install. face.uv[:] was returning a blank list. and making smart UV projection script fail. On one system Python is giving the slice function positive values, whereas on the 64bit system its passing negative which are then clamped to zero. made mathutils types accept negative values for slicing. This is very odd because both systems are running ubuntu gutsy with python 2.5
669 lines
20 KiB
C
669 lines
20 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Joseph Gilbert
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "gen_utils.h"
|
|
|
|
|
|
//-------------------------DOC STRINGS ---------------------------
|
|
char Quaternion_Identity_doc[] = "() - set the quaternion to it's identity (1, vector)";
|
|
char Quaternion_Negate_doc[] = "() - set all values in the quaternion to their negative";
|
|
char Quaternion_Conjugate_doc[] = "() - set the quaternion to it's conjugate";
|
|
char Quaternion_Inverse_doc[] = "() - set the quaternion to it's inverse";
|
|
char Quaternion_Normalize_doc[] = "() - normalize the vector portion of the quaternion";
|
|
char Quaternion_ToEuler_doc[] = "() - return a euler rotation representing the quaternion";
|
|
char Quaternion_ToMatrix_doc[] = "() - return a rotation matrix representing the quaternion";
|
|
char Quaternion_copy_doc[] = "() - return a copy of the quat";
|
|
//-----------------------METHOD DEFINITIONS ----------------------
|
|
struct PyMethodDef Quaternion_methods[] = {
|
|
{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
|
|
{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
|
|
{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
|
|
{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
|
|
{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
|
|
{"toEuler", (PyCFunction) Quaternion_ToEuler, METH_NOARGS, Quaternion_ToEuler_doc},
|
|
{"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
|
|
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
|
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
//-----------------------------METHODS------------------------------
|
|
//----------------------------Quaternion.toEuler()------------------
|
|
//return the quat as a euler
|
|
PyObject *Quaternion_ToEuler(QuaternionObject * self)
|
|
{
|
|
float eul[3];
|
|
int x;
|
|
|
|
QuatToEul(self->quat, eul);
|
|
for(x = 0; x < 3; x++) {
|
|
eul[x] *= (180 / (float)Py_PI);
|
|
}
|
|
return newEulerObject(eul, Py_NEW);
|
|
}
|
|
//----------------------------Quaternion.toMatrix()------------------
|
|
//return the quat as a matrix
|
|
PyObject *Quaternion_ToMatrix(QuaternionObject * self)
|
|
{
|
|
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
|
|
QuatToMat3(self->quat, (float (*)[3]) mat);
|
|
|
|
return newMatrixObject(mat, 3, 3, Py_NEW);
|
|
}
|
|
//----------------------------Quaternion.normalize()----------------
|
|
//normalize the axis of rotation of [theta,vector]
|
|
PyObject *Quaternion_Normalize(QuaternionObject * self)
|
|
{
|
|
NormalQuat(self->quat);
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Quaternion.inverse()------------------
|
|
//invert the quat
|
|
PyObject *Quaternion_Inverse(QuaternionObject * self)
|
|
{
|
|
double mag = 0.0f;
|
|
int x;
|
|
|
|
for(x = 1; x < 4; x++) {
|
|
self->quat[x] = -self->quat[x];
|
|
}
|
|
for(x = 0; x < 4; x++) {
|
|
mag += (self->quat[x] * self->quat[x]);
|
|
}
|
|
mag = sqrt(mag);
|
|
for(x = 0; x < 4; x++) {
|
|
self->quat[x] /= (float)(mag * mag);
|
|
}
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Quaternion.identity()-----------------
|
|
//generate the identity quaternion
|
|
PyObject *Quaternion_Identity(QuaternionObject * self)
|
|
{
|
|
self->quat[0] = 1.0;
|
|
self->quat[1] = 0.0;
|
|
self->quat[2] = 0.0;
|
|
self->quat[3] = 0.0;
