This time is was due to different accuracy of floating point computation, now it uses does a comparison a bit different to avoid this. Also changed the vectoquat function to be threadsafe.
1267 lines
36 KiB
C
1267 lines
36 KiB
C
/*
|
|
* $Id$
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "BLI_arithb.h"
|
|
#include "gen_utils.h"
|
|
|
|
|
|
/*-------------------------DOC STRINGS ---------------------------*/
|
|
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
|
|
char Vector_Normalize_doc[] = "() - normalize the vector";
|
|
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
|
|
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
|
|
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
|
|
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
|
|
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
|
|
char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis";
|
|
char Vector_copy_doc[] = "() - return a copy of the vector";
|
|
/*-----------------------METHOD DEFINITIONS ----------------------*/
|
|
struct PyMethodDef Vector_methods[] = {
|
|
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
|
|
{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
|
|
{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
|
|
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
|
|
{"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
|
|
{"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
|
|
{"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
/*-----------------------------METHODS----------------------------
|
|
--------------------------Vector.toPoint()----------------------
|
|
create a new point object to represent this vector */
|
|
PyObject *Vector_toPoint(VectorObject * self)
|
|
{
|
|
float coord[3];
|
|
int i;
|
|
|
|
if(self->size < 2 || self->size > 3) {
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
|
|
}
|
|
for(i = 0; i < self->size; i++){
|
|
coord[i] = self->vec[i];
|
|
}
|
|
|
|
return newPointObject(coord, self->size, Py_NEW);
|
|
}
|
|
/*----------------------------Vector.zero() ----------------------
|
|
set the vector data to 0,0,0 */
|
|
PyObject *Vector_Zero(VectorObject * self)
|
|
{
|
|
int i;
|
|
for(i = 0; i < self->size; i++) {
|
|
self->vec[i] = 0.0f;
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*----------------------------Vector.normalize() -----------------
|
|
normalize the vector data to a unit vector */
|
|
PyObject *Vector_Normalize(VectorObject * self)
|
|
{
|
|
int i;
|
|
float norm = 0.0f;
|
|
|
|
for(i = 0; i < self->size; i++) {
|
|
norm += self->vec[i] * self->vec[i];
|
|
}
|
|
norm = (float) sqrt(norm);
|
|
for(i = 0; i < self->size; i++) {
|
|
self->vec[i] /= norm;
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
|
|
|
|
/*----------------------------Vector.resize2D() ------------------
|
|
resize the vector to x,y */
|
|
PyObject *Vector_Resize2D(VectorObject * self)
|
|
{
|
|
if(self->wrapped==Py_WRAP)
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
|
|
|
|
self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 2));
|
|
if(self->vec == NULL)
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize2d(): problem allocating pointer space\n\n");
|
|
|
|
self->size = 2;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*----------------------------Vector.resize3D() ------------------
|
|
resize the vector to x,y,z */
|
|
PyObject *Vector_Resize3D(VectorObject * self)
|
|
{
|
|
if (self->wrapped==Py_WRAP)
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
|
|
|
|
self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 3));
|
|
if(self->vec == NULL)
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize3d(): problem allocating pointer space\n\n");
|
|
|
|
