
/*
* CurNurb_getFlagU
*
* returns curve's flagu
*/
static PyObject *CurNurb_getFlagU( BPy_CurNurb * self )
{
PyObject *flagu = PyInt_FromLong( ( long ) self->nurb->flagu );
if( flagu )
return flagu;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"could not get CurNurb.flagu index" ) );
}
/*
* CurNurb_setFlagU
*
* set curve's flagu and recalculate the knots
*
* Possible values: 0 - uniform, 2 - endpoints, 4 - bezier
* bit 0 controls CU_CYCLIC
*/
static int CurNurb_setFlagU( BPy_CurNurb * self, PyObject * args )
{
PyObject* integer = PyNumber_Int( args );
short value;
if( !integer )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected integer argument" );
value = ( short )PyInt_AS_LONG( integer );
Py_DECREF( integer );
if( value < 0 || value > 5 )
return EXPP_ReturnIntError( PyExc_ValueError,
"expected integer argument in range [0,5]" );
if( self->nurb->flagu != value ) {
self->nurb->flagu = (short)value;
makeknots( self->nurb, 1, self->nurb->flagu >> 1 );
}
return 0;
}
/*
* CurNurb_getFlagV
*
* returns curve's flagu
*/
static PyObject *CurNurb_getFlagV( BPy_CurNurb * self )
{
PyObject *flagv = PyInt_FromLong( ( long ) self->nurb->flagv );
if( flagv )
return flagv;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"could not get CurNurb.flagv" ) );
}
/*
* CurNurb_setFlagV
*
* set curve's flagu and recalculate the knots
*
* Possible values: 0 - uniform, 1 - endpoints, 2 - bezier
*/
static int CurNurb_setFlagV( BPy_CurNurb * self, PyObject * args )
{
PyObject* integer = PyNumber_Int( args );
short value;
if( !integer )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected integer argument" );
value = ( short )PyInt_AS_LONG( integer );
Py_DECREF( integer );
if( value < 0 || value > 5 )
return EXPP_ReturnIntError( PyExc_ValueError,
"expected integer argument in range [0,5]" );
if( self->nurb->flagv != value ) {
self->nurb->flagv = (short)value;
makeknots( self->nurb, 2, self->nurb->flagv >> 1 );
}
return 0;
}
/*
* CurNurb_getIter
*
* create an iterator for our CurNurb.
* this iterator returns the points for this CurNurb.
*/
static PyObject *CurNurb_getIter( BPy_CurNurb * self )
{
self->bp = self->nurb->bp;
self->bezt = self->nurb->bezt;
self->atEnd = 0;
self->nextPoint = 0;
/* set exhausted flag if both bp and bezt are zero */
if( ( !self->bp ) && ( !self->bezt ) )
self->atEnd = 1;
Py_INCREF( self );
return ( PyObject * ) self;
}
static PyObject *CurNurb_iterNext( BPy_CurNurb * self )
{
PyObject *po; /* return value */
Nurb *pnurb = self->nurb;
int npoints = pnurb->pntsu;
/* are we at end already? */
if( self->atEnd )
return ( EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" ) );
if( self->nextPoint < npoints ) {
po = CurNurb_pointAtIndex( self->nurb, self->nextPoint );
self->nextPoint++;
return po;
} else {
self->atEnd = 1; /* set flag true */
}
return ( EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" ) );
}
/*
* CurNurb_isNurb()
* test whether spline nurb or bezier
*/
static PyObject *CurNurb_isNurb( BPy_CurNurb * self )
{
/* NOTE: a Nurb has bp and bezt pointers
* depending on type.
* It is possible both are NULL if no points exist.
* in that case, we return False
*/
if( self->nurb->bp ) {
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
/*
* CurNurb_isCyclic()
* test whether spline cyclic (closed) or not (open)
*/
static PyObject *CurNurb_isCyclic( BPy_CurNurb * self )
{
/* supposing that the flagu is always set */
if( self->nurb->flagu & CU_CYCLIC ) {
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
/*
* CurNurb_length
* returns the number of points in a Nurb
* this is a tp_as_sequence method, not a regular instance method.
