This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Ipocurve.c
Martin Poirier 5dfef1ae35 Reverting to 2_2x BPY
I was careful in selectively rolling back revisions, but if you've committed changes unrelated to BPY mixed with BPY changes, I might have reverted those too, so please double check.
2007-12-17 20:21:06 +00:00

1081 lines
33 KiB
C

/*
* $Id: Ipocurve.c 12078 2007-09-18 06:41:29Z campbellbarton $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Jacques Guignot, Nathan Letwory, Ken Hughes, Johnny Matthews
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Ipocurve.h" /*This must come first*/
#include "Object.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_depsgraph.h"
#include "BKE_ipo.h"
#include "BIF_space.h"
#include "BSE_editipo.h"
#include "MEM_guardedalloc.h"
#include "DNA_ipo_types.h"
#include "DNA_key_types.h"
#include "BezTriple.h"
#include "gen_utils.h"
/*****************************************************************************/
/* The following string definitions are used for documentation strings. */
/* In Python these will be written to the console when doing a */
/* Blender.IpoCurve.__doc__ */
/*****************************************************************************/
char M_IpoCurve_doc[] = "";
char M_IpoCurve_New_doc[] = "";
char M_IpoCurve_Get_doc[] = "";
/*****************************************************************************/
/* Python method structure definition for Blender.IpoCurve module: */
/*****************************************************************************/
struct PyMethodDef M_IpoCurve_methods[] = {
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python C_IpoCurve methods declarations: */
/*****************************************************************************/
static PyObject *IpoCurve_getName( C_IpoCurve * self );
static PyObject *IpoCurve_Recalc( C_IpoCurve * self );
static PyObject *IpoCurve_append( C_IpoCurve * self, PyObject * value );
static PyObject *IpoCurve_addBezier( C_IpoCurve * self, PyObject * value );
static PyObject *IpoCurve_delBezier( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_setInterpolation( C_IpoCurve * self,
PyObject * value );
static PyObject *IpoCurve_getInterpolation( C_IpoCurve * self );
static PyObject *IpoCurve_newgetInterp( C_IpoCurve * self );
static int IpoCurve_newsetInterp( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_setExtrapolation( C_IpoCurve * self,
PyObject * value );
static PyObject *IpoCurve_getExtrapolation( C_IpoCurve * self );
static PyObject *IpoCurve_newgetExtend( C_IpoCurve * self );
static int IpoCurve_newsetExtend( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getPoints( C_IpoCurve * self );
static PyObject *IpoCurve_evaluate( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getDriver( C_IpoCurve * self );
static int IpoCurve_setDriver( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getDriverObject( C_IpoCurve * self);
static int IpoCurve_setDriverObject( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getDriverChannel( C_IpoCurve * self);
static int IpoCurve_setDriverChannel( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getDriverExpression( C_IpoCurve * self);
static PyObject *IpoCurve_getFlag( C_IpoCurve * self, void *type);
static int IpoCurve_setFlag( C_IpoCurve * self, PyObject *value, void *type);
static int IpoCurve_setDriverExpression( C_IpoCurve * self, PyObject * args );
static PyObject *IpoCurve_getCurval( C_IpoCurve * self, PyObject * args );
static int IpoCurve_setCurval( C_IpoCurve * self, PyObject * key,
PyObject * value );
/*****************************************************************************/
/* Python C_IpoCurve methods table: */
/*****************************************************************************/
static PyMethodDef C_IpoCurve_methods[] = {
/* name, method, flags, doc */
{"getName", ( PyCFunction ) IpoCurve_getName, METH_NOARGS,
"() - Return IpoCurve name"},
{"Recalc", ( PyCFunction ) IpoCurve_Recalc, METH_NOARGS,
"() - deprecated method. use recalc() instead"},
{"recalc", ( PyCFunction ) IpoCurve_Recalc, METH_NOARGS,
"() - Recomputes the curve after changes"},
{"update", ( PyCFunction ) IpoCurve_Recalc, METH_NOARGS,
"() - deprecated method: use recalc method instead."},
{"append", ( PyCFunction ) IpoCurve_append, METH_O,