if(self->size == 2)
|
|
self->vec[2] = 0.0f;
|
|
|
|
self->size = 3;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*----------------------------Vector.resize4D() ------------------
|
|
resize the vector to x,y,z,w */
|
|
PyObject *Vector_Resize4D(VectorObject * self)
|
|
{
|
|
if(self->wrapped==Py_WRAP)
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
|
|
|
|
self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 4));
|
|
if(self->vec == NULL)
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize4d(): problem allocating pointer space\n\n");
|
|
|
|
if(self->size == 2){
|
|
self->vec[2] = 0.0f;
|
|
self->vec[3] = 1.0f;
|
|
}else if(self->size == 3){
|
|
self->vec[3] = 1.0f;
|
|
}
|
|
self->size = 4;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*----------------------------Vector.toTrackQuat(track, up) ----------------------
|
|
extract a quaternion from the vector and the track and up axis */
|
|
PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
|
|
{
|
|
float vec[3], quat[4];
|
|
char *strack, *sup;
|
|
short track = 2, up = 1;
|
|
|
|
if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) {
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected optional two strings\n" );
|
|
}
|
|
if (self->size != 3) {
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" );
|
|
}
|
|
|
|
if (strack) {
|
|
if (strlen(strack) == 2) {
|
|
if (strack[0] == '-') {
|
|
switch(strack[1]) {
|
|
case 'X':
|
|
case 'x':
|
|
track = 3;
|
|
break;
|
|
case 'Y':
|
|
case 'y':
|
|
track = 4;
|
|
break;
|
|
case 'z':
|
|
case 'Z':
|
|
track = 5;
|
|
break;
|
|
default:
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
|
|
}
|
|
}
|
|
else {
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
|
|
}
|
|
}
|
|
else if (strlen(strack) == 1) {
|
|
switch(strack[0]) {
|
|
case '-':
|
|
case 'X':
|
|
case 'x':
|
|
track = 0;
|
|
break;
|
|
case 'Y':
|
|
case 'y':
|
|
track = 1;
|
|
break;
|
|
case 'z':
|
|
case 'Z':
|
|
track = 2;
|
|
break;
|
|
default:
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
|
|
}
|
|
}
|
|
else {
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
|
|
}
|
|
}
|
|
|
|
if (sup) {
|
|
if (strlen(sup) == 1) {
|
|
switch(*sup) {
|
|
case 'X':
|
|
case 'x':
|
|
up = 0;
|
|
break;
|
|
case 'Y':
|
|
case 'y':
|
|
up = 1;
|
|
break;
|
|
case 'z':
|
|
case 'Z':
|
|
up = 2;
|
|
break;
|
|
default:
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, Y or Z for up axis\n" );
|
|
}
|
|
}
|
|
else {
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"only X, Y or Z for up axis\n" );
|
|
}
|
|
}
|
|
|
|
if (track == up) {
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"Can't have the same axis for track and up\n" );
|
|
}
|
|
|
|
/*
|
|
flip vector around, since vectoquat expect a vector from target to tracking object
|
|
and the python function expects the inverse (a vector to the target).
|
|
*/
|
|
vec[0] = -self->vec[0];
|
|
vec[1] = -self->vec[1];
|
|
vec[2] = -self->vec[2];
|
|
|
|
vectoquat(vec, track, up, quat);
|
|
|
|
return newQuaternionObject(quat, Py_NEW);
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------Vector.copy() --------------------------------------
|
|
return a copy of the vector */
|
|
PyObject *Vector_copy(VectorObject * self)
|
|
{
|
|
return newVectorObject(self->vec, self->size, Py_NEW);
|
|
}
|
|
|
|
/*----------------------------dealloc()(internal) ----------------
|
|
free the py_object */
|
|
static void Vector_dealloc(VectorObject * self)
|
|
{
|
|
/* only free non wrapped */
|
|
if(self->wrapped != Py_WRAP){
|
|
PyMem_Free(self->vec);
|
|
}
|
|
PyObject_DEL(self);
|
|
}
|
|
|
|
/*----------------------------print object (internal)-------------
|
|
print the object to screen */