*/
static int CurNurb_length( PyInstanceObject * inst )
{
Nurb *nurb;
int len;
if( BPy_CurNurb_Check( ( PyObject * ) inst ) ) {
nurb = ( ( BPy_CurNurb * ) inst )->nurb;
len = nurb->pntsu;
return len;
}
return EXPP_ReturnIntError( PyExc_RuntimeError,
"arg is not a BPy_CurNurb" );
}
/*
* CurNurb_getPoint
* returns the Nth point in a Nurb
* this is one of the tp_as_sequence methods, hence the int N argument.
* it is called via the [] operator, not as a usual instance method.
*/
PyObject *CurNurb_getPoint( BPy_CurNurb * self, int index )
{
Nurb *myNurb;
int npoints;
/* for convenince */
myNurb = self->nurb;
npoints = myNurb->pntsu;
/* DELETED: bail if index < 0 */
/* actually, this check is not needed since python treats */
/* negative indices as starting from the right end of a sequence */
/*
THAT IS WRONG, when passing a negative index, python adjusts it to be positive
BUT it can still overflow in the negatives if the index is too small.
For example, list[-6] when list contains 5 items means index = -1 in here.
(theeth)
*/
/* bail if no Nurbs in Curve */
if( npoints == 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"no points in this CurNurb" ) );
/* check index limits */
if( index >= npoints || index < 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" ) );
return CurNurb_pointAtIndex( myNurb, index );
}
/*
* CurNurb_setPoint
* modifies the Nth point in a Nurb
* this is one of the tp_as_sequence methods, hence the int N argument.
* it is called via the [] = operator, not as a usual instance method.
*/
static int CurNurb_setPoint( BPy_CurNurb * self, int index, PyObject * pyOb )
{
Nurb *nurb = self->nurb;
int size;
/* check index limits */
if( index < 0 || index >= nurb->pntsu )
return EXPP_ReturnIntError( PyExc_IndexError,
"array assignment index out of range" );
/* branch by curve type */
if ((nurb->type & 7)==CU_BEZIER) { /* BEZIER */
/* check parameter type */
if( !BPy_BezTriple_Check( pyOb ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a BezTriple" );
/* copy bezier in array */
memcpy( nurb->bezt + index,
BezTriple_FromPyObject( pyOb ), sizeof( BezTriple ) );
return 0; /* finished correctly */
}
else { /* NURBS or POLY */
int i;
/* check parameter type */
if (!PySequence_Check( pyOb ))
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a list of 4 (or optionally 5 if the curve is 3D) floats" );
size = PySequence_Size( pyOb );
/* check sequence size */
if( size != 4 && size != 5 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a list of 4 (or optionally 5 if the curve is 3D) floats" );
/* copy x, y, z, w */
for( i = 0; i < 4; ++i ) {
PyObject *item = PySequence_GetItem( pyOb, i );
if (item == NULL)
return -1;
nurb->bp[index].vec[i] = ( float ) PyFloat_AsDouble( item );
Py_DECREF( item );
}
if (size == 5) { /* set tilt, if present */
PyObject *item = PySequence_GetItem( pyOb, i );
if (item == NULL)
return -1;
nurb->bp[index].alfa = ( float ) PyFloat_AsDouble( item );
Py_DECREF( item );
}
else { /* if not, set default */
nurb->bp[index].alfa = 0.0f;
}
return 0; /* finished correctly */
}
}
/*
* this is an internal routine. not callable directly from python
