This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Curve.c
Campbell Barton b21df550d3 ==Python API==
made it possible to remove curves from python with "del curve[i]"
mesh_edges2curves.py - remove unused function.
2007-11-22 22:07:41 +00:00

1697 lines
51 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Jacques Guignot, Stephen Swaney
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Curve.h" /*This must come first*/
#include "BLI_blenlib.h"
#include "BKE_main.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_curve.h"
#include "BKE_material.h"
#include "MEM_guardedalloc.h" /* because we wil be mallocing memory */
#include "CurNurb.h"
#include "SurfNurb.h"
#include "Material.h"
#include "Object.h"
#include "Key.h"
#include "gen_utils.h"
#include "gen_library.h"
#include "mydevice.h"
/*****************************************************************************/
/* The following string definitions are used for documentation strings. */
/* In Python these will be written to the console when doing a */
/* Blender.Curve.__doc__ */
/*****************************************************************************/
char M_Curve_doc[] = "The Blender Curve module\n\n\
This module provides access to **Curve Data** in Blender.\n\
Functions :\n\
New(opt name) : creates a new curve object with the given name (optional)\n\
Get(name) : retreives a curve with the given name (mandatory)\n\
get(name) : same as Get. Kept for compatibility reasons";
char M_Curve_New_doc[] = "";
char M_Curve_Get_doc[] = "xxx";
/*****************************************************************************/
/* Python API function prototypes for the Curve module. */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args );
static PyObject *M_Curve_Get( PyObject * self, PyObject * args );
/*****************************************************************************/
/* Python BPy_Curve instance methods declarations: */
/*****************************************************************************/
static PyObject *Curve_getPathLen( BPy_Curve * self );
static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getTotcol( BPy_Curve * self );
static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args );
#if 0
PyObject *Curve_getResolu( BPy_Curve * self );
PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args );
PyObject *Curve_getResolv( BPy_Curve * self );
PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args );
PyObject *Curve_getWidth( BPy_Curve * self );
PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args );
PyObject *Curve_getExt1( BPy_Curve * self );
PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args );
PyObject *Curve_getExt2( BPy_Curve * self );
PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args );
#endif
static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getLoc( BPy_Curve * self );
static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getRot( BPy_Curve * self );
static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getSize( BPy_Curve * self );
static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getNumCurves( BPy_Curve * self );
static PyObject *Curve_getKey( BPy_Curve * self );
static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args);
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args );
static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getMaterials( BPy_Curve * self );
static PyObject *Curve_getBevOb( BPy_Curve * self );
static PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getTaperOb( BPy_Curve * self );
static PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_copy( BPy_Curve * self );
static PyObject *Curve_getIter( BPy_Curve * self );
static PyObject *Curve_iterNext( BPy_Curve * self );
PyObject *Curve_getNurb( BPy_Curve * self, int n );
static int Curve_setNurb( BPy_Curve * self, int n, PyObject * value );
static int Curve_length( PyInstanceObject * inst );
struct chartrans *text_to_curve( Object * ob, int mode );
/*****************************************************************************/
/* Python BPy_Curve methods: */
/* gives access to */
/* name, pathlen totcol flag bevresol */
/* resolu resolv width ext1 ext2 */
/* controlpoint loc rot size */
/* numpts */
/*****************************************************************************/
PyObject *Curve_getName( BPy_Curve * self )
{
return PyString_FromString( self->curve->id.name + 2 );
}
static int Curve_newsetName( BPy_Curve * self, PyObject * args )
{
char *name;
name = PyString_AsString( args );
if( !name )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected string argument" );
rename_id( &self->curve->id, name ); /* proper way in Blender */
Curve_update( self );
return 0;
}
static PyObject *Curve_getPathLen( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->pathlen );
}
static int Curve_newsetPathLen( BPy_Curve * self, PyObject * args )
{
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
self->curve->pathlen = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
return 0;
}
static PyObject *Curve_getTotcol( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->totcol );
}
PyObject *Curve_getMode( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->flag );
}
static int Curve_newsetMode( BPy_Curve * self, PyObject * args )
{