|
|
static PyObject *Vector_repr(VectorObject * self)
|
|
{
|
|
int i;
|
|
char buffer[48], str[1024];
|
|
|
|
BLI_strncpy(str,"[",1024);
|
|
for(i = 0; i < self->size; i++){
|
|
if(i < (self->size - 1)){
|
|
sprintf(buffer, "%.6f, ", self->vec[i]);
|
|
strcat(str,buffer);
|
|
}else{
|
|
sprintf(buffer, "%.6f", self->vec[i]);
|
|
strcat(str,buffer);
|
|
}
|
|
}
|
|
strcat(str, "](vector)");
|
|
|
|
return PyString_FromString(str);
|
|
}
|
|
/*---------------------SEQUENCE PROTOCOLS------------------------
|
|
----------------------------len(object)------------------------
|
|
sequence length*/
|
|
static int Vector_len(VectorObject * self)
|
|
{
|
|
return self->size;
|
|
}
|
|
/*----------------------------object[]---------------------------
|
|
sequence accessor (get)*/
|
|
static PyObject *Vector_item(VectorObject * self, int i)
|
|
{
|
|
if(i < 0 || i >= self->size)
|
|
return EXPP_ReturnPyObjError(PyExc_IndexError,
|
|
"vector[index]: out of range\n");
|
|
|
|
return PyFloat_FromDouble(self->vec[i]);
|
|
|
|
}
|
|
/*----------------------------object[]-------------------------
|
|
sequence accessor (set)*/
|
|
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
|
|
{
|
|
|
|
if(!(PyNumber_Check(ob))) { /* parsed item not a number */
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[index] = x: index argument not a number\n");
|
|
}
|
|
|
|
if(i < 0 || i >= self->size){
|
|
return EXPP_ReturnIntError(PyExc_IndexError,
|
|
"vector[index] = x: assignment index out of range\n");
|
|
}
|
|
self->vec[i] = (float)PyFloat_AsDouble(ob);
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------object[z:y]------------------------
|
|
sequence slice (get) */
|
|
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
CLAMP(begin, 0, self->size);
|
|
if (end<0) end= self->size+end+1;
|
|
CLAMP(end, 0, self->size);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->vec[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
/*----------------------------object[z:y]------------------------
|
|
sequence slice (set) */
|
|
static int Vector_ass_slice(VectorObject * self, int begin, int end,
|
|
PyObject * seq)
|
|
{
|
|
int i, y, size = 0;
|
|
float vec[4];
|
|
PyObject *v;
|
|
|
|
CLAMP(begin, 0, self->size);
|
|
if (end<0) end= self->size+end+1;
|
|
CLAMP(end, 0, self->size);
|
|
begin = MIN2(begin,end);
|
|
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
v = PySequence_GetItem(seq, i);
|
|
if (v == NULL) { /* Failed to read sequence */
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"vector[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
|
|
if(!PyNumber_Check(v)) { /* parsed item not a number */
|
|
Py_DECREF(v);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[begin:end] = []: sequence argument not a number\n");
|
|
}
|
|
|
|
vec[i] = (float)PyFloat_AsDouble(v);
|
|
Py_DECREF(v);
|
|
}
|
|
/*parsed well - now set in vector*/
|
|
for(y = 0; y < size; y++){
|
|
self->vec[begin + y] = vec[y];
|
|
}
|
|
return 0;
|
|
}
|
|
/*------------------------NUMERIC PROTOCOLS----------------------
|
|
------------------------obj + obj------------------------------
|
|
addition*/
|
|
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i;
|
|
float vec[4];
|
|
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
if VectorObject_Check(v1)
|
|
vec1= (VectorObject *)v1;
|
|
|
|
if VectorObject_Check(v2)
|
|
vec2= (VectorObject *)v2;
|
|
|
|
/* make sure v1 is always the vector */
|
|
if (vec1 && vec2 ) {
|
|
/*VECTOR + VECTOR*/
|
|
if(vec1->size != vec2->size)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: vectors must have the same dimensions for this operation\n");
|
|
|
|
for(i = 0; i < vec1->size; i++) {
|
|
vec[i] = vec1->vec[i] + vec2->vec[i];