"(coordlist) - Adds a Bezier point to a curve"},
{"addBezier", ( PyCFunction ) IpoCurve_addBezier, METH_O,
"() - deprecated method. use append() instead"},
{"delBezier", ( PyCFunction ) IpoCurve_delBezier, METH_VARARGS,
"() - deprecated method. use \"del icu[index]\" instead"},
{"setInterpolation", ( PyCFunction ) IpoCurve_setInterpolation,
METH_O, "(str) - Sets the interpolation type of the curve"},
{"getInterpolation", ( PyCFunction ) IpoCurve_getInterpolation,
METH_NOARGS, "() - Gets the interpolation type of the curve"},
{"setExtrapolation", ( PyCFunction ) IpoCurve_setExtrapolation,
METH_O, "(str) - Sets the extend mode of the curve"},
{"getExtrapolation", ( PyCFunction ) IpoCurve_getExtrapolation,
METH_NOARGS, "() - Gets the extend mode of the curve"},
{"getPoints", ( PyCFunction ) IpoCurve_getPoints, METH_NOARGS,
"() - Returns list of all bezTriples of the curve"},
{"evaluate", ( PyCFunction ) IpoCurve_evaluate, METH_VARARGS,
"(float) - Evaluate curve at given time"},
{NULL, NULL, 0, NULL}
};
/*
* IpoCurve methods
*/
static PyGetSetDef C_IpoCurve_getseters[] = {
{"name",
(getter)IpoCurve_getName, (setter)NULL,
"the IpoCurve name",
NULL},
{"bezierPoints",
(getter)IpoCurve_getPoints, (setter)NULL,
"list of all bezTriples of the curve",
NULL},
{"driver",
(getter)IpoCurve_getDriver, (setter)IpoCurve_setDriver,
"The status of the driver 1-object, 2-py expression, 0-off",
NULL},
{"driverObject",
(getter)IpoCurve_getDriverObject, (setter)IpoCurve_setDriverObject,
"The object used to drive the IpoCurve",
NULL},
{"driverChannel",
(getter)IpoCurve_getDriverChannel, (setter)IpoCurve_setDriverChannel,
"The channel on the driver object used to drive the IpoCurve",
NULL},
{"driverExpression",
(getter)IpoCurve_getDriverExpression, (setter)IpoCurve_setDriverExpression,
"The python expression on the driver used to drive the IpoCurve",
NULL},
{"interpolation",
(getter)IpoCurve_newgetInterp, (setter)IpoCurve_newsetInterp,
"The interpolation mode of the curve",
NULL},
{"extend",
(getter)IpoCurve_newgetExtend, (setter)IpoCurve_newsetExtend,
"The extend mode of the curve",
NULL},
{"sel",
(getter)IpoCurve_getFlag, (setter)IpoCurve_setFlag,
"the selection state of the curve",
(void *)IPO_SELECT},
{NULL,NULL,NULL,NULL,NULL}
};
/*****************************************************************************/
/* Python IpoCurve_Type Mapping Methods table: */
/*****************************************************************************/
static PyMappingMethods IpoCurve_as_mapping = {
( inquiry ) 0, /* mp_length */
( binaryfunc ) IpoCurve_getCurval, /* mp_subscript */
( objobjargproc ) IpoCurve_setCurval, /* mp_ass_subscript */
};
/*****************************************************************************/
/* Python IpoCurve_Type callback function prototypes: */
/*****************************************************************************/
static int IpoCurve_compare( C_IpoCurve * a, C_IpoCurve * b );
static PyObject *IpoCurve_repr( C_IpoCurve * self );
/*****************************************************************************/
/* Python IpoCurve_Type structure definition: */
/*****************************************************************************/
PyTypeObject IpoCurve_Type = {
PyObject_HEAD_INIT( NULL ) /* required macro */
0, /* ob_size */
"IpoCurve", /* tp_name */
sizeof( C_IpoCurve ), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
NULL, /* tp_dealloc */
0, /* tp_print */
( getattrfunc ) NULL, /* tp_getattr */
( setattrfunc ) NULL, /* tp_setattr */
( cmpfunc ) IpoCurve_compare, /* tp_compare */
( reprfunc ) IpoCurve_repr, /* tp_repr */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
NULL, /* PySequenceMethods *tp_as_sequence; */
&IpoCurve_as_mapping, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
NULL, /* getiterfunc tp_iter; */
NULL, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
C_IpoCurve_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
C_IpoCurve_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/*****************************************************************************/
/* local utility functions */
/*****************************************************************************/
/*
* Keys are handled differently than other Ipos, so go through contortions
* to find their names.