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
self->curve->flag = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
return 0;
}
PyObject *Curve_getBevresol( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->bevresol );
}
static int Curve_newsetBevresol( BPy_Curve * self, PyObject * args )
{
short value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if( value > 10 || value < 0 )
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0 and 10" );
self->curve->bevresol = value;
return 0;
}
PyObject *Curve_getResolu( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->resolu );
}
static int Curve_newsetResolu( BPy_Curve * self, PyObject * args )
{
short value;
Nurb *nu;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if( value > 128 || value < 1 )
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 1 and 128" );
self->curve->resolu = value;
/* propagate the change through all the curves */
for( nu = self->curve->nurb.first; nu; nu = nu->next )
nu->resolu = value;
return 0;
}
PyObject *Curve_getResolv( BPy_Curve * self )
{
return PyInt_FromLong( ( long ) self->curve->resolv );
}
static int Curve_newsetResolv( BPy_Curve * self, PyObject * args )
{
short value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
num = PyNumber_Int( args );
value = (short)PyInt_AS_LONG( num );
Py_DECREF( num );
if(value > 128 || value < 1)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 1 and 128" );
self->curve->resolv = value;
return 0;
}
PyObject *Curve_getWidth( BPy_Curve * self )
{
return PyFloat_FromDouble( ( double ) self->curve->width );
}
static int Curve_newsetWidth( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 2.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 2.0 and 0.0" );
self->curve->width = value;
return 0;
}
PyObject *Curve_getExt1( BPy_Curve * self )
{
return PyFloat_FromDouble( ( double ) self->curve->ext1 );
}
static int Curve_newsetExt1( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 100.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0.0 and 100.0" );
self->curve->ext1 = value;
return 0;
}
PyObject *Curve_getExt2( BPy_Curve * self )
{
return PyFloat_FromDouble( ( double ) self->curve->ext2 );
}
static int Curve_newsetExt2( BPy_Curve * self, PyObject * args )
{
float value;
PyObject *num;
if( !PyNumber_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
num = PyNumber_Float( args );
value = (float)PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
if(value > 2.0f || value < 0.0f)
return EXPP_ReturnIntError( PyExc_ValueError,
"acceptable values are between 0.0 and 2.0" );
self->curve->ext2 = value;
return 0;
}
/*
* Curve_setControlPoint
* this function sets an EXISTING control point.
* it does NOT add a new one.
*/
static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *listargs = 0;
Nurb *ptrnurb = self->curve->nurb.first;
int numcourbe = 0, numpoint = 0, i, j;
if( !ptrnurb )
Py_RETURN_NONE;
if( ptrnurb->bp )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, int, list arguments" ) );
if( ptrnurb->bezt )
if( !PyArg_ParseTuple
( args, "iiO", &numcourbe, &numpoint, &listargs ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, int, list arguments" ) );
for( i = 0; i < numcourbe; i++ )
ptrnurb = ptrnurb->next;
if( ptrnurb->bp )
for( i = 0; i < 4; i++ )
ptrnurb->bp[numpoint].vec[i] =
(float)PyFloat_AsDouble( PyList_GetItem ( listargs, i ) );
if( ptrnurb->bezt )
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ )
ptrnurb->bezt[numpoint].vec[i][j] =
(float)PyFloat_AsDouble( PyList_GetItem
( listargs,
i * 3 + j ) );
Py_RETURN_NONE;
}
static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args )
{
PyObject *liste;
PyObject *item;
Nurb *ptrnurb;
int i, j;
/* input args: requested curve and point number on curve */
int numcourbe, numpoint;
if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int int arguments" ) );
if( ( numcourbe < 0 ) || ( numpoint < 0 ) )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"arguments must be non-negative" ) );
/* if no nurbs in this curve obj */
if( !self->curve->nurb.first )
return PyList_New( 0 );
/* walk the list of nurbs to find requested numcourbe */
ptrnurb = self->curve->nurb.first;
for( i = 0; i < numcourbe; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* check numpoint param against pntsu */
if( numpoint >= ptrnurb->pntsu )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"point index out of range" ) );
liste = PyList_New( 0 );
if( ptrnurb->bp ) { /* if we are a nurb curve, you get 4 values */
for( i = 0; i < 4; i++ ) {
item = PyFloat_FromDouble( ptrnurb->bp[numpoint].vec[i] );
PyList_Append( liste, item );
Py_DECREF(item);
}
} else if( ptrnurb->bezt ) { /* if we are a bezier, you get 9 values */
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ ) {
item = PyFloat_FromDouble( ptrnurb->bezt[numpoint].vec[i][j] );
PyList_Append( liste, item );
Py_DECREF(item);
}
}
return liste;
}
static PyObject *Curve_getLoc( BPy_Curve * self )
{
return Py_BuildValue( "[f,f,f]", self->curve->loc[0],
self->curve->loc[1], self->curve->loc[2] );
}
static int Curve_newsetLoc( BPy_Curve * self, PyObject * args )
{
float loc[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
loc[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->loc, loc, sizeof( loc ) );
return 0;
}
static PyObject *Curve_getRot( BPy_Curve * self )
{