|
|
}
|
|
return newVectorObject(vec, vec1->size, Py_NEW);
|
|
}
|
|
|
|
if(PointObject_Check(v2)){ /*VECTOR + POINT*/
|
|
/*Point translation*/
|
|
PointObject *pt = (PointObject*)v2;
|
|
|
|
if(pt->size == vec1->size){
|
|
for(i = 0; i < vec1->size; i++){
|
|
vec[i] = vec1->vec[i] + pt->coord[i];
|
|
}
|
|
}else{
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments are the wrong size....\n");
|
|
}
|
|
return newPointObject(vec, vec1->size, Py_NEW);
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments not valid for this operation....\n");
|
|
}
|
|
|
|
/* ------------------------obj += obj------------------------------
|
|
addition in place */
|
|
static PyObject *Vector_iadd(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i;
|
|
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
if VectorObject_Check(v1)
|
|
vec1= (VectorObject *)v1;
|
|
|
|
if VectorObject_Check(v2)
|
|
vec2= (VectorObject *)v2;
|
|
|
|
/* make sure v1 is always the vector */
|
|
if (vec1 && vec2 ) {
|
|
/*VECTOR + VECTOR*/
|
|
if(vec1->size != vec2->size)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: vectors must have the same dimensions for this operation\n");
|
|
|
|
for(i = 0; i < vec1->size; i++) {
|
|
vec1->vec[i] += vec2->vec[i];
|
|
}
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
}
|
|
|
|
if(PointObject_Check(v2)){ /*VECTOR + POINT*/
|
|
/*Point translation*/
|
|
PointObject *pt = (PointObject*)v2;
|
|
|
|
if(pt->size == vec1->size){
|
|
for(i = 0; i < vec1->size; i++){
|
|
vec1->vec[i] += pt->coord[i];
|
|
}
|
|
}else{
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments are the wrong size....\n");
|
|
}
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments not valid for this operation....\n");
|
|
}
|
|
|
|
/*------------------------obj - obj------------------------------
|
|
subtraction*/
|
|
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i;
|
|
float vec[4];
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: arguments not valid for this operation....\n");
|
|
|
|
vec1 = (VectorObject*)v1;
|
|
vec2 = (VectorObject*)v2;
|
|
|
|
if(vec1->size != vec2->size)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: vectors must have the same dimensions for this operation\n");
|
|
|
|
for(i = 0; i < vec1->size; i++) {
|
|
vec[i] = vec1->vec[i] - vec2->vec[i];
|
|
}
|
|
|
|
return newVectorObject(vec, vec1->size, Py_NEW);
|
|
}
|
|
|
|
/*------------------------obj -= obj------------------------------
|
|
subtraction*/
|
|
static PyObject *Vector_isub(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i, size;
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: arguments not valid for this operation....\n");
|
|
|
|
vec1 = (VectorObject*)v1;
|
|
vec2 = (VectorObject*)v2;
|
|
|
|
if(vec1->size != vec2->size)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: vectors must have the same dimensions for this operation\n");
|
|
|
|
size = vec1->size;
|
|
for(i = 0; i < vec1->size; i++) {
|
|
vec1->vec[i] = vec1->vec[i] - vec2->vec[i];
|
|
}
|
|
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
}
|
|
|
|
/*------------------------obj * obj------------------------------
|
|
mulplication*/
|
|
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
|
|
{
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
if VectorObject_Check(v1)
|
|
vec1= (VectorObject *)v1;
|
|
|
|
if VectorObject_Check(v2)
|
|
vec2= (VectorObject *)v2;
|
|
|
|
/* make sure v1 is always the vector */
|
|
if (vec1 && vec2 ) {
|
|
int i;
|
|
double dot = 0.0f;
|
|
|
|
if(vec1->size != vec2->size)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector multiplication: vectors must have the same dimensions for this operation\n");
|
|
|
|
/*dot product*/