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Quaternion.negate()-------------------
|
|
//negate the quat
|
|
PyObject *Quaternion_Negate(QuaternionObject * self)
|
|
{
|
|
int x;
|
|
for(x = 0; x < 4; x++) {
|
|
self->quat[x] = -self->quat[x];
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Quaternion.conjugate()----------------
|
|
//negate the vector part
|
|
PyObject *Quaternion_Conjugate(QuaternionObject * self)
|
|
{
|
|
int x;
|
|
for(x = 1; x < 4; x++) {
|
|
self->quat[x] = -self->quat[x];
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Quaternion.copy()----------------
|
|
//return a copy of the quat
|
|
PyObject *Quaternion_copy(QuaternionObject * self)
|
|
{
|
|
return newQuaternionObject(self->quat, Py_NEW);
|
|
}
|
|
|
|
//----------------------------dealloc()(internal) ------------------
|
|
//free the py_object
|
|
static void Quaternion_dealloc(QuaternionObject * self)
|
|
{
|
|
Py_XDECREF(self->coerced_object);
|
|
//only free py_data
|
|
if(self->data.py_data){
|
|
PyMem_Free(self->data.py_data);
|
|
}
|
|
PyObject_DEL(self);
|
|
}
|
|
//----------------------------getattr()(internal) ------------------
|
|
//object.attribute access (get)
|
|
static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
|
|
{
|
|
int x;
|
|
double mag = 0.0f;
|
|
float vec[3];
|
|
|
|
if(STREQ(name,"w")){
|
|
return PyFloat_FromDouble(self->quat[0]);
|
|
}else if(STREQ(name, "x")){
|
|
return PyFloat_FromDouble(self->quat[1]);
|
|
}else if(STREQ(name, "y")){
|
|
return PyFloat_FromDouble(self->quat[2]);
|
|
}else if(STREQ(name, "z")){
|
|
return PyFloat_FromDouble(self->quat[3]);
|
|
}
|
|
if(STREQ(name, "magnitude")) {
|
|
for(x = 0; x < 4; x++) {
|
|
mag += self->quat[x] * self->quat[x];
|
|
}
|
|
mag = sqrt(mag);
|
|
return PyFloat_FromDouble(mag);
|
|
}
|
|
if(STREQ(name, "angle")) {
|
|
mag = self->quat[0];
|
|
mag = 2 * (acos(mag));
|
|
mag *= (180 / Py_PI);
|
|
return PyFloat_FromDouble(mag);
|
|
}
|
|
if(STREQ(name, "axis")) {
|
|
mag = self->quat[0] * (Py_PI / 180);
|
|
mag = 2 * (acos(mag));
|
|
mag = sin(mag / 2);
|
|
for(x = 0; x < 3; x++) {
|
|
vec[x] = (float)(self->quat[x + 1] / mag);
|
|
}
|
|
Normalize(vec);
|
|
//If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations
|
|
if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
|
|
vec[0] = 1.0f;
|
|
}
|
|
return (PyObject *) newVectorObject(vec, 3, Py_NEW);
|
|
}
|
|
if(STREQ(name, "wrapped")){
|
|
if(self->wrapped == Py_WRAP)
|
|
return EXPP_incr_ret((PyObject *)Py_True);
|
|
else
|
|
return EXPP_incr_ret((PyObject *)Py_False);
|
|
}
|
|
|
|
return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
|
|
}
|
|
//----------------------------setattr()(internal) ------------------
|
|
//object.attribute access (set)
|
|
static int Quaternion_setattr(QuaternionObject * self, char *name, PyObject * q)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(q);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"quaternion.attribute = x: argument not a number\n");
|
|
}
|
|
|
|
if(STREQ(name,"w")){
|
|
self->quat[0] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "x")){
|
|
self->quat[1] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "y")){
|
|
self->quat[2] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "z")){
|
|
self->quat[3] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else{
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"quaternion.attribute = x: unknown attribute\n");
|
|
}
|
|
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------print object (internal)--------------
|
|
//print the object to screen
|
|
static PyObject *Quaternion_repr(QuaternionObject * self)
|
|
{
|
|
int i;
|
|
char buffer[48], str[1024];
|
|
|
|
BLI_strncpy(str,"[",1024);
|
|
for(i = 0; i < 4; i++){
|
|
if(i < (3)){
|
|
sprintf(buffer, "%.6f, ", self->quat[i]);