return Py_BuildValue( "[f,f,f]", self->curve->rot[0],
self->curve->rot[1], self->curve->rot[2] );
}
static int Curve_newsetRot( BPy_Curve * self, PyObject * args )
{
float rot[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
rot[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->rot, rot, sizeof( rot ) );
return 0;
}
static PyObject *Curve_getSize( BPy_Curve * self )
{
return Py_BuildValue( "[f,f,f]", self->curve->size[0],
self->curve->size[1], self->curve->size[2] );
}
static int Curve_newsetSize( BPy_Curve * self, PyObject * args )
{
float size[3];
int i;
if( ( !PyList_Check( args ) && !PyTuple_Check( args ) ) ||
PySequence_Size( args ) != 3 ) {
TypeError:
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of three floats" );
}
for( i = 0; i < 3; i++ ) {
PyObject *item = PySequence_GetItem( args, i );
PyObject *num = PyNumber_Float( item );
Py_DECREF( item );
if( !num )
goto TypeError;
size[i] = PyFloat_AS_DOUBLE( num );
Py_DECREF( num );
}
memcpy( self->curve->size, size, sizeof( size ) );
return 0;
}
/*
* Count the number of splines in a Curve Object
* int getNumCurves()
*/
static PyObject *Curve_getNumCurves( BPy_Curve * self )
{
Nurb *ptrnurb;
PyObject *ret_val;
int num_curves = 0; /* start with no splines */
/* get curve */
ptrnurb = self->curve->nurb.first;
if( ptrnurb ) { /* we have some nurbs in this curve */
for(;;) {
++num_curves;
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* no more curves */
break;
}
}
ret_val = PyInt_FromLong( ( long ) num_curves );
if( ret_val )
return ret_val;
/* oops! */
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of curves" );
}
/*
* get the key object linked to this curve
*/
static PyObject *Curve_getKey( BPy_Curve * self )
{
PyObject *keyObj;
if (self->curve->key)
keyObj = Key_CreatePyObject(self->curve->key);
else keyObj = EXPP_incr_ret(Py_None);
return keyObj;
}
/*
* count the number of points in a given spline
* int getNumPoints( curve_num=0 )
*
*/
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args )
{
Nurb *ptrnurb;
PyObject *ret_val;
int curve_num = 0; /* default spline number */
int i;
/* parse input arg */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
/* check arg - must be non-negative */
if( curve_num < 0 )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"argument must be non-negative" ) );
/* walk the list of curves looking for our curve */
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) { /* no splines in this Curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
}
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* pntsu is the number of points in curve */
ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu );
if( ret_val )
return ret_val;
/* oops! */
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get number of points for curve" );
}
/*
* Test whether a given spline of a Curve is a nurb
* as opposed to a bezier
* int isNurb( curve_num=0 )
*/
static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
int is_nurb;
Nurb *ptrnurb;
PyObject *ret_val;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" ) );
}
/* right now, there are only two curve types, nurb and bezier. */
is_nurb = ptrnurb->bp ? 1 : 0;
ret_val = PyInt_FromLong( ( long ) is_nurb );
if( ret_val )
return ret_val;
/* oops */
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get curve type" ) );
}
/* trying to make a check for closedness (cyclic), following on isNurb (above)
copy-pasting done by antont@kyperjokki.fi */
static PyObject *Curve_isCyclic( BPy_Curve * self, PyObject * args )
{
int curve_num = 0; /* default value */
/* unused:*/
/* int is_cyclic;
* PyObject *ret_val;*/
Nurb *ptrnurb;
int i;
/* parse and check input args */
if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" ) );
}
if( curve_num < 0 ) {
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"curve number must be non-negative" ) );
}
ptrnurb = self->curve->nurb.first;
if( !ptrnurb ) /* no splines in this curve */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"no splines in this Curve" ) );
for( i = 0; i < curve_num; i++ ) {
ptrnurb = ptrnurb->next;
if( !ptrnurb ) /* if zero, we ran just ran out of curves */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"curve index out of range" ) );
}
if( ptrnurb->flagu & CU_CYCLIC ){
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
/*
* Curve_appendPoint( numcurve, new_point )
* append a new point to indicated spline
*/
static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args )
{
int i;
int nurb_num; /* index of curve we append to */
PyObject *coord_args; /* coords for new point */
Nurb *nurb = self->curve->nurb.first; /* first nurb in Curve */
/* fixme - need to malloc new Nurb */
if( !nurb )
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError, "no nurbs in this Curve" ) );
if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected int, coords as arguments" ) );
/*
chase down the list of Nurbs looking for our curve.
*/
for( i = 0; i < nurb_num; i++ ) {
nurb = nurb->next;
if( !nurb ) /* we ran off end of list */
return EXPP_ReturnPyObjError( PyExc_ValueError,
"curve index out of range" );
}
return CurNurb_appendPointToNurb( nurb, coord_args );
}
/****
appendNurb( new_point )
create a new nurb in the Curve and add the point param to it.
returns a refernce to the newly created nurb.