*/
static char *get_key_curvename( IpoCurve *ipocurve )
{
Key *key_iter;
char *empty = "";
/* search for keys with an Ipo */
for( key_iter = G.main->key.first; key_iter; key_iter=key_iter->id.next) {
if( key_iter->ipo ) {
IpoCurve *icu = key_iter->ipo->curve.first;
/* search curves for a match */
while( icu ) {
if( icu == ipocurve ) {
KeyBlock *block = key_iter->block.first;
/* search for matching adrcode */
while( block ) {
if( block->adrcode == ipocurve->adrcode )
return block->name;
block = block->next;
}
}
icu = icu->next;
}
}
}
/* shouldn't get here unless deleted in UI while BPy object alive */
return empty;
}
/*
* internal bpy func to get Ipo Curve Name, used by Ipo.c and
* KX_BlenderSceneConverter.cpp.
*
* We are returning a pointer to string constants so there are
* no issues with who owns pointers.
*/
char *getIpoCurveName( IpoCurve * icu )
{
switch ( icu->blocktype ) {
case ID_MA:
return getname_mat_ei( icu->adrcode );
case ID_WO:
return getname_world_ei( icu->adrcode );
case ID_CA:
return getname_cam_ei( icu->adrcode );
case ID_OB:
return getname_ob_ei( icu->adrcode, 1 );
/* solve: what if EffX/Y/Z are wanted? */
case ID_TE:
return getname_tex_ei( icu->adrcode );
case ID_LA:
return getname_la_ei( icu->adrcode );
case ID_PO:
return getname_ac_ei( icu->adrcode );
case ID_CU:
return getname_cu_ei( icu->adrcode );
case ID_KE:
/* return "Key"; */
/* ipo curves have no names... that was only meant for drawing the buttons... (ton) */
return get_key_curvename( icu );
case ID_SEQ:
return getname_seq_ei( icu->adrcode );
case ID_CO:
return getname_co_ei( icu->adrcode );
}
return NULL;
}
/*
* delete a bezTriple from a curve
*/
static void del_beztriple( IpoCurve *icu, int index )
{
int npoints = icu->totvert - 1;
BezTriple * tmp = icu->bezt;
/*
* if delete empties list, then delete it, otherwise copy the remaining
* points to a new list
*/
if( !npoints ) {
icu->bezt = NULL;
} else {
icu->bezt =
MEM_mallocN( sizeof( BezTriple ) * npoints, "bezt" );
if( index > 0 )
memmove( icu->bezt, tmp, index * sizeof( BezTriple ) );
if( index < npoints )
memmove( icu->bezt + index, tmp + index + 1,
( npoints - index ) * sizeof( BezTriple ) );
}
/* free old list, adjust vertex count */
MEM_freeN( tmp );
icu->totvert--;
/* call calchandles_* instead of testhandles_* */
/* I'm not sure this is a complete solution but since we do not */
/* deal with curve handles right now, it seems ok */
calchandles_ipocurve( icu );
}
/*****************************************************************************/
/* Python C_IpoCurve methods: */
/*****************************************************************************/
static PyObject *IpoCurve_setInterpolation( C_IpoCurve * self,
PyObject * value )
{
char *interpolationtype = PyString_AsString(value);
short id;
if( !interpolationtype )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" );