|
|
for(i = 0; i < vec1->size; i++) {
|
|
dot += vec1->vec[i] * vec2->vec[i];
|
|
}
|
|
return PyFloat_FromDouble(dot);
|
|
}
|
|
|
|
/*swap so vec1 is always the vector */
|
|
if (vec2) {
|
|
vec1= vec2;
|
|
v2= v1;
|
|
}
|
|
|
|
if (PyNumber_Check(v2)) {
|
|
/* VEC * NUM */
|
|
int i;
|
|
float vec[4];
|
|
float scalar = (float)PyFloat_AsDouble( v2 );
|
|
|
|
for(i = 0; i < vec1->size; i++) {
|
|
vec[i] = vec1->vec[i] * scalar;
|
|
}
|
|
return newVectorObject(vec, vec1->size, Py_NEW);
|
|
|
|
} else if (MatrixObject_Check(v2)) {
|
|
/* VEC * MATRIX */
|
|
if (v1==v2) /* mat*vec, we have swapped the order */
|
|
return column_vector_multiplication((MatrixObject*)v2, vec1);
|
|
else /* vec*mat */
|
|
return row_vector_multiplication(vec1, (MatrixObject*)v2);
|
|
} else if (QuaternionObject_Check(v2)) {
|
|
QuaternionObject *quat = (QuaternionObject*)v2;
|
|
if(vec1->size != 3)
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
|
|
|
|
return quat_rotation((PyObject*)vec1, (PyObject*)quat);
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
/*------------------------obj *= obj------------------------------
|
|
in place mulplication */
|
|
static PyObject *Vector_imul(PyObject * v1, PyObject * v2)
|
|
{
|
|
VectorObject *vec = (VectorObject *)v1;
|
|
int i;
|
|
|
|
/* only support vec*=float and vec*=mat
|
|
vec*=vec result is a float so that wont work */
|
|
if (PyNumber_Check(v2)) {
|
|
/* VEC * NUM */
|
|
float scalar = (float)PyFloat_AsDouble( v2 );
|
|
|
|
for(i = 0; i < vec->size; i++) {
|
|
vec->vec[i] *= scalar;
|
|
}
|
|
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
|
|
} else if (MatrixObject_Check(v2)) {
|
|
float vecCopy[4];
|
|
int x,y, size = vec->size;
|
|
MatrixObject *mat= (MatrixObject*)v2;
|
|
|
|
if(mat->colSize != size){
|
|
if(mat->rowSize == 4 && vec->size != 3){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"vector * matrix: matrix column size and the vector size must be the same");
|
|
} else {
|
|
vecCopy[3] = 1.0f;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < size; i++){
|
|
vecCopy[i] = vec->vec[i];
|
|
}
|
|
|
|
size = MIN2(size, mat->colSize);
|
|
|
|
/*muliplication*/
|
|
for(x = 0, i = 0; x < size; x++, i++) {
|
|
double dot = 0.0f;
|
|
for(y = 0; y < mat->rowSize; y++) {
|
|
dot += mat->matrix[y][x] * vecCopy[y];
|
|
}
|
|
vec->vec[i] = (float)dot;
|
|
}
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
}
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
|
|
/*------------------------obj / obj------------------------------
|
|
divide*/
|
|
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i, size;
|
|
float vec[4], scalar;
|
|
VectorObject *vec1 = NULL;
|
|
|
|
if(!VectorObject_Check(v1)) /* not a vector */
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector division: Vector must be divided by a float\n");
|
|
|
|
vec1 = (VectorObject*)v1; /* vector */
|
|
|
|
if(!PyNumber_Check(v2)) /* parsed item not a number */
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector division: Vector must be divided by a float\n");
|
|
|
|
scalar = (float)PyFloat_AsDouble(v2);
|
|
|
|
if(scalar==0.0) /* not a vector */
|
|
return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError,
|
|
"Vector division: divide by zero error.\n");
|
|
|
|
size = vec1->size;
|
|
for(i = 0; i < size; i++) {
|
|
vec[i] = vec1->vec[i] / scalar;
|
|
}
|
|
return newVectorObject(vec, size, Py_NEW);
|
|
}
|
|
|
|
/*------------------------obj / obj------------------------------
|
|
divide*/
|
|
static PyObject *Vector_idiv(PyObject * v1, PyObject * v2)
|
|
{
|
|
int i, size;
|
|
float scalar;
|
|
VectorObject *vec1 = NULL;
|
|
|
|
/*if(!VectorObject_Check(v1))