*****/
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * value )
{
Nurb *new_nurb;
/* malloc new nurb */
new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" );
if( !new_nurb )
return EXPP_ReturnPyObjError
( PyExc_MemoryError, "unable to malloc Nurb" );
if( CurNurb_appendPointToNurb( new_nurb, value ) ) {
new_nurb->resolu = self->curve->resolu;
new_nurb->resolv = self->curve->resolv;
new_nurb->hide = 0;
new_nurb->flag = 1;
if( new_nurb->bezt ) { /* do setup for bezt */
new_nurb->type = CU_BEZIER;
new_nurb->bezt->h1 = HD_ALIGN;
new_nurb->bezt->h2 = HD_ALIGN;
new_nurb->bezt->f1 = 1;
new_nurb->bezt->f2 = 1;
new_nurb->bezt->f3 = 1;
new_nurb->bezt->hide = 0;
/* calchandlesNurb( new_nurb ); */
} else { /* set up bp */
new_nurb->pntsv = 1;
new_nurb->type = CU_NURBS;
new_nurb->orderu = 4;
new_nurb->flagu = 0;
new_nurb->flagv = 0;
new_nurb->bp->f1 = 0;
new_nurb->bp->hide = 0;
new_nurb->knotsu = 0;
/*makenots( new_nurb, 1, new_nurb->flagu >> 1); */
}
BLI_addtail( &self->curve->nurb, new_nurb);
} else {
freeNurb( new_nurb );
return NULL; /* with PyErr already set */
}
return CurNurb_CreatePyObject( new_nurb );
}
/*
* Curve_update( )
* method to update display list for a Curve.
* used. after messing with control points
*/
PyObject *Curve_update( BPy_Curve * self )
{
Nurb *nu = self->curve->nurb.first;
/* recalculate handles for each curve: calchandlesNurb() will make
* sure curves are bezier first */
while( nu ) {
calchandlesNurb ( nu );
nu = nu->next;
}
Object_updateDag( (void*) self->curve );
Py_RETURN_NONE;
}
/*
* Curve_getMaterials
*
*/
static PyObject *Curve_getMaterials( BPy_Curve * self )
{
return EXPP_PyList_fromMaterialList( self->curve->mat,
self->curve->totcol, 1 );
}
static int Curve_setMaterials( BPy_Curve *self, PyObject * value )
{
Material **matlist;
int len;
if( !PySequence_Check( value ) ||
!EXPP_check_sequence_consistency( value, &Material_Type ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"sequence should only contain materials or None)" );
len = PySequence_Size( value );
if( len > 16 )
return EXPP_ReturnIntError( PyExc_TypeError,
"list can't have more than 16 materials" );
/* free old material list (if it exists) and adjust user counts */
if( self->curve->mat ) {
Curve *cur = self->curve;
int i;
for( i = cur->totcol; i-- > 0; )
if( cur->mat[i] )
cur->mat[i]->id.us--;
MEM_freeN( cur->mat );
}
/* build the new material list, increment user count, store it */
matlist = EXPP_newMaterialList_fromPyList( value );
EXPP_incr_mats_us( matlist, len );
self->curve->mat = matlist;
self->curve->totcol = (short)len;
/**@ This is another ugly fix due to the weird material handling of blender.
* it makes sure that object material lists get updated (by their length)
* according to their data material lists, otherwise blender crashes.
* It just stupidly runs through all objects...BAD BAD BAD.
*/
test_object_materials( ( ID * ) self->curve );
return 0;
}
/*****************************************************************************/
/* Function: Curve_getBevOb */
/* Description: Get the bevel object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getBevOb( BPy_Curve * self)
{
if( self->curve->bevobj ) {
return Object_CreatePyObject( self->curve->bevobj );
}
return EXPP_incr_ret( Py_None );
}
/*****************************************************************************/
/* Function: Curve_newsetBevOb */
/* Description: Assign a bevel object to the curve. */
/*****************************************************************************/
static int Curve_newsetBevOb( BPy_Curve * self, PyObject * args )
{
if (BPy_Object_Check( args ) && ((BPy_Object *)args)->object->data == self->curve )
return EXPP_ReturnIntError( PyExc_ValueError,
"Can't bevel an object to itself" );
return GenericLib_assignData(args, (void **) &self->curve->bevobj, 0, 0, ID_OB, OB_CURVE);
}
/*****************************************************************************/
/* Function: Curve_getTaperOb */
/* Description: Get the taper object assign to the curve. */
/*****************************************************************************/
static PyObject *Curve_getTaperOb( BPy_Curve * self)
{
if( self->curve->taperobj )
return Object_CreatePyObject( self->curve->taperobj );
Py_RETURN_NONE;
}
/*****************************************************************************/
/* Function: Curve_newsetTaperOb */
/* Description: Assign a taper object to the curve. */
/*****************************************************************************/
static int Curve_newsetTaperOb( BPy_Curve * self, PyObject * args )
{
if (BPy_Object_Check( args ) && ((BPy_Object *)args)->object->data == self->curve )
return EXPP_ReturnIntError( PyExc_ValueError,
"Can't taper an object to itself" );
return GenericLib_assignData(args, (void **) &self->curve->taperobj, 0, 0, ID_OB, OB_CURVE);
}
/*****************************************************************************/
/* Function: Curve_copy */
/* Description: Return a copy of this curve data. */
/*****************************************************************************/
PyObject *Curve_copy( BPy_Curve * self )
{
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
/* copies the data */
blcurve = copy_curve( self->curve ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
return ( PyObject * ) pycurve;
}
/*
* Curve_getIter
*
* create an iterator for our Curve.