if( !strcmp( interpolationtype, "Bezier" ) )
id = IPO_BEZ;
else if( !strcmp( interpolationtype, "Constant" ) )
id = IPO_CONST;
else if( !strcmp( interpolationtype, "Linear" ) )
id = IPO_LIN;
else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"bad interpolation type" );
self->ipocurve->ipo = id;
Py_RETURN_NONE;
}
static PyObject *IpoCurve_getInterpolation( C_IpoCurve * self )
{
char *str = 0;
IpoCurve *icu = self->ipocurve;
switch( icu->ipo ) {
case IPO_BEZ:
str = "Bezier";
break;
case IPO_CONST:
str = "Constant";
break;
case IPO_LIN:
str = "Linear";
break;
default:
return EXPP_ReturnPyObjError( PyExc_TypeError,
"unknown interpolation type" );
}
return PyString_FromString( str );
}
static PyObject * IpoCurve_setExtrapolation( C_IpoCurve * self,
PyObject * value )
{
char *extrapolationtype = PyString_AsString(value);
short id;
if( !extrapolationtype )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" );
if( !strcmp( extrapolationtype, "Constant" ) )
id = 0;
else if( !strcmp( extrapolationtype, "Extrapolation" ) )
id = 1;
else if( !strcmp( extrapolationtype, "Cyclic" ) )
id = 2;
else if( !strcmp( extrapolationtype, "Cyclic_extrapolation" ) )
id = 3;
else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"bad interpolation type" );
self->ipocurve->extrap = id;
Py_RETURN_NONE;
}
static PyObject *IpoCurve_getExtrapolation( C_IpoCurve * self )
{
char *str;
IpoCurve *icu = self->ipocurve;
switch( icu->extrap ) {
case 0:
str = "Constant";
break;
case 1:
str = "Extrapolation";
break;
case 2:
str = "Cyclic";
break;
case 3:
str = "Cyclic_extrapolation";
break;
default:
return EXPP_ReturnPyObjError( PyExc_TypeError,
"bad extrapolation type" );
}
return PyString_FromString( str );
}
/*
* append a new BezTriple to curve
*/
static PyObject *IpoCurve_append( C_IpoCurve * self, PyObject * value )
{
float x, y;
IpoCurve *icu = self->ipocurve;
/* if args is a already a beztriple, tack onto end of list */
if( BPy_BezTriple_Check ( value ) ) {
BPy_BezTriple *bobj = (BPy_BezTriple *)value;
BezTriple *newb = MEM_callocN( (icu->totvert+1)*sizeof(BezTriple),
"BPyBeztriple" );
if( icu->bezt ) {
memcpy( newb, icu->bezt, ( icu->totvert )*sizeof( BezTriple ) );
MEM_freeN( icu->bezt );
}
icu->bezt = newb;
memcpy( &icu->bezt[icu->totvert], bobj->beztriple,
sizeof( BezTriple ) );
icu->totvert++;
calchandles_ipocurve( icu );
/* otherwise try to get two floats and add to list */
} else {
PyObject *xobj, *yobj;
xobj = PyNumber_Float( PyTuple_GetItem( value, 0 ) );
yobj = PyNumber_Float( PyTuple_GetItem( value, 1 ) );
if( !xobj || !yobj )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected tuple of floats" );
x = (float)PyFloat_AsDouble( xobj );
Py_DECREF( xobj );
y = (float)PyFloat_AsDouble( yobj );
Py_DECREF( yobj );
insert_vert_icu( icu, x, y, 0);
}
Py_RETURN_NONE;
}
/*
Function: IpoCurve_delBezier
Bpy: Blender.Ipocurve.delBezier(0)
Delete an BezTriple from an IPO curve.