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"Vector division: Vector must be divided by a float\n");*/
|
|
|
|
vec1 = (VectorObject*)v1; /* vector */
|
|
|
|
if(!PyNumber_Check(v2)) /* parsed item not a number */
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector division: Vector must be divided by a float\n");
|
|
|
|
scalar = (float)PyFloat_AsDouble(v2);
|
|
|
|
if(scalar==0.0) /* not a vector */
|
|
return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError,
|
|
"Vector division: divide by zero error.\n");
|
|
|
|
size = vec1->size;
|
|
for(i = 0; i < size; i++) {
|
|
vec1->vec[i] /= scalar;
|
|
}
|
|
Py_INCREF( v1 );
|
|
return v1;
|
|
}
|
|
|
|
/*-------------------------- -obj -------------------------------
|
|
returns the negative of this object*/
|
|
static PyObject *Vector_neg(VectorObject *self)
|
|
{
|
|
int i;
|
|
float vec[4];
|
|
for(i = 0; i < self->size; i++){
|
|
vec[i] = -self->vec[i];
|
|
}
|
|
|
|
return newVectorObject(vec, self->size, Py_NEW);
|
|
}
|
|
/*------------------------coerce(obj, obj)-----------------------
|
|
coercion of unknown types to type VectorObject for numeric protocols
|
|
Coercion() is called whenever a math operation has 2 operands that
|
|
it doesn't understand how to evaluate. 2+Matrix for example. We want to
|
|
evaluate some of these operations like: (vector * 2), however, for math
|
|
to proceed, the unknown operand must be cast to a type that python math will
|
|
understand. (e.g. in the case above case, 2 must be cast to a vector and
|
|
then call vector.multiply(vector, scalar_cast_as_vector)*/
|
|
|
|
|
|
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
|
|
{
|
|
/* Just incref, each functon must raise errors for bad types */
|
|
Py_INCREF (*v1);
|
|
Py_INCREF (*v2);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*------------------------tp_doc*/
|
|
static char VectorObject_doc[] = "This is a wrapper for vector objects.";
|
|
/*------------------------vec_magnitude_nosqrt (internal) - for comparing only */
|
|
static double vec_magnitude_nosqrt(float *data, int size)
|
|
{
|
|
double dot = 0.0f;
|
|
int i;
|
|
|
|
for(i=0; i<size; i++){
|
|
dot += data[i];
|
|
}
|
|
/*return (double)sqrt(dot);*/
|
|
/* warning, line above removed because we are not using the length,
|
|
rather the comparing the sizes and for this we do not need the sqrt
|
|
for the actual length, the dot must be sqrt'd */
|
|
return (double)dot;
|
|
}
|
|
|
|
|
|
/*------------------------tp_richcmpr
|
|
returns -1 execption, 0 false, 1 true */
|
|
PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
VectorObject *vecA = NULL, *vecB = NULL;
|
|
int result = 0;
|
|
float epsilon = .000001f;
|
|
double lenA,lenB;
|
|
|
|
if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
vecA = (VectorObject*)objectA;
|
|
vecB = (VectorObject*)objectB;
|
|
|
|
if (vecA->size != vecB->size){
|
|
if (comparison_type == Py_NE){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
|
|
switch (comparison_type){
|
|
case Py_LT:
|
|
lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
|
|
lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
|
|
if( lenA < lenB ){
|
|
result = 1;
|
|
}
|
|
break;
|
|
case Py_LE:
|
|
lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
|
|
lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
|
|
if( lenA < lenB ){
|
|
result = 1;
|
|
}else{
|
|
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
|
|
}
|
|
break;
|
|
case Py_EQ:
|
|
result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
case Py_GT:
|
|
lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
|
|
lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
|
|
if( lenA > lenB ){
|
|
result = 1;
|
|
}
|
|
break;
|
|
case Py_GE:
|
|
lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