* this iterator returns the Nurbs for this Curve.
* the iter_pointer always points to the next available item or null
*/
static PyObject *Curve_getIter( BPy_Curve * self )
{
self->iter_pointer = self->curve->nurb.first;
Py_INCREF( self );
return ( PyObject * ) self;
}
/*
* Curve_iterNext
* get the next item.
* iter_pointer always points to the next available element
* or NULL if at the end of the list.
*/
static PyObject *Curve_iterNext( BPy_Curve * self )
{
Nurb *pnurb;
if( self->iter_pointer ) {
pnurb = self->iter_pointer;
self->iter_pointer = pnurb->next; /* advance iterator */
if( (pnurb->type & 7) == CU_BEZIER || pnurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pnurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pnurb ); /* make a bpy_surfnurb */
}
/* if iter_pointer was null, we are at end */
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
/* tp_sequence methods */
/*
* Curve_length
* returns the number of curves in a Curve
* this is a tp_as_sequence method, not a regular instance method.
*/
static int Curve_length( PyInstanceObject * inst )
{
if( BPy_Curve_Check( ( PyObject * ) inst ) )
return ( ( int ) PyInt_AsLong
( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) );
return EXPP_ReturnIntError( PyExc_RuntimeError,
"arg is not a BPy_Curve" );
}
/*
* Curve_getNurb
* returns the Nth nurb in a Curve.
* this is one of the tp_as_sequence methods, hence the int N argument.
* it is called via the [] operator, not as a usual instance method.
*/
PyObject *Curve_getNurb( BPy_Curve * self, int n )
{
Nurb *pNurb;
int i;
/* bail if index < 0 */
if( n < 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index less than 0" ) );
/* bail if no Nurbs in Curve */
if( self->curve->nurb.first == 0 )
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"no Nurbs in this Curve" ) );
/* set pointer to nth Nurb */
for( pNurb = self->curve->nurb.first, i = 0;
pNurb != 0 && i < n; pNurb = pNurb->next, ++i )
/**/;
if( !pNurb ) /* we came to the end of the list */
return ( EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" ) );
/* until there is a Surface BPyType, distinquish between a curve and a
* surface based on whether it's a Bezier and the v size */
if( (pNurb->type & 7) == CU_BEZIER || pNurb->pntsv <= 1 )
return CurNurb_CreatePyObject( pNurb ); /* make a bpy_curnurb */
else
return SurfNurb_CreatePyObject( pNurb ); /* make a bpy_surfnurb */
}
/*
* Curve_setNurb
* In this case only remove the item, we could allow adding later.
*/
static int Curve_setNurb( BPy_Curve * self, int n, PyObject * value )
{
Nurb *pNurb;
int i;
/* bail if index < 0 */
if( n < 0 )
return ( EXPP_ReturnIntError( PyExc_IndexError,
"index less than 0" ) );
/* bail if no Nurbs in Curve */
if( self->curve->nurb.first == 0 )
return ( EXPP_ReturnIntError( PyExc_IndexError,
"no Nurbs in this Curve" ) );
/* set pointer to nth Nurb */
for( pNurb = self->curve->nurb.first, i = 0;
pNurb != 0 && i < n; pNurb = pNurb->next, ++i )
/**/;
if( !pNurb ) /* we came to the end of the list */
return ( EXPP_ReturnIntError( PyExc_IndexError,
"index out of range" ) );
if (value) {
return ( EXPP_ReturnIntError( PyExc_RuntimeError,
"assigning curves is not yet supported" ) );
} else {
BLI_remlink(&self->curve->nurb, pNurb);
freeNurb(pNurb);
}
return 0;
}
/*****************************************************************************/
/* Function: Curve_compare */
/* Description: This compares 2 curve python types, == or != only. */
/*****************************************************************************/
static int Curve_compare( BPy_Curve * a, BPy_Curve * b )
{
return ( a->curve == b->curve ) ? 0 : -1;
}
/*****************************************************************************/
/* Function: Curve_repr */
/* Description: This is a callback function for the BPy_Curve type. It */
/* builds a meaninful string to represent curve objects. */
/*****************************************************************************/
static PyObject *Curve_repr( BPy_Curve * self )
{ /* used by 'repr' */
return PyString_FromFormat( "[Curve \"%s\"]",
self->curve->id.name + 2 );
}
/* attributes for curves */
static PyGetSetDef Curve_getseters[] = {
GENERIC_LIB_GETSETATTR,
{"pathlen",
(getter)Curve_getPathLen, (setter)Curve_newsetPathLen,
"The path length, used to set the number of frames for an animation (not the physical length)",
NULL},
{"totcol",
(getter)Curve_getTotcol, (setter)NULL,
"The maximum number of linked materials",
