This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/euler.c
Campbell Barton 3a04520686 python api, slicing works differently on the 64bit ubuntu gutsy system, compared to the 32bit
install.
face.uv[:] was returning a blank list. and making smart UV projection script fail.

On one system Python is giving the slice function positive values, whereas on the 64bit system its 
passing negative which are then clamped to zero.
made mathutils types accept negative values for slicing. This is very odd because both systems are 
running ubuntu gutsy with python 2.5
2007-10-20 20:24:09 +00:00

503 lines
14 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"
#include "gen_utils.h"
//-------------------------DOC STRINGS ---------------------------
char Euler_Zero_doc[] = "() - set all values in the euler to 0";
char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation";
char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
char Euler_copy_doc[] = "() - returns a copy of the euler.";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
PyObject *Euler_ToQuat(EulerObject * self)
{
float eul[3], quat[4];
int x;
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToQuat(eul, quat);
return newQuaternionObject(quat, Py_NEW);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
PyObject *Euler_ToMatrix(EulerObject * self)
{
float eul[3];
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
int x;
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToMat3(eul, (float (*)[3]) mat);
return newMatrixObject(mat, 3, 3 , Py_NEW);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation
PyObject *Euler_Unique(EulerObject * self)
{
double heading, pitch, bank;
double pi2 = Py_PI * 2.0f;
double piO2 = Py_PI / 2.0f;
double Opi2 = 1.0f / pi2;
//radians
heading = self->eul[0] * (float)Py_PI / 180;
pitch = self->eul[1] * (float)Py_PI / 180;
bank = self->eul[2] * (float)Py_PI / 180;
//wrap heading in +180 / -180
pitch += Py_PI;
pitch -= floor(pitch * Opi2) * pi2;
pitch -= Py_PI;
if(pitch < -piO2) {
pitch = -Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
} else if(pitch > piO2) {
pitch = Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
}
//gimbal lock test
if(fabs(pitch) > piO2 - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
bank += Py_PI;
bank -= (floor(bank * Opi2)) * pi2;
bank -= Py_PI;
}
heading += Py_PI;
heading -= (floor(heading * Opi2)) * pi2;
heading -= Py_PI;
//back to degrees
self->eul[0] = (float)(heading * 180 / (float)Py_PI);
self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
self->eul[2] = (float)(bank * 180 / (float)Py_PI);
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
int x;
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate():expected angle (float) and axis (x,y,z)");
}
if(!STREQ3(axis,"x","y","z")){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate(): expected axis to be 'x', 'y' or 'z'");
}
//covert to radians
angle *= ((float)Py_PI / 180);
for(x = 0; x < 3; x++) {
self->eul[x] *= ((float)Py_PI / 180);
}
euler_rot(self->eul, angle, *axis);
//convert back from radians
for(x = 0; x < 3; x++) {
self->eul[x] *= (180 / (float)Py_PI);
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
return newEulerObject(self->eul, Py_NEW);
}
//----------------------------dealloc()(internal) ------------------
//free the py_object
static void Euler_dealloc(EulerObject * self)
{
//only free py_data
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
//----------------------------getattr()(internal) ------------------
//object.attribute access (get)
static PyObject *Euler_getattr(EulerObject * self, char *name)
{
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->eul[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->eul[1]);
}else if(STREQ(name, "z")){
return PyFloat_FromDouble(self->eul[2]);
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Euler_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ------------------
//object.attribute access (set)
static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
{
PyObject *f = NULL;
f = PyNumber_Float(e);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->eul[0] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->eul[1] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
self->eul[2] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"euler.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < 3; i++){
if(i < (2)){
sprintf(buffer, "%.6f, ", self->eul[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->eul[i]);
strcat(str,buffer);
}
}
strcat(str, "](euler)");
return PyString_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
EulerObject *eulA = NULL, *eulB = NULL;
int result = 0;
if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){
if (comparison_type == Py_NE){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
eulA = (EulerObject*)objectA;
eulB = (EulerObject*)objectB;
switch (comparison_type){
case Py_EQ:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
//------------------------tp_doc
static char EulerObject_doc[] = "This is a wrapper for euler objects.";
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i < 0 || i >= 3)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"euler[attribute]: array index out of range\n");
return PyFloat_FromDouble(self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= 3){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"euler[attribute] = x: array assignment index out of range\n");
}
self->eul[i] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->eul[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float eul[3];
PyObject *e, *f;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
e = PySequence_GetItem(seq, i);
if (e == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"euler[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(e);
if(f == NULL) { // parsed item not a number
Py_DECREF(e);
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[begin:end] = []: sequence argument not a number\n");
}
eul[i] = (float)PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,e);
}
//parsed well - now set in vector
for(y = 0; y < 3; y++){
self->eul[begin + y] = eul[y];
}
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
(inquiry) Euler_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Euler_item, /* sq_item */
(intintargfunc) Euler_slice, /* sq_slice */
(intobjargproc) Euler_ass_item, /* sq_ass_item */
(intintobjargproc) Euler_ass_slice, /* sq_ass_slice */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = {
PyObject_HEAD_INIT(NULL) //tp_head
0, //tp_internal
"euler", //tp_name
sizeof(EulerObject), //tp_basicsize
0, //tp_itemsize
(destructor)Euler_dealloc, //tp_dealloc
0, //tp_print
(getattrfunc)Euler_getattr, //tp_getattr
(setattrfunc) Euler_setattr, //tp_setattr
0, //tp_compare
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
0, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
0, //tp_getattro
0, //tp_setattro
0, //tp_as_buffer
Py_TPFLAGS_DEFAULT, //tp_flags
EulerObject_doc, //tp_doc
0, //tp_traverse
0, //tp_clear
(richcmpfunc)Euler_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
0, //tp_iter
0, //tp_iternext
0, //tp_methods
0, //tp_members
0, //tp_getset
0, //tp_base
0, //tp_dict
0, //tp_descr_get
0, //tp_descr_set
0, //tp_dictoffset
0, //tp_init
0, //tp_alloc
0, //tp_new
0, //tp_free
0, //tp_is_gc
0, //tp_bases
0, //tp_mro
0, //tp_cache
0, //tp_subclasses
0, //tp_weaklist
0 //tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type)
{
EulerObject *self;
int x;
self = PyObject_NEW(EulerObject, &euler_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(type == Py_WRAP){
self->data.blend_data = eul;
self->eul = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(3 * sizeof(float));
self->eul = self->data.py_data;
if(!eul) { //new empty
for(x = 0; x < 3; x++) {
self->eul[x] = 0.0f;
}
}else{
for(x = 0; x < 3; x++){
self->eul[x] = eul[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) self;
}