|
|
strcat(str,buffer);
|
|
}else{
|
|
sprintf(buffer, "%.6f", self->quat[i]);
|
|
strcat(str,buffer);
|
|
}
|
|
}
|
|
strcat(str, "](quaternion)");
|
|
|
|
return PyString_FromString(str);
|
|
}
|
|
//------------------------tp_richcmpr
|
|
//returns -1 execption, 0 false, 1 true
|
|
static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
QuaternionObject *quatA = NULL, *quatB = NULL;
|
|
int result = 0;
|
|
|
|
if (!QuaternionObject_Check(objectA) || !QuaternionObject_Check(objectB)){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
quatA = (QuaternionObject*)objectA;
|
|
quatB = (QuaternionObject*)objectB;
|
|
|
|
switch (comparison_type){
|
|
case Py_EQ:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
//------------------------tp_doc
|
|
static char QuaternionObject_doc[] = "This is a wrapper for quaternion objects.";
|
|
//---------------------SEQUENCE PROTOCOLS------------------------
|
|
//----------------------------len(object)------------------------
|
|
//sequence length
|
|
static int Quaternion_len(QuaternionObject * self)
|
|
{
|
|
return 4;
|
|
}
|
|
//----------------------------object[]---------------------------
|
|
//sequence accessor (get)
|
|
static PyObject *Quaternion_item(QuaternionObject * self, int i)
|
|
{
|
|
if(i < 0 || i >= 4)
|
|
return EXPP_ReturnPyObjError(PyExc_IndexError,
|
|
"quaternion[attribute]: array index out of range\n");
|
|
return PyFloat_FromDouble(self->quat[i]);
|
|
|
|
}
|
|
//----------------------------object[]-------------------------
|
|
//sequence accessor (set)
|
|
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(ob);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"quaternion[attribute] = x: argument not a number\n");
|
|
}
|
|
|
|
if(i < 0 || i >= 4){
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_IndexError,
|
|
"quaternion[attribute] = x: array assignment index out of range\n");
|
|
}
|
|
self->quat[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (get)
|
|
static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
CLAMP(begin, 0, 4);
|
|
if (end<0) end= 5+end;
|
|
CLAMP(end, 0, 4);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->quat[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (set)
|
|
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
|
|
PyObject * seq)
|
|
{
|
|
int i, y, size = 0;
|
|
float quat[4];
|
|
PyObject *q, *f;
|
|
|
|
CLAMP(begin, 0, 4);
|
|
if (end<0) end= 5+end;
|
|
CLAMP(end, 0, 4);
|
|
begin = MIN2(begin,end);
|
|
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"quaternion[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
q = PySequence_GetItem(seq, i);
|
|
if (q == NULL) { // Failed to read sequence
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"quaternion[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
|
|
f = PyNumber_Float(q);
|
|
if(f == NULL) { // parsed item not a number
|
|
Py_DECREF(q);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"quaternion[begin:end] = []: sequence argument not a number\n");
|
|
}
|
|
|
|
quat[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
EXPP_decr2(f,q);
|
|
}
|
|
//parsed well - now set in vector
|
|
for(y = 0; y < size; y++){
|
|
self->quat[begin + y] = quat[y];
|
|
}
|
|
return 0;
|
|
}
|
|
//------------------------NUMERIC PROTOCOLS----------------------
|
|
//------------------------obj + obj------------------------------
|
|
//addition
|
|
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
|
|
{
|
|
int x;
|
|
float quat[4];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(quat1->coerced_object || quat2->coerced_object){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Quaternion addition: arguments not valid for this operation....\n");
|
|
}
|
|
for(x = 0; x < 4; x++) {
|
|