NULL},
{"flag",
(getter)Curve_getMode, (setter)Curve_newsetMode,
"The flag bitmask",
NULL},
{"bevresol",
(getter)Curve_getBevresol, (setter)Curve_newsetBevresol,
"The bevel resolution",
NULL},
{"resolu",
(getter)Curve_getResolu, (setter)Curve_newsetResolu,
"The resolution in U direction",
NULL},
{"resolv",
(getter)Curve_getResolv, (setter)Curve_newsetResolv,
"The resolution in V direction",
NULL},
{"width",
(getter)Curve_getWidth, (setter)Curve_newsetWidth,
"The curve width",
NULL},
{"ext1",
(getter)Curve_getExt1, (setter)Curve_newsetExt1,
"The extent1 value (for bevels)",
NULL},
{"ext2",
(getter)Curve_getExt2, (setter)Curve_newsetExt2,
"The extent2 value (for bevels)",
NULL},
{"loc",
(getter)Curve_getLoc, (setter)Curve_newsetLoc,
"The data location (from the center)",
NULL},
{"rot",
(getter)Curve_getRot, (setter)Curve_newsetRot,
"The data rotation (from the center)",
NULL},
{"size",
(getter)Curve_getSize, (setter)Curve_newsetSize,
"The data size (from the center)",
NULL},
{"bevob",
(getter)Curve_getBevOb, (setter)Curve_newsetBevOb,
"The bevel object",
NULL},
{"taperob",
(getter)Curve_getTaperOb, (setter)Curve_newsetTaperOb,
"The taper object",
NULL},
{"key",
(getter)Curve_getKey, (setter)NULL,
"The shape key for the curve (if any)",
NULL},
{"materials",
(getter)Curve_getMaterials, (setter)Curve_setMaterials,
"The materials associated with the curve",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*****************************************************************************/
/* Function: M_Curve_New */
/* Python equivalent: Blender.Curve.New */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args )
{
char *name = "Curve";
BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */
Curve *blcurve = 0; /* for actual Curve Data we create in Blender */
if( !PyArg_ParseTuple( args, "|s", &name ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected string argument or no argument" ) );
blcurve = add_curve( name, OB_CURVE ); /* first create the Curve Data in Blender */
if( blcurve == NULL ) /* bail out if add_curve() failed */
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"couldn't create Curve Data in Blender" ) );
/* return user count to zero because add_curve() inc'd it */
blcurve->id.us = 0;
/* create python wrapper obj */
pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( pycurve == NULL )
return ( EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create Curve Data object" ) );
pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */
return ( PyObject * ) pycurve;
}
/*****************************************************************************/
/* Function: M_Curve_Get */
/* Python equivalent: Blender.Curve.Get */
/*****************************************************************************/
static PyObject *M_Curve_Get( PyObject * self, PyObject * args )
{
char *name = NULL;
Curve *curv_iter;
BPy_Curve *wanted_curv;
if( !PyArg_ParseTuple( args, "|s", &name ) ) /* expects nothing or a string */
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" ) );
if( name ) { /*a name has been given */
/* Use the name to search for the curve requested */
wanted_curv = NULL;
curv_iter = G.main->curve.first;
while( ( curv_iter ) && ( wanted_curv == NULL ) ) {
if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) {
wanted_curv = ( BPy_Curve * )
PyObject_NEW( BPy_Curve, &Curve_Type );
if( wanted_curv )
wanted_curv->curve = curv_iter;
}
curv_iter = curv_iter->id.next;
}
if( wanted_curv == NULL ) { /* Requested curve doesn't exist */
char error_msg[64];
PyOS_snprintf( error_msg, sizeof( error_msg ),
"Curve \"%s\" not found", name );
return ( EXPP_ReturnPyObjError
( PyExc_NameError, error_msg ) );
}
return ( PyObject * ) wanted_curv;
} /* end of if(name) */
else {
/* no name has been given; return a list of all curves by name. */
PyObject *curvlist;
curv_iter = G.main->curve.first;
curvlist = PyList_New( 0 );
if( curvlist == NULL )
return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyList" ) );
while( curv_iter ) {
BPy_Curve *found_cur =
( BPy_Curve * ) PyObject_NEW( BPy_Curve,
&Curve_Type );
found_cur->curve = curv_iter;
PyList_Append( curvlist, ( PyObject * ) found_cur );
Py_DECREF(found_cur);
curv_iter = curv_iter->id.next;
}
return ( curvlist );
} /* end of else */
}
/*****************************************************************************/
/* Python method definitions for Blender.Curve module: */