|
|
lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
|
|
if( lenA > lenB ){
|
|
result = 1;
|
|
}else{
|
|
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
return EXPP_incr_ret(Py_True);
|
|
}else{
|
|
return EXPP_incr_ret(Py_False);
|
|
}
|
|
}
|
|
/*-----------------PROTCOL DECLARATIONS--------------------------*/
|
|
static PySequenceMethods Vector_SeqMethods = {
|
|
(inquiry) Vector_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(intargfunc) 0, /* sq_repeat */
|
|
(intargfunc) Vector_item, /* sq_item */
|
|
(intintargfunc) Vector_slice, /* sq_slice */
|
|
(intobjargproc) Vector_ass_item, /* sq_ass_item */
|
|
(intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
|
|
};
|
|
|
|
|
|
/* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
|
|
arguments are guaranteed to be of the object's type (modulo
|
|
coercion hacks -- i.e. if the type's coercion function
|
|
returns other types, then these are allowed as well). Numbers that
|
|
have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
|
|
arguments for proper type and implement the necessary conversions
|
|
in the slot functions themselves. */
|
|
|
|
static PyNumberMethods Vector_NumMethods = {
|
|
(binaryfunc) Vector_add, /* __add__ */
|
|
(binaryfunc) Vector_sub, /* __sub__ */
|
|
(binaryfunc) Vector_mul, /* __mul__ */
|
|
(binaryfunc) Vector_div, /* __div__ */
|
|
(binaryfunc) NULL, /* __mod__ */
|
|
(binaryfunc) NULL, /* __divmod__ */
|
|
(ternaryfunc) NULL, /* __pow__ */
|
|
(unaryfunc) Vector_neg, /* __neg__ */
|
|
(unaryfunc) NULL, /* __pos__ */
|
|
(unaryfunc) NULL, /* __abs__ */
|
|
(inquiry) NULL, /* __nonzero__ */
|
|
(unaryfunc) NULL, /* __invert__ */
|
|
(binaryfunc) NULL, /* __lshift__ */
|
|
(binaryfunc) NULL, /* __rshift__ */
|
|
(binaryfunc) NULL, /* __and__ */
|
|
(binaryfunc) NULL, /* __xor__ */
|
|
(binaryfunc) NULL, /* __or__ */
|
|
(coercion) Vector_coerce, /* __coerce__ */
|
|
(unaryfunc) NULL, /* __int__ */
|
|
(unaryfunc) NULL, /* __long__ */
|
|
(unaryfunc) NULL, /* __float__ */
|
|
(unaryfunc) NULL, /* __oct__ */
|
|
(unaryfunc) NULL, /* __hex__ */
|
|
|
|
/* Added in release 2.0 */
|
|
(binaryfunc) Vector_iadd, /*__iadd__*/
|
|
(binaryfunc) Vector_isub, /*__isub__*/
|
|
(binaryfunc) Vector_imul, /*__imul__*/
|
|
(binaryfunc) Vector_idiv, /*__idiv__*/
|
|
(binaryfunc) NULL, /*__imod__*/
|
|
(ternaryfunc) NULL, /*__ipow__*/
|
|
(binaryfunc) NULL, /*__ilshift__*/
|
|
(binaryfunc) NULL, /*__irshift__*/
|
|
(binaryfunc) NULL, /*__iand__*/
|
|
(binaryfunc) NULL, /*__ixor__*/
|
|
(binaryfunc) NULL, /*__ior__*/
|
|
|
|
/* Added in release 2.2 */
|
|
/* The following require the Py_TPFLAGS_HAVE_CLASS flag */
|
|
(binaryfunc) NULL, /*__floordiv__ __rfloordiv__*/
|
|
(binaryfunc) NULL, /*__truediv__ __rfloordiv__*/
|
|
(binaryfunc) NULL, /*__ifloordiv__*/
|
|
(binaryfunc) NULL, /*__itruediv__*/
|
|
};
|
|
/*------------------PY_OBECT DEFINITION--------------------------*/
|
|
|
|
/*
|
|
* vector axis, vector.x/y/z/w
|
|
*/
|
|
|
|
static PyObject *Vector_getAxis( VectorObject * self, void *type )
|
|
{
|
|
switch( (long)type ) {
|
|
case 'X': /* these are backwards, but that how it works */
|
|
return PyFloat_FromDouble(self->vec[0]);
|
|
case 'Y':
|
|
return PyFloat_FromDouble(self->vec[1]);
|
|
case 'Z': /* these are backwards, but that how it works */
|
|
if(self->size < 3)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"vector.z: error, cannot get this axis for a 2D vector\n");
|
|
else
|
|
return PyFloat_FromDouble(self->vec[2]);
|
|
case 'W':
|
|
if(self->size < 4)
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"vector.w: error, cannot get this axis for a 3D vector\n");
|
|
|
|
return PyFloat_FromDouble(self->vec[3]);
|
|