example:
ipo = Blender.Ipo.Get('ObIpo')
cu = ipo.getCurve('LocX')
cu.delBezier(0)
*/
static PyObject *IpoCurve_delBezier( C_IpoCurve * self, PyObject * args )
{
int index;
if( !PyArg_ParseTuple( args, "i", &index ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" );
/* if index is negative, count from end of list */
if( index < 0 )
index += self->ipocurve->totvert;
/* check range of index */
if( index < 0 || index > self->ipocurve->totvert - 1 )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"index outside of list" );
del_beztriple( self->ipocurve, index );
Py_RETURN_NONE;
}
static PyObject *IpoCurve_Recalc( C_IpoCurve * self )
{
IpoCurve *icu = self->ipocurve;
/* testhandles_ipocurve (icu); */
/* call calchandles_* instead of testhandles_* */
/* I'm not sure this is a complete solution but since we do not */
/* deal with curve handles right now, it seems ok */
calchandles_ipocurve( icu );
sort_time_ipocurve( icu );
Py_INCREF( Py_None );
return Py_None;
}
static PyObject *IpoCurve_getName( C_IpoCurve * self )
{
switch ( self->ipocurve->blocktype ) {
case ID_OB:
return PyString_FromString( getname_ob_ei( self->ipocurve->adrcode, 1 ) ); /* solve: what if EffX/Y/Z are wanted? */
case ID_TE:
return PyString_FromString( getname_tex_ei
( self->ipocurve->adrcode ) );
case ID_LA:
return PyString_FromString( getname_la_ei
( self->ipocurve->adrcode ) );
case ID_MA:
return PyString_FromString( getname_mat_ei
( self->ipocurve->adrcode ) );
case ID_CA:
return PyString_FromString( getname_cam_ei
( self->ipocurve->adrcode ) );
case ID_WO:
return PyString_FromString( getname_world_ei
( self->ipocurve->adrcode ) );
case ID_PO:
return PyString_FromString( getname_ac_ei
( self->ipocurve->adrcode ) );
case ID_CU:
return PyString_FromString( getname_cu_ei
( self->ipocurve->adrcode ) );
case ID_KE:
return PyString_FromString( get_key_curvename( self->ipocurve ) );
case ID_SEQ:
return PyString_FromString( getname_seq_ei
( self->ipocurve->adrcode ) );
case ID_CO:
return PyString_FromString( getname_co_ei
( self->ipocurve->adrcode ) );
default:
return EXPP_ReturnPyObjError( PyExc_TypeError,
"This function doesn't support this ipocurve type yet" );
}
}
static PyObject *IpoCurve_getPoints( C_IpoCurve * self )
{
BezTriple *bezt;
PyObject *po;
int i;
PyObject *list = PyList_New( self->ipocurve->totvert );
if( !list )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"PyList_New() failed" );
for( bezt = self->ipocurve->bezt, i = 0;
i < self->ipocurve->totvert; i++, bezt++ ) {
po = BezTriple_CreatePyObject( bezt );
if( !po ) {
Py_DECREF( list );
return NULL; /* This is okay since the error is alredy set */
}
PyList_SET_ITEM( list, i, po );
}
return list;
}
/*****************************************************************************/
/* Function: IpoCurve_compare */
/* Description: This compares 2 python types, == or != only. */
/*****************************************************************************/
static int IpoCurve_compare( C_IpoCurve * a, C_IpoCurve * b )
{
return ( a->ipocurve == b->ipocurve ) ? 0 : -1;
}
/*****************************************************************************/
/* Function: IpoCurve_repr */
/* Description: This is a callback function for the C_IpoCurve type. It */
/* builds a meaningful string to represent ipocurve objects. */
/*****************************************************************************/
static PyObject *IpoCurve_repr( C_IpoCurve * self )
{
return PyString_FromFormat( "[IpoCurve \"%s\"]",
getIpoCurveName( self->ipocurve ) );
}