/*****************************************************************************/
struct PyMethodDef M_Curve_methods[] = {
{"New", ( PyCFunction ) M_Curve_New, METH_VARARGS, M_Curve_New_doc},
{"Get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc},
{"get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python BPy_Curve instance methods table: */
/*****************************************************************************/
static PyMethodDef BPy_Curve_methods[] = {
{"getName", ( PyCFunction ) Curve_getName,
METH_NOARGS, "() - Return Curve Data name"},
{"setName", ( PyCFunction ) Curve_setName,
METH_VARARGS, "() - Sets Curve Data name"},
{"getPathLen", ( PyCFunction ) Curve_getPathLen,
METH_NOARGS, "() - Return Curve path length"},
{"setPathLen", ( PyCFunction ) Curve_setPathLen,
METH_VARARGS, "(int) - Sets Curve path length"},
{"getTotcol", ( PyCFunction ) Curve_getTotcol,
METH_NOARGS, "() - Return the number of materials of the curve"},
{"setTotcol", ( PyCFunction ) Curve_setTotcol,
METH_VARARGS, "(int) - Sets the number of materials of the curve"},
{"getFlag", ( PyCFunction ) Curve_getMode,
METH_NOARGS, "() - Return flag (see the doc for semantic)"},
{"setFlag", ( PyCFunction ) Curve_setMode,
METH_VARARGS, "(int) - Sets flag (see the doc for semantic)"},
{"getBevresol", ( PyCFunction ) Curve_getBevresol,
METH_NOARGS, "() - Return bevel resolution"},
{"setBevresol", ( PyCFunction ) Curve_setBevresol,
METH_VARARGS, "(int) - Sets bevel resolution"},
{"getResolu", ( PyCFunction ) Curve_getResolu,
METH_NOARGS, "() - Return U resolution"},
{"setResolu", ( PyCFunction ) Curve_setResolu,
METH_VARARGS, "(int) - Sets U resolution"},
{"getResolv", ( PyCFunction ) Curve_getResolv,
METH_NOARGS, "() - Return V resolution"},
{"setResolv", ( PyCFunction ) Curve_setResolv,
METH_VARARGS, "(int) - Sets V resolution"},
{"getWidth", ( PyCFunction ) Curve_getWidth,
METH_NOARGS, "() - Return curve width"},
{"setWidth", ( PyCFunction ) Curve_setWidth,
METH_VARARGS, "(int) - Sets curve width"},
{"getExt1", ( PyCFunction ) Curve_getExt1,
METH_NOARGS, "() - Returns extent 1 of the bevel"},
{"setExt1", ( PyCFunction ) Curve_setExt1,
METH_VARARGS, "(int) - Sets extent 1 of the bevel"},
{"getExt2", ( PyCFunction ) Curve_getExt2,
METH_NOARGS, "() - Return extent 2 of the bevel "},
{"setExt2", ( PyCFunction ) Curve_setExt2,
METH_VARARGS, "(int) - Sets extent 2 of the bevel "},
{"getControlPoint", ( PyCFunction ) Curve_getControlPoint,
METH_VARARGS, "(int numcurve,int numpoint) -\
Gets a control point.Depending upon the curve type, returne a list of 4 or 9 floats"},
{"setControlPoint", ( PyCFunction ) Curve_setControlPoint,
METH_VARARGS, "(int numcurve,int numpoint,float x,float y,float z,\
float w)(nurbs) or (int numcurve,int numpoint,float x1,...,x9(bezier)\
Sets a control point "},
{"getLoc", ( PyCFunction ) Curve_getLoc,
METH_NOARGS, "() - Gets Location of the curve (a 3-tuple) "},
{"setLoc", ( PyCFunction ) Curve_setLoc,
METH_VARARGS, "(3-tuple) - Sets Location "},
{"getRot", ( PyCFunction ) Curve_getRot,
METH_NOARGS, "() - Gets curve rotation"},
{"setRot", ( PyCFunction ) Curve_setRot,
METH_VARARGS, "(3-tuple) - Sets curve rotation"},
{"getSize", ( PyCFunction ) Curve_getSize,
METH_NOARGS, "() - Gets curve size"},
{"setSize", ( PyCFunction ) Curve_setSize,
METH_VARARGS, "(3-tuple) - Sets curve size"},
{"getNumCurves", ( PyCFunction ) Curve_getNumCurves,
METH_NOARGS, "() - Gets number of curves in Curve"},
{"getKey", ( PyCFunction ) Curve_getKey,
METH_NOARGS, "() - Gets curve key"},
{"isNurb", ( PyCFunction ) Curve_isNurb,
METH_VARARGS,
"(nothing or integer) - returns 1 if curve is type Nurb, O otherwise."},
{"isCyclic", ( PyCFunction ) Curve_isCyclic,
METH_VARARGS, "( nothing or integer ) - returns true if curve is cyclic (closed), false otherwise."},
{"getNumPoints", ( PyCFunction ) Curve_getNumPoints,
METH_VARARGS,
"(nothing or integer) - returns the number of points of the specified curve"},
{"appendPoint", ( PyCFunction ) Curve_appendPoint, METH_VARARGS,
"( int numcurve, list of coordinates) - adds a new point to end of curve"},
{"appendNurb", ( PyCFunction ) Curve_appendNurb, METH_O,
"( new_nurb ) - adds a new nurb to the Curve"},
{"update", ( PyCFunction ) Curve_update, METH_NOARGS,
"( ) - updates display lists after changes to Curve"},
{"getMaterials", ( PyCFunction ) Curve_getMaterials, METH_NOARGS,
"() - returns list of materials assigned to this Curve"},
{"getBevOb", ( PyCFunction ) Curve_getBevOb, METH_NOARGS,
