I was careful in selectively rolling back revisions, but if you've committed changes unrelated to BPY mixed with BPY changes, I might have reverted those too, so please double check.
503 lines
14 KiB
C
503 lines
14 KiB
C
/*
|
|
* $Id: euler.c 12314 2007-10-20 20:24:09Z campbellbarton $
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Joseph Gilbert
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "gen_utils.h"
|
|
|
|
|
|
//-------------------------DOC STRINGS ---------------------------
|
|
char Euler_Zero_doc[] = "() - set all values in the euler to 0";
|
|
char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
|
|
char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation";
|
|
char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation";
|
|
char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation";
|
|
char Euler_copy_doc[] = "() - returns a copy of the euler.";
|
|
//-----------------------METHOD DEFINITIONS ----------------------
|
|
struct PyMethodDef Euler_methods[] = {
|
|
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
|
|
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
|
|
{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
|
|
{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
|
|
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
|
|
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
|
|
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
//-----------------------------METHODS----------------------------
|
|
//----------------------------Euler.toQuat()----------------------
|
|
//return a quaternion representation of the euler
|
|
PyObject *Euler_ToQuat(EulerObject * self)
|
|
{
|
|
float eul[3], quat[4];
|
|
int x;
|
|
|
|
for(x = 0; x < 3; x++) {
|
|
eul[x] = self->eul[x] * ((float)Py_PI / 180);
|
|
}
|
|
EulToQuat(eul, quat);
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
//----------------------------Euler.toMatrix()---------------------
|
|
//return a matrix representation of the euler
|
|
PyObject *Euler_ToMatrix(EulerObject * self)
|
|
{
|
|
float eul[3];
|
|
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
|
|
int x;
|
|
|
|
for(x = 0; x < 3; x++) {
|
|
eul[x] = self->eul[x] * ((float)Py_PI / 180);
|
|
}
|
|
EulToMat3(eul, (float (*)[3]) mat);
|
|
return newMatrixObject(mat, 3, 3 , Py_NEW);
|
|
}
|
|
//----------------------------Euler.unique()-----------------------
|
|
//sets the x,y,z values to a unique euler rotation
|
|
PyObject *Euler_Unique(EulerObject * self)
|
|
{
|
|
double heading, pitch, bank;
|
|
double pi2 = Py_PI * 2.0f;
|
|
double piO2 = Py_PI / 2.0f;
|
|
double Opi2 = 1.0f / pi2;
|
|
|
|
//radians
|
|
heading = self->eul[0] * (float)Py_PI / 180;
|
|
pitch = self->eul[1] * (float)Py_PI / 180;
|
|
bank = self->eul[2] * (float)Py_PI / 180;
|
|
|
|
//wrap heading in +180 / -180
|
|
pitch += Py_PI;
|
|
pitch -= floor(pitch * Opi2) * pi2;
|
|
pitch -= Py_PI;
|
|
|
|
|
|
if(pitch < -piO2) {
|
|
pitch = -Py_PI - pitch;
|
|
heading += Py_PI;
|
|
bank += Py_PI;
|
|
} else if(pitch > piO2) {
|
|
pitch = Py_PI - pitch;
|
|
heading += Py_PI;
|
|
bank += Py_PI;
|
|
}
|
|
//gimbal lock test
|
|
if(fabs(pitch) > piO2 - 1e-4) {
|
|
heading += bank;
|
|
bank = 0.0f;
|
|
} else {
|
|
bank += Py_PI;
|
|
bank -= (floor(bank * Opi2)) * pi2;
|
|
bank -= Py_PI;
|
|
}
|
|
|
|
heading += Py_PI;
|
|
heading -= (floor(heading * Opi2)) * pi2;
|
|
heading -= Py_PI;
|
|
|
|
//back to degrees
|
|
self->eul[0] = (float)(heading * 180 / (float)Py_PI);
|
|
self->eul[1] = (float)(pitch * 180 / (float)Py_PI);
|
|
self->eul[2] = (float)(bank * 180 / (float)Py_PI);
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Euler.zero()-------------------------
|
|
//sets the euler to 0,0,0
|
|
PyObject *Euler_Zero(EulerObject * self)
|
|
{
|
|
self->eul[0] = 0.0;
|
|
self->eul[1] = 0.0;
|
|
self->eul[2] = 0.0;
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Euler.rotate()-----------------------
|
|
//rotates a euler a certain amount and returns the result
|
|
//should return a unique euler rotation (i.e. no 720 degree pitches :)
|
|
PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
|
|
{
|
|
float angle = 0.0f;
|
|
char *axis;
|
|
int x;
|
|
|
|
