This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/euler.c
Martin Poirier 5dfef1ae35 Reverting to 2_2x BPY
I was careful in selectively rolling back revisions, but if you've committed changes unrelated to BPY mixed with BPY changes, I might have reverted those too, so please double check.
2007-12-17 20:21:06 +00:00

503 lines
14 KiB
C

/*
* $Id: euler.c 12314 2007-10-20 20:24:09Z campbellbarton $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"
#include "gen_utils.h"
//-------------------------DOC STRINGS ---------------------------
char Euler_Zero_doc[] = "() - set all values in the euler to 0";
char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation";
char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
char Euler_copy_doc[] = "() - returns a copy of the euler.";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
PyObject *Euler_ToQuat(EulerObject * self)
{
float eul[3], quat[4];
int x;
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToQuat(eul, quat);
return newQuaternionObject(quat, Py_NEW);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
PyObject *Euler_ToMatrix(EulerObject * self)
{
float eul[3];
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
int x;
for(x = 0; x < 3; x++) {
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToMat3(eul, (float (*)[3]) mat);
return newMatrixObject(mat, 3, 3 , Py_NEW);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation
PyObject *Euler_Unique(EulerObject * self)
{
double heading, pitch, bank;
double pi2 = Py_PI * 2.0f;
double piO2 = Py_PI / 2.0f;
double Opi2 = 1.0f / pi2;
//radians
heading = self->eul[0] * (float)Py_PI / 180;
pitch = self->eul[1] * (float)Py_PI / 180;
bank = self->eul[2] * (float)Py_PI / 180;
//wrap heading in +180 / -180
pitch += Py_PI;
pitch -= floor(pitch * Opi2) * pi2;
pitch -= Py_PI;
if(pitch < -piO2) {
pitch = -Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
} else if(pitch > piO2) {
pitch = Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
}
//gimbal lock test
if(fabs(pitch) > piO2 - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
bank += Py_PI;
bank -= (floor(bank * Opi2)) * pi2;
bank -= Py_PI;
}
heading += Py_PI;
heading -= (floor(heading * Opi2)) * pi2;
heading -= Py_PI;
//back to degrees
self->eul[0] = (float)(heading * 180 / (float)Py_PI);
self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
self->eul[2] = (float)(bank * 180 / (float)Py_PI);
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
int x;
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate():expected angle (float) and axis (x,y,z)");
}
if(!STREQ3(axis,"x","y","z")){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate(): expected axis to be 'x', 'y' or 'z'");
}
//covert to radians
angle *= ((float)Py_PI / 180);
for(x = 0; x < 3; x++) {
self->eul[x] *= ((float)Py_PI / 180);
}
euler_rot(self->eul, angle, *axis);
//convert back from radians
for(x = 0; x < 3; x++) {
self->eul[x] *= (180 / (float)Py_PI);
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
return newEulerObject(self->eul, Py_NEW);
}
//----------------------------dealloc()(internal) ------------------
//free the py_object
static void Euler_dealloc(EulerObject * self)
{
//only free py_data
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
//----------------------------getattr()(internal) ------------------
//object.attribute access (get)
static PyObject *Euler_getattr(EulerObject * self, char *name)
{
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->eul[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->eul[1]);
}else if(STREQ(name, "z")){
return PyFloat_FromDouble(self->eul[2]);
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Euler_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ------------------
//object.attribute access (set)
static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
{
PyObject *f = NULL;
f = PyNumber_Float(e);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->eul[0] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->eul[1] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
self->eul[2] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"euler.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < 3; i++){
if(i < (2)){
sprintf(buffer, "%.6f, ", self->eul[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->eul[i]);
strcat(str,buffer);
}
}
strcat(str, "](euler)");
return PyString_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
EulerObject *eulA = NULL, *eulB = NULL;
int result = 0;
if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){
if (comparison_type == Py_NE){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
eulA = (EulerObject*)objectA;
eulB = (EulerObject*)objectB;
switch (comparison_type){
case Py_EQ:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
//------------------------tp_doc
static char EulerObject_doc[] = "This is a wrapper for euler objects.";
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i < 0 || i >= 3)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"euler[attribute]: array index out of range\n");
return PyFloat_FromDouble(self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= 3){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"euler[attribute] = x: array assignment index out of range\n");
}
self->eul[i] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->eul[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float eul[3];
PyObject *e, *f;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
e = PySequence_GetItem(seq, i);
if (e == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"euler[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(e);
if(f == NULL) { // parsed item not a number
Py_DECREF(e);
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[begin:end] = []: sequence argument not a number\n");
}
eul[i] = (float)PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,e);
}
//parsed well - now set in vector
for(y = 0; y < 3; y++){
self->eul[begin + y] = eul[y];
}
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
(inquiry) Euler_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Euler_item, /* sq_item */
(intintargfunc) Euler_slice, /* sq_slice */
(intobjargproc) Euler_ass_item, /* sq_ass_item */
(intintobjargproc) Euler_ass_slice, /* sq_ass_slice */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = {
PyObject_HEAD_INIT(NULL) //tp_head
0, //tp_internal
"euler", //tp_name
sizeof(EulerObject), //tp_basicsize
0, //tp_itemsize
(destructor)Euler_dealloc, //tp_dealloc
0, //tp_print
(getattrfunc)Euler_getattr, //tp_getattr
(setattrfunc) Euler_setattr, //tp_setattr
0, //tp_compare
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
0, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
0, //tp_getattro
0, //tp_setattro
0, //tp_as_buffer
Py_TPFLAGS_DEFAULT, //tp_flags
EulerObject_doc, //tp_doc
0, //tp_traverse
0, //tp_clear
(richcmpfunc)Euler_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
0, //tp_iter
0, //tp_iternext
0, //tp_methods
0, //tp_members
0, //tp_getset
0, //tp_base
0, //tp_dict
0, //tp_descr_get
0, //tp_descr_set
0, //tp_dictoffset
0, //tp_init
0, //tp_alloc
0, //tp_new
0, //tp_free
0, //tp_is_gc
0, //tp_bases
0, //tp_mro
0, //tp_cache
0, //tp_subclasses
0, //tp_weaklist
0 //tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type)
{
EulerObject *self;
int x;
self = PyObject_NEW(EulerObject, &euler_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(type == Py_WRAP){
self->data.blend_data = eul;
self->eul = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(3 * sizeof(float));
self->eul = self->data.py_data;
if(!eul) { //new empty
for(x = 0; x < 3; x++) {
self->eul[x] = 0.0f;
}
}else{
for(x = 0; x < 3; x++){
self->eul[x] = eul[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) self;
}