quat[x] = quat1->quat[x] + quat2->quat[x];
|
|
}
|
|
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
//------------------------obj - obj------------------------------
|
|
//subtraction
|
|
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
|
|
{
|
|
int x;
|
|
float quat[4];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(quat1->coerced_object || quat2->coerced_object){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Quaternion addition: arguments not valid for this operation....\n");
|
|
}
|
|
for(x = 0; x < 4; x++) {
|
|
quat[x] = quat1->quat[x] - quat2->quat[x];
|
|
}
|
|
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
//------------------------obj * obj------------------------------
|
|
//mulplication
|
|
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
|
|
{
|
|
int x;
|
|
float quat[4], scalar;
|
|
double dot = 0.0f;
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
PyObject *f = NULL;
|
|
VectorObject *vec = NULL;
|
|
PointObject *pt = NULL;
|
|
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(quat1->coerced_object){
|
|
if (PyFloat_Check(quat1->coerced_object) ||
|
|
PyInt_Check(quat1->coerced_object)){ // FLOAT/INT * QUAT
|
|
f = PyNumber_Float(quat1->coerced_object);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Quaternion multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
for(x = 0; x < 4; x++) {
|
|
quat[x] = quat2->quat[x] * scalar;
|
|
}
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
}else{
|
|
if(quat2->coerced_object){
|
|
if (PyFloat_Check(quat2->coerced_object) ||
|
|
PyInt_Check(quat2->coerced_object)){ // QUAT * FLOAT/INT
|
|
f = PyNumber_Float(quat2->coerced_object);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Quaternion multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
for(x = 0; x < 4; x++) {
|
|
quat[x] = quat1->quat[x] * scalar;
|
|
}
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}else if(VectorObject_Check(quat2->coerced_object)){ //QUAT * VEC
|
|
vec = (VectorObject*)quat2->coerced_object;
|
|
if(vec->size != 3){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Quaternion multiplication: only 3D vector rotations currently supported\n");
|
|
}
|
|
return quat_rotation((PyObject*)quat1, (PyObject*)vec);
|
|
}else if(PointObject_Check(quat2->coerced_object)){ //QUAT * POINT
|
|
pt = (PointObject*)quat2->coerced_object;
|
|
if(pt->size != 3){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Quaternion multiplication: only 3D point rotations currently supported\n");
|
|
}
|
|
return quat_rotation((PyObject*)quat1, (PyObject*)pt);
|
|
}
|
|
}else{ //QUAT * QUAT (dot product)
|
|
for(x = 0; x < 4; x++) {
|
|
dot += quat1->quat[x] * quat1->quat[x];
|
|
}
|
|
return PyFloat_FromDouble(dot);
|
|
}
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Quaternion multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
//------------------------coerce(obj, obj)-----------------------
|
|
//coercion of unknown types to type QuaternionObject for numeric protocols
|
|
/*Coercion() is called whenever a math operation has 2 operands that
|
|
it doesn't understand how to evaluate. 2+Matrix for example. We want to
|
|
evaluate some of these operations like: (vector * 2), however, for math
|
|
to proceed, the unknown operand must be cast to a type that python math will
|
|
understand. (e.g. in the case above case, 2 must be cast to a vector and
|
|
then call vector.multiply(vector, scalar_cast_as_vector)*/
|
|
static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
|
|
{
|
|
if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2) ||
|
|
PointObject_Check(*q2)) {
|
|
PyObject *coerced = EXPP_incr_ret(*q2);
|
|
*q2 = newQuaternionObject(NULL,Py_NEW);
|
|
((QuaternionObject*)*q2)->coerced_object = coerced;
|
|
Py_INCREF (*q1);
|
|