"() - returns Bevel Object assigned to this Curve"},
{"setBevOb", ( PyCFunction ) Curve_setBevOb, METH_VARARGS,
"() - assign a Bevel Object to this Curve"},
{"getTaperOb", ( PyCFunction ) Curve_getTaperOb, METH_NOARGS,
"() - returns Taper Object assigned to this Curve"},
{"setTaperOb", ( PyCFunction ) Curve_setTaperOb, METH_VARARGS,
"() - assign a Taper Object to this Curve"},
{"__copy__", ( PyCFunction ) Curve_copy, METH_NOARGS,
"() - make a copy of this curve data"},
{"copy", ( PyCFunction ) Curve_copy, METH_NOARGS,
"() - make a copy of this curve data"},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python Curve_Type callback function prototypes: */
/*****************************************************************************/
static int Curve_compare( BPy_Curve * a, BPy_Curve * b );
static PyObject *Curve_repr( BPy_Curve * msh );
static PySequenceMethods Curve_as_sequence = {
( inquiry ) Curve_length, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) Curve_getNurb, /* sq_item */
( intintargfunc ) 0, /* sq_slice */
( intobjargproc ) Curve_setNurb, /* sq_ass_item - only so you can do del curve[i] */
0, /* sq_ass_slice */
( objobjproc ) 0, /* sq_contains */
0,
0
};
/*****************************************************************************/
/* Python Curve_Type structure definition: */
/*****************************************************************************/
PyTypeObject Curve_Type = {
PyObject_HEAD_INIT( NULL ) /* required macro */
0, /* ob_size */
"Curve", /* tp_name */
sizeof( BPy_Curve ), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
NULL, /* tp_dealloc */
0, /* tp_print */
( getattrfunc ) NULL, /* tp_getattr */
( setattrfunc ) NULL, /* tp_setattr */
( cmpfunc ) Curve_compare, /* tp_compare */
( reprfunc ) Curve_repr, /* tp_repr */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&Curve_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) GenericLib_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc ) Curve_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) Curve_iterNext, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_Curve_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
Curve_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/*****************************************************************************/
/* Function: Curve_Init */
/*****************************************************************************/
PyObject *Curve_Init( void )
{
PyObject *submodule;
if( PyType_Ready( &Curve_Type) < 0) /* set exception. -1 is failure */
return NULL;
submodule =
Py_InitModule3( "Blender.Curve", M_Curve_methods,
M_Curve_doc );
return ( submodule );
}
/*
* Curve_CreatePyObject
* constructor to build a py object from blender data
*/
PyObject *Curve_CreatePyObject( struct Curve * curve )
{
BPy_Curve *blen_object;
blen_object = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );
if( blen_object == NULL ) {
return ( NULL );
}
blen_object->curve = curve;
return ( ( PyObject * ) blen_object );
}
struct Curve *Curve_FromPyObject( PyObject * py_obj )
{
BPy_Curve *blen_obj;
blen_obj = ( BPy_Curve * ) py_obj;
return ( blen_obj->curve );
}
/* #####DEPRECATED###### */
PyObject *Curve_setName( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args, (setter)Curve_newsetName );
}
static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetPathLen );
}
static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args )
{
if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" );
Py_RETURN_NONE;
}
PyObject *Curve_setMode( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetMode );
}
PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetBevresol);
}
PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetResolu );
}
PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetResolv );
}
PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetWidth );
}
PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetExt1 );
}
PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetExt2 );
}
static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetLoc );
}
static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetRot );
}
static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetSize );
}
PyObject *Curve_setBevOb( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetBevOb );
}
PyObject *Curve_setTaperOb( BPy_Curve * self, PyObject * args )
{
return EXPP_setterWrapper( (void *)self, args,
(setter)Curve_newsetTaperOb );
}