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"euler.rotate():expected angle (float) and axis (x,y,z)");
|
|
}
|
|
if(!STREQ3(axis,"x","y","z")){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"euler.rotate(): expected axis to be 'x', 'y' or 'z'");
|
|
}
|
|
|
|
//covert to radians
|
|
angle *= ((float)Py_PI / 180);
|
|
for(x = 0; x < 3; x++) {
|
|
self->eul[x] *= ((float)Py_PI / 180);
|
|
}
|
|
euler_rot(self->eul, angle, *axis);
|
|
//convert back from radians
|
|
for(x = 0; x < 3; x++) {
|
|
self->eul[x] *= (180 / (float)Py_PI);
|
|
}
|
|
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Euler.rotate()-----------------------
|
|
// return a copy of the euler
|
|
PyObject *Euler_copy(EulerObject * self, PyObject *args)
|
|
{
|
|
return newEulerObject(self->eul, Py_NEW);
|
|
}
|
|
|
|
|
|
//----------------------------dealloc()(internal) ------------------
|
|
//free the py_object
|
|
static void Euler_dealloc(EulerObject * self)
|
|
{
|
|
//only free py_data
|
|
if(self->data.py_data){
|
|
PyMem_Free(self->data.py_data);
|
|
}
|
|
PyObject_DEL(self);
|
|
}
|
|
//----------------------------getattr()(internal) ------------------
|
|
//object.attribute access (get)
|
|
static PyObject *Euler_getattr(EulerObject * self, char *name)
|
|
{
|
|
if(STREQ(name,"x")){
|
|
return PyFloat_FromDouble(self->eul[0]);
|
|
}else if(STREQ(name, "y")){
|
|
return PyFloat_FromDouble(self->eul[1]);
|
|
}else if(STREQ(name, "z")){
|
|
return PyFloat_FromDouble(self->eul[2]);
|
|
}
|
|
if(STREQ(name, "wrapped")){
|
|
if(self->wrapped == Py_WRAP)
|
|
return EXPP_incr_ret((PyObject *)Py_True);
|
|
else
|
|
return EXPP_incr_ret((PyObject *)Py_False);
|
|
}
|
|
return Py_FindMethod(Euler_methods, (PyObject *) self, name);
|
|
}
|
|
//----------------------------setattr()(internal) ------------------
|
|
//object.attribute access (set)
|
|
static int Euler_setattr(EulerObject * self, char *name, PyObject * e)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(e);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"euler.attribute = x: argument not a number\n");
|
|
}
|
|
|
|
if(STREQ(name,"x")){
|
|
self->eul[0] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "y")){
|
|
self->eul[1] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "z")){
|
|
self->eul[2] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else{
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"euler.attribute = x: unknown attribute\n");
|
|
}
|
|
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------print object (internal)--------------
|
|
//print the object to screen
|
|
static PyObject *Euler_repr(EulerObject * self)
|
|
{
|
|
int i;
|
|
char buffer[48], str[1024];
|
|
|
|
BLI_strncpy(str,"[",1024);
|
|
for(i = 0; i < 3; i++){
|
|
if(i < (2)){
|
|
sprintf(buffer, "%.6f, ", self->eul[i]);
|
|
strcat(str,buffer);
|
|
}else{
|
|
sprintf(buffer, "%.6f", self->eul[i]);
|
|
strcat(str,buffer);
|
|
}
|
|
}
|
|
strcat(str, "](euler)");
|
|
|
|
return PyString_FromString(str);
|
|
}
|
|
//------------------------tp_richcmpr
|
|
//returns -1 execption, 0 false, 1 true
|
|
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
EulerObject *eulA = NULL, *eulB = NULL;
|
|
int result = 0;
|
|
|
|
if (!EulerObject_Check(objectA) || !EulerObject_Check(objectB)){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
eulA = (EulerObject*)objectA;
|
|
eulB = (EulerObject*)objectB;
|
|
|
|
switch (comparison_type){
|
|
case Py_EQ:
|
|
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
//------------------------tp_doc
|
|
static char EulerObject_doc[] = "This is a wrapper for euler objects.";
|
|
//---------------------SEQUENCE PROTOCOLS------------------------
|
|
//----------------------------len(object)------------------------
|
|
//sequence length
|
|
static int Euler_len(EulerObject * self)
|
|
{
|
|
return 3;
|
|
}
|
|
//----------------------------object[]---------------------------
|
|
//sequence accessor (get)
|
|
static PyObject *Euler_item(EulerObject * self, int i)
|
|
{
|
|
if(i < 0 || i >= 3)
|
|
return EXPP_ReturnPyObjError(PyExc_IndexError,
|
|
"euler[attribute]: array index out of range\n");
|
|
|
|
return PyFloat_FromDouble(self->eul[i]);
|
|
|
|
}
|
|
//----------------------------object[]-------------------------
|
|