return 0;
|
|
}
|
|
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"quaternion.coerce(): unknown operand - can't coerce for numeric protocols");
|
|
}
|
|
//-----------------PROTOCOL DECLARATIONS--------------------------
|
|
static PySequenceMethods Quaternion_SeqMethods = {
|
|
(inquiry) Quaternion_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(intargfunc) 0, /* sq_repeat */
|
|
(intargfunc) Quaternion_item, /* sq_item */
|
|
(intintargfunc) Quaternion_slice, /* sq_slice */
|
|
(intobjargproc) Quaternion_ass_item, /* sq_ass_item */
|
|
(intintobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
|
|
};
|
|
static PyNumberMethods Quaternion_NumMethods = {
|
|
(binaryfunc) Quaternion_add, /* __add__ */
|
|
(binaryfunc) Quaternion_sub, /* __sub__ */
|
|
(binaryfunc) Quaternion_mul, /* __mul__ */
|
|
(binaryfunc) 0, /* __div__ */
|
|
(binaryfunc) 0, /* __mod__ */
|
|
(binaryfunc) 0, /* __divmod__ */
|
|
(ternaryfunc) 0, /* __pow__ */
|
|
(unaryfunc) 0, /* __neg__ */
|
|
(unaryfunc) 0, /* __pos__ */
|
|
(unaryfunc) 0, /* __abs__ */
|
|
(inquiry) 0, /* __nonzero__ */
|
|
(unaryfunc) 0, /* __invert__ */
|
|
(binaryfunc) 0, /* __lshift__ */
|
|
(binaryfunc) 0, /* __rshift__ */
|
|
(binaryfunc) 0, /* __and__ */
|
|
(binaryfunc) 0, /* __xor__ */
|
|
(binaryfunc) 0, /* __or__ */
|
|
(coercion) Quaternion_coerce, /* __coerce__ */
|
|
(unaryfunc) 0, /* __int__ */
|
|
(unaryfunc) 0, /* __long__ */
|
|
(unaryfunc) 0, /* __float__ */
|
|
(unaryfunc) 0, /* __oct__ */
|
|
(unaryfunc) 0, /* __hex__ */
|
|
|
|
};
|
|
//------------------PY_OBECT DEFINITION--------------------------
|
|
PyTypeObject quaternion_Type = {
|
|
PyObject_HEAD_INIT(NULL) //tp_head
|
|
0, //tp_internal
|
|
"quaternion", //tp_name
|
|
sizeof(QuaternionObject), //tp_basicsize
|
|
0, //tp_itemsize
|
|
(destructor)Quaternion_dealloc, //tp_dealloc
|
|
0, //tp_print
|
|
(getattrfunc)Quaternion_getattr, //tp_getattr
|
|
(setattrfunc) Quaternion_setattr, //tp_setattr
|
|
0, //tp_compare
|
|
(reprfunc) Quaternion_repr, //tp_repr
|
|
&Quaternion_NumMethods, //tp_as_number
|
|
&Quaternion_SeqMethods, //tp_as_sequence
|
|
0, //tp_as_mapping
|
|
0, //tp_hash
|
|
0, //tp_call
|
|
0, //tp_str
|
|
0, //tp_getattro
|
|
0, //tp_setattro
|
|
0, //tp_as_buffer
|
|
Py_TPFLAGS_DEFAULT, //tp_flags
|
|
QuaternionObject_doc, //tp_doc
|
|
0, //tp_traverse
|
|
0, //tp_clear
|
|
(richcmpfunc)Quaternion_richcmpr, //tp_richcompare
|
|
0, //tp_weaklistoffset
|
|
0, //tp_iter
|
|
0, //tp_iternext
|
|
0, //tp_methods
|
|
0, //tp_members
|
|
0, //tp_getset
|
|
0, //tp_base
|
|
0, //tp_dict
|
|
0, //tp_descr_get
|
|
0, //tp_descr_set
|
|
0, //tp_dictoffset
|
|
0, //tp_init
|
|
0, //tp_alloc
|
|
0, //tp_new
|
|
0, //tp_free
|
|
0, //tp_is_gc
|
|
0, //tp_bases
|
|
0, //tp_mro
|
|
0, //tp_cache
|
|
0, //tp_subclasses
|
|
0, //tp_weaklist
|
|
0 //tp_del
|
|
};
|
|
//------------------------newQuaternionObject (internal)-------------
|
|
//creates a new quaternion object
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newQuaternionObject(float *quat, int type)
|
|
{
|
|
QuaternionObject *self;
|
|
int x;
|
|
|
|
self = PyObject_NEW(QuaternionObject, &quaternion_Type);
|
|
self->data.blend_data = NULL;
|
|
self->data.py_data = NULL;
|
|
self->coerced_object = NULL;
|
|
|
|
if(type == Py_WRAP){
|
|
self->data.blend_data = quat;
|
|
self->quat = self->data.blend_data;
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->data.py_data = PyMem_Malloc(4 * sizeof(float));
|
|
self->quat = self->data.py_data;
|
|
if(!quat) { //new empty
|
|
Quaternion_Identity(self);
|
|
Py_DECREF(self);
|
|
}else{
|
|
for(x = 0; x < 4; x++){
|
|
self->quat[x] = quat[x];
|
|
}
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ //bad type
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|