*/
PyObject *CurNurb_pointAtIndex( Nurb * nurb, int index )
{
PyObject *pyo;
if( nurb->bp ) { /* we have a nurb curve */
int i;
/* add Tilt only if curve is 3D */
if (nurb->flag & CU_3D)
pyo = PyList_New( 5 );
else
pyo = PyList_New( 4 );
for( i = 0; i < 4; i++ ) {
PyList_SetItem( pyo, i,
PyFloat_FromDouble( nurb->bp[index].vec[i] ) );
}
/* add Tilt only if curve is 3D */
if (nurb->flag & CU_3D)
PyList_SetItem( pyo, 4, PyFloat_FromDouble( nurb->bp[index].alfa ) );
} else if( nurb->bezt ) { /* we have a bezier */
/* if an error occurs, we just pass it on */
pyo = BezTriple_CreatePyObject( &( nurb->bezt[index] ) );
} else /* something is horribly wrong */
/* neither bp or bezt is set && pntsu != 0 */
return EXPP_ReturnPyObjError( PyExc_SystemError,
"inconsistant structure found" );
return pyo;
}
/*
dump nurb
*/
PyObject *CurNurb_dump( BPy_CurNurb * self )
{
BPoint *bp = NULL;
BezTriple *bezt = NULL;
Nurb *nurb = self->nurb;
int npoints = 0;
if( !self->nurb )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"no Nurb in this CurNurb");
printf(" type: %d, mat_nr: %d hide: %d flag: %d",
nurb->type, nurb->mat_nr, nurb->hide, nurb->flag);
printf("\n pntsu: %d, pntsv: %d, resolu: %d resolv: %d",
nurb->pntsu, nurb->pntsv, nurb->resolu, nurb->resolv );
printf("\n orderu: %d orderv: %d", nurb->orderu, nurb->orderv );
printf("\n flagu: %d flagv: %d",
nurb->flagu, nurb->flagv );
npoints = nurb->pntsu;
if( nurb->bp ) { /* we have a BPoint */
int n;
for( n = 0, bp = nurb->bp;
n < npoints;
n++, bp++ )
{
/* vec[4] */
printf( "\ncoords[%d]: ", n);
{
int i;
for( i = 0; i < 4; i++){
printf("%10.3f ", bp->vec[i] );
}
}
/* alfa, s[2] */
printf("\n alpha: %5.2f", bp->alfa);
/* f1, hide */
printf(" f1 %d hide %d", bp->f1, bp->hide );
printf("\n");
}
}
else { /* we have a BezTriple */
int n;
for( n = 0, bezt = nurb->bezt;
n < npoints;
n++, bezt++ )
{
int i, j;
printf("\npoint %d: ", n);
for( i = 0; i < 3; i++ ) {
printf("\nvec[%i] ",i );
for( j = 0; j < 3; j++ ) {
printf(" %5.2f ", bezt->vec[i][j] );
}
}
}
printf("\n");
}
Py_RETURN_NONE;
}
/*
recalc nurb
*/
static PyObject *CurNurb_recalc( BPy_CurNurb * self )
{
calchandlesNurb ( self->nurb );
Py_RETURN_NONE;
}
PyObject *CurNurb_switchDirection( BPy_CurNurb * self )
{
if( !self->nurb )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"no Nurb in this CurNurb");
switchdirectionNurb( self->nurb );
Py_RETURN_NONE;
}
PyObject *CurNurb_Init( void )
{
if( PyType_Ready( &CurNurb_Type ) < 0)
return NULL;
return Py_InitModule3( "Blender.CurNurb", M_CurNurb_methods,
M_CurNurb_doc );
}
/* #####DEPRECATED###### */
static PyObject *CurNurb_oldsetType( BPy_CurNurb * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)CurNurb_setType );
}
static PyObject *CurNurb_oldsetMatIndex( BPy_CurNurb * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)CurNurb_setMatIndex );
}
static PyObject *CurNurb_oldsetFlagU( BPy_CurNurb * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)CurNurb_setFlagU );
}
static PyObject *CurNurb_oldsetFlagV( BPy_CurNurb * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)CurNurb_setFlagV );
}