/* Three Python IpoCurve_Type helper functions needed by the Object module: */
/*****************************************************************************/
/* Function: IpoCurve_CreatePyObject */
/* Description: This function will create a new C_IpoCurve from an existing */
/* Blender ipo structure. */
/*****************************************************************************/
PyObject *IpoCurve_CreatePyObject( IpoCurve * icu )
{
C_IpoCurve *pyipo;
pyipo = ( C_IpoCurve * ) PyObject_NEW( C_IpoCurve, &IpoCurve_Type );
if( !pyipo )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create C_IpoCurve object" );
pyipo->ipocurve = icu;
return ( PyObject * ) pyipo;
}
/*****************************************************************************/
/* Function: IpoCurve_FromPyObject */
/* Description: This function returns the Blender ipo from the given */
/* PyObject. */
/*****************************************************************************/
IpoCurve *IpoCurve_FromPyObject( PyObject * pyobj )
{
return ( ( C_IpoCurve * ) pyobj )->ipocurve;
}
/*
* get the value of an Ipocurve at a particular time
*/
static PyObject *IpoCurve_getCurval( C_IpoCurve * self, PyObject * args )
{
float time;
PyObject *pyfloat = PyNumber_Float( args );
if( !pyfloat )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected float argument" );
time = ( float )PyFloat_AS_DOUBLE( pyfloat );
Py_DECREF( pyfloat );
return PyFloat_FromDouble( ( double ) eval_icu( self->ipocurve, time ) );
}
/*
* set the value of an Ipocurve at a particular time
*/
static int IpoCurve_setCurval( C_IpoCurve * self, PyObject * key,
PyObject * value )
{
float time, curval;
PyObject *pyfloat;
/* make sure time, curval are both floats */
pyfloat = PyNumber_Float( key );
if( !pyfloat )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float key" );
time = ( float )PyFloat_AS_DOUBLE( pyfloat );
Py_DECREF( pyfloat );
pyfloat = PyNumber_Float( value );
if( !pyfloat )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected float argument" );
curval = ( float )PyFloat_AS_DOUBLE( pyfloat );
Py_DECREF( pyfloat );
/* insert a key at the specified time */
insert_vert_icu( self->ipocurve, time, curval, 0);
allspace(REMAKEIPO, 0);
return 0;
}
/***************************************************************************/
/* Function: IpoCurve_evaluate( time ) */
/* Description: Evaluates IPO curve at the given time. */
/***************************************************************************/
static PyObject *IpoCurve_evaluate( C_IpoCurve * self, PyObject * args )
{
float time = 0;
double eval = 0;
/* expecting float */
if( !PyArg_ParseTuple( args, "f", &time ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected float argument" ) );
eval = ( double ) eval_icu( self->ipocurve, time );
return PyFloat_FromDouble( eval );
}
static PyObject *IpoCurve_getDriver( C_IpoCurve * self )
{
if( !self->ipocurve->driver )
return PyInt_FromLong( 0 );
else {
if (self->ipocurve->driver->type == IPO_DRIVER_TYPE_NORMAL)
return PyInt_FromLong( 1 );
if (self->ipocurve->driver->type == IPO_DRIVER_TYPE_PYTHON)
return PyInt_FromLong( 2 );
}
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"unknown driver type, internal error" );
}
/*
sets the driver to
0: disabled
1: enabled (object)
2: enabled (python expression)
*/
static int IpoCurve_setDriver( C_IpoCurve * self, PyObject * args )
{
IpoCurve *ipo = self->ipocurve;
int type;
if( !PyInt_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument 0 or 1 " );
type = PyInt_AS_LONG( args );
if (type < 0 || type > 2)