//sequence accessor (set)
|
|
static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(ob);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"euler[attribute] = x: argument not a number\n");
|
|
}
|
|
|
|
if(i < 0 || i >= 3){
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_IndexError,
|
|
"euler[attribute] = x: array assignment index out of range\n");
|
|
}
|
|
self->eul[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (get)
|
|
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
CLAMP(begin, 0, 3);
|
|
if (end<0) end= 4+end;
|
|
CLAMP(end, 0, 3);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->eul[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (set)
|
|
static int Euler_ass_slice(EulerObject * self, int begin, int end,
|
|
PyObject * seq)
|
|
{
|
|
int i, y, size = 0;
|
|
float eul[3];
|
|
PyObject *e, *f;
|
|
|
|
CLAMP(begin, 0, 3);
|
|
if (end<0) end= 4+end;
|
|
CLAMP(end, 0, 3);
|
|
begin = MIN2(begin,end);
|
|
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"euler[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
e = PySequence_GetItem(seq, i);
|
|
if (e == NULL) { // Failed to read sequence
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"euler[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
|
|
f = PyNumber_Float(e);
|
|
if(f == NULL) { // parsed item not a number
|
|
Py_DECREF(e);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"euler[begin:end] = []: sequence argument not a number\n");
|
|
}
|
|
|
|
eul[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
EXPP_decr2(f,e);
|
|
}
|
|
//parsed well - now set in vector
|
|
for(y = 0; y < 3; y++){
|
|
self->eul[begin + y] = eul[y];
|
|
}
|
|
return 0;
|
|
}
|
|
//-----------------PROTCOL DECLARATIONS--------------------------
|
|
static PySequenceMethods Euler_SeqMethods = {
|
|
(inquiry) Euler_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(intargfunc) 0, /* sq_repeat */
|
|
(intargfunc) Euler_item, /* sq_item */
|
|
(intintargfunc) Euler_slice, /* sq_slice */
|
|
(intobjargproc) Euler_ass_item, /* sq_ass_item */
|
|
(intintobjargproc) Euler_ass_slice, /* sq_ass_slice */
|
|
};
|
|
//------------------PY_OBECT DEFINITION--------------------------
|
|
PyTypeObject euler_Type = {
|
|
PyObject_HEAD_INIT(NULL) //tp_head
|
|
0, //tp_internal
|
|
"euler", //tp_name
|
|
sizeof(EulerObject), //tp_basicsize
|
|
0, //tp_itemsize
|
|
(destructor)Euler_dealloc, //tp_dealloc
|
|
0, //tp_print
|
|
(getattrfunc)Euler_getattr, //tp_getattr
|
|
(setattrfunc) Euler_setattr, //tp_setattr
|
|
0, //tp_compare
|
|
(reprfunc) Euler_repr, //tp_repr
|
|
0, //tp_as_number
|
|
&Euler_SeqMethods, //tp_as_sequence
|
|
0, //tp_as_mapping
|
|
0, //tp_hash
|
|
0, //tp_call
|
|
0, //tp_str
|
|
0, //tp_getattro
|
|
0, //tp_setattro
|
|
0, //tp_as_buffer
|
|
Py_TPFLAGS_DEFAULT, //tp_flags
|
|
EulerObject_doc, //tp_doc
|
|
0, //tp_traverse
|
|
0, //tp_clear
|
|
(richcmpfunc)Euler_richcmpr, //tp_richcompare
|
|
0, //tp_weaklistoffset
|
|
0, //tp_iter
|
|
0, //tp_iternext
|
|
0, //tp_methods
|
|
0, //tp_members
|
|
0, //tp_getset
|
|
0, //tp_base
|
|
0, //tp_dict
|
|
0, //tp_descr_get
|
|
0, //tp_descr_set
|
|
0, //tp_dictoffset
|
|
0, //tp_init
|
|
0, //tp_alloc
|
|
0, //tp_new
|
|
0, //tp_free
|
|
0, //tp_is_gc
|
|
0, //tp_bases
|
|
0, //tp_mro
|
|
0, //tp_cache
|
|
0, //tp_subclasses
|
|
0, //tp_weaklist
|
|
0 //tp_del
|
|
};
|
|
//------------------------newEulerObject (internal)-------------
|
|
//creates a new euler object
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newEulerObject(float *eul, int type)
|
|
{
|
|
EulerObject *self;
|
|
int x;
|
|
|
|
self = PyObject_NEW(EulerObject, &euler_Type);
|
|
self->data.blend_data = NULL;
|
|
self->data.py_data = NULL;
|
|
|
|
if(type == Py_WRAP){
|
|
self->data.blend_data = eul;
|
|
self->eul = self->data.blend_data;
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->data.py_data = PyMem_Malloc(3 * sizeof(float));
|
|
self->eul = self->data.py_data;
|
|
if(!eul) { //new empty
|
|
for(x = 0; x < 3; x++) {
|
|
self->eul[x] = 0.0f;
|
|
}
|
|
}else{
|
|
for(x = 0; x < 3; x++){
|
|
self->eul[x] = eul[x];
|
|
}
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ //bad type
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|