return EXPP_ReturnIntError( PyExc_ValueError,
"expected int argument 0, 1 or 2" );
if (type==0) { /* disable driver */
if( ipo->driver ) {
MEM_freeN( ipo->driver );
ipo->driver = NULL;
}
} else {
if( !ipo->driver ) { /*add driver if its not there */
ipo->driver = MEM_callocN( sizeof(IpoDriver), "ipo driver" );
ipo->driver->blocktype = ID_OB;
ipo->driver->adrcode = OB_LOC_X;
}
if (type==1 && ipo->driver->type != IPO_DRIVER_TYPE_NORMAL) {
ipo->driver->type = IPO_DRIVER_TYPE_NORMAL;
ipo->driver->ob = NULL;
ipo->driver->flag &= ~IPO_DRIVER_FLAG_INVALID;
} else if (type==2 && ipo->driver->type != IPO_DRIVER_TYPE_PYTHON) {
ipo->driver->type = IPO_DRIVER_TYPE_PYTHON;
/* we should probably set ipo->driver->ob, but theres no way to do it properly */
ipo->driver->ob = NULL;
}
}
return 0;
}
static PyObject *IpoCurve_getDriverObject( C_IpoCurve * self )
{
IpoCurve *ipo = self->ipocurve;
if( ipo->driver )
return Object_CreatePyObject( ipo->driver->ob );
Py_RETURN_NONE;
}
static int IpoCurve_setDriverObject( C_IpoCurve * self, PyObject * arg )
{
IpoCurve *ipo = self->ipocurve;
if( !ipo->driver )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This IpoCurve does not have an active driver" );
if(!BPy_Object_Check(arg) )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"expected an object argument" );
ipo->driver->ob = ((BPy_Object *)arg)->object;
DAG_scene_sort(G.scene);
return 0;
}
static PyObject *IpoCurve_getDriverChannel( C_IpoCurve * self )
{
if( !self->ipocurve->driver )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"This IpoCurve does not have an active driver" );
return PyInt_FromLong( self->ipocurve->driver->adrcode );
}
static int IpoCurve_setDriverChannel( C_IpoCurve * self, PyObject * args )
{
IpoCurve *ipo = self->ipocurve;
short param;
if( !ipo->driver )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This IpoCurve does not have an active driver" );
if( !PyInt_Check( args ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument" );
param = (short)PyInt_AS_LONG ( args );
if( ( param >= OB_LOC_X && param <= OB_LOC_Z )
|| ( param >= OB_ROT_X && param <= OB_ROT_Z )
|| ( param >= OB_SIZE_X && param <= OB_SIZE_Z ) ) {
ipo->driver->adrcode = (short)PyInt_AS_LONG ( args );
return 0;
}
return EXPP_ReturnIntError( PyExc_ValueError, "invalid int argument" );
}
static PyObject *IpoCurve_getDriverExpression( C_IpoCurve * self )
{
IpoCurve *ipo = self->ipocurve;
if( ipo->driver && ipo->driver->type == IPO_DRIVER_TYPE_PYTHON )
return PyString_FromString( ipo->driver->name );
Py_RETURN_NONE;
}
static int IpoCurve_setDriverExpression( C_IpoCurve * self, PyObject * arg )
{
IpoCurve *ipo = self->ipocurve;
char *exp; /* python expression */
if( !ipo->driver )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This IpoCurve does not have an active driver" );
if (ipo->driver->type != IPO_DRIVER_TYPE_PYTHON)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This IpoCurve is not a python expression set the driver attribute to 2" );
if(!PyString_Check(arg) )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"expected a string argument" );
exp = PyString_AsString(arg);
if (strlen(exp)>127)
return EXPP_ReturnIntError( PyExc_ValueError,
"string is too long, use 127 characters or less" );
strcpy(ipo->driver->name, exp);
return 0;
}
static PyObject *M_IpoCurve_ExtendDict( void )
{
PyObject *EM = PyConstant_New( );
if( EM ) {
BPy_constant *d = ( BPy_constant * ) EM;
PyConstant_Insert( d, "CONST", PyInt_FromLong( IPO_HORIZ ) );
PyConstant_Insert( d, "EXTRAP", PyInt_FromLong( IPO_DIR ) );
PyConstant_Insert( d, "CYCLIC", PyInt_FromLong( IPO_CYCL ) );
PyConstant_Insert( d, "CYCLIC_EXTRAP", PyInt_FromLong( IPO_CYCLX ) );
}
return EM;
}
static PyObject *M_IpoCurve_InterpDict( void )
{
PyObject *IM = PyConstant_New( );
if( IM ) {
BPy_constant *d = ( BPy_constant * ) IM;
PyConstant_Insert( d, "CONST", PyInt_FromLong( IPO_CONST ) );
PyConstant_Insert( d, "LINEAR", PyInt_FromLong( IPO_LIN ) );
PyConstant_Insert( d, "BEZIER", PyInt_FromLong( IPO_BEZ ) );
}
return IM;
}
/*****************************************************************************/
/* Function: IpoCurve_Init */
/*****************************************************************************/
PyObject *IpoCurve_Init( void )
{
PyObject *submodule;
PyObject *ExtendTypes = M_IpoCurve_ExtendDict( );
PyObject *InterpTypes = M_IpoCurve_InterpDict( );
if( PyType_Ready( &IpoCurve_Type ) < 0)
return NULL;
submodule =
Py_InitModule3( "Blender.IpoCurve", M_IpoCurve_methods,
M_IpoCurve_doc );
PyModule_AddIntConstant( submodule, "LOC_X", OB_LOC_X );
PyModule_AddIntConstant( submodule, "LOC_Y", OB_LOC_Y );
PyModule_AddIntConstant( submodule, "LOC_Z", OB_LOC_Z );
PyModule_AddIntConstant( submodule, "ROT_X", OB_ROT_X );
PyModule_AddIntConstant( submodule, "ROT_Y", OB_ROT_Y );
PyModule_AddIntConstant( submodule, "ROT_Z", OB_ROT_Z );
PyModule_AddIntConstant( submodule, "SIZE_X", OB_SIZE_X );
PyModule_AddIntConstant( submodule, "SIZE_Y", OB_SIZE_Y );
PyModule_AddIntConstant( submodule, "SIZE_Z", OB_SIZE_Z );
if( ExtendTypes )
PyModule_AddObject( submodule, "ExtendTypes", ExtendTypes );
if( InterpTypes )
PyModule_AddObject( submodule, "InterpTypes", InterpTypes );
return submodule;
}
/*
*/
static PyObject *IpoCurve_newgetInterp( C_IpoCurve * self )
{
return PyInt_FromLong( self->ipocurve->ipo );
}
static int IpoCurve_newsetInterp( C_IpoCurve * self, PyObject * value )
{
return EXPP_setIValueRange( value, &self->ipocurve->ipo,
IPO_CONST, IPO_BEZ, 'h' );
}
static PyObject *IpoCurve_newgetExtend( C_IpoCurve * self )
{
return PyInt_FromLong( self->ipocurve->extrap );
}
static int IpoCurve_newsetExtend( C_IpoCurve * self, PyObject * value )
{
return EXPP_setIValueRange( value, &self->ipocurve->extrap,
IPO_HORIZ, IPO_CYCLX, 'h' );
}
static PyObject *IpoCurve_getFlag( C_IpoCurve * self, void *type )
{
if (self->ipocurve->flag & (int)type)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
static int IpoCurve_setFlag( C_IpoCurve * self, PyObject *value, void *type )
{
int param = PyObject_IsTrue( value );
if( param == -1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected True/False or 0/1" );
if (param)
self->ipocurve->flag |= (int)type;
else
self->ipocurve->flag &= ~(int)type;
return 0;
}
/* #####DEPRECATED###### */
static PyObject *IpoCurve_addBezier( C_IpoCurve * self, PyObject * value )
{
float x, y;
int npoints;
IpoCurve *icu;
BezTriple *bzt, *tmp;
static char name[10] = "mlml";
if( !PyArg_ParseTuple( value, "ff", &x, &y ) )
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected a tuple of 2 floats" ) );
icu = self->ipocurve;
npoints = icu->totvert;
tmp = icu->bezt;
icu->bezt = MEM_mallocN( sizeof( BezTriple ) * ( npoints + 1 ), name );
if( tmp ) {
memmove( icu->bezt, tmp, sizeof( BezTriple ) * npoints );
MEM_freeN( tmp );
}
memmove( icu->bezt + npoints, icu->bezt, sizeof( BezTriple ) );
icu->totvert++;
bzt = icu->bezt + npoints;
bzt->vec[0][0] = x - 1;
bzt->vec[1][0] = x;
bzt->vec[2][0] = x + 1;
bzt->vec[0][1] = y - 1;
bzt->vec[1][1] = y;
bzt->vec[2][1] = y + 1;
/* set handle type to Auto */
bzt->h1 = HD_AUTO;
bzt->h2 = HD_AUTO;
Py_RETURN_NONE;
}