default:
|
|
{
|
|
char errstr[1024];
|
|
sprintf( errstr, "undefined type '%d' in Vector_getAxis",
|
|
(int)((long)type & 0xff));
|
|
return EXPP_ReturnPyObjError( PyExc_RuntimeError, errstr );
|
|
}
|
|
}
|
|
}
|
|
|
|
static int Vector_setAxis( VectorObject * self, PyObject * value, void * type )
|
|
{
|
|
float param;
|
|
|
|
if (!PyNumber_Check(value))
|
|
return EXPP_ReturnIntError( PyExc_TypeError,
|
|
"expected a number for the vector axis" );
|
|
|
|
param= (float)PyFloat_AsDouble( value );
|
|
|
|
switch( (long)type ) {
|
|
case 'X': /* these are backwards, but that how it works */
|
|
self->vec[0]= param;
|
|
break;
|
|
case 'Y':
|
|
self->vec[1]= param;
|
|
break;
|
|
case 'Z': /* these are backwards, but that how it works */
|
|
if(self->size < 3)
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"vector.z: error, cannot get this axis for a 2D vector\n");
|
|
self->vec[2]= param;
|
|
break;
|
|
case 'W':
|
|
if(self->size < 4)
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"vector.w: error, cannot get this axis for a 3D vector\n");
|
|
|
|
self->vec[3]= param;
|
|
break;
|
|
default:
|
|
{
|
|
char errstr[1024];
|
|
sprintf( errstr, "undefined type '%d' in Vector_setAxis",
|
|
(int)((long)type & 0xff));
|
|
return EXPP_ReturnIntError( PyExc_RuntimeError, errstr );
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* vector.length */
|
|
static PyObject *Vector_getLength( VectorObject * self, void *type )
|
|
{
|
|
double dot = 0.0f;
|
|
int i;
|
|
|
|
for(i = 0; i < self->size; i++){
|
|
dot += (self->vec[i] * self->vec[i]);
|
|
}
|
|
return PyFloat_FromDouble(sqrt(dot));
|
|
}
|
|
|
|
static int Vector_setLength( VectorObject * self, PyObject * value )
|
|
{
|
|
double dot = 0.0f, param;
|
|
int i;
|
|
|
|
if (!PyNumber_Check(value))
|
|
return EXPP_ReturnIntError( PyExc_TypeError,
|
|
"expected a number for the vector axis" );
|
|
|
|
param= PyFloat_AsDouble( value );
|
|
|
|
if (param < 0)
|
|
return EXPP_ReturnIntError( PyExc_TypeError,
|
|
"cannot set a vectors length to a negative value" );
|
|
|
|
if (param==0) {
|
|
for(i = 0; i < self->size; i++){
|
|
self->vec[i]= 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
for(i = 0; i < self->size; i++){
|
|
dot += (self->vec[i] * self->vec[i]);
|
|
}
|
|
|
|
if (!dot) /* cant sqrt zero */
|
|
return 0;
|
|
|
|
dot = sqrt(dot);
|
|
|
|
if (dot==param)
|
|
return 0;
|
|
|
|
dot= dot/param;
|
|
|
|
for(i = 0; i < self->size; i++){
|
|
self->vec[i]= self->vec[i] / (float)dot;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *Vector_getWrapped( VectorObject * self, void *type )
|
|
{
|
|
if (self->wrapped == Py_WRAP)
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Python attributes get/set structure: */
|
|
/*****************************************************************************/
|
|
static PyGetSetDef Vector_getseters[] = {
|
|
{"x",
|
|
(getter)Vector_getAxis, (setter)Vector_setAxis,
|
|
"Vector X axis",
|
|
(void *)'X'},
|
|
{"y",
|
|
(getter)Vector_getAxis, (setter)Vector_setAxis,
|
|
"Vector Y axis",
|
|
(void *)'Y'},
|
|
{"z",
|
|
(getter)Vector_getAxis, (setter)Vector_setAxis,
|
|
"Vector Z axis",
|
|
(void *)'Z'},
|
|
{"w",
|
|
(getter)Vector_getAxis, (setter)Vector_setAxis,
|
|
"Vector Z axis",
|
|
(void *)'W'},
|
|
{"length",
|
|
(getter)Vector_getLength, (setter)Vector_setLength,
|
|
"Vector Length",
|
|
NULL},
|
|
{"magnitude",
|
|
(getter)Vector_getLength, (setter)Vector_setLength,
|
|
"Vector Length",
|
|
NULL},
|
|
{"wrapped",
|
|
(getter)Vector_getWrapped, (setter)NULL,
|
|
"Vector Length",
|
|
NULL},
|
|
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
|
|
};
|
|
|
|
|
|
|
|
/* Note
|
|
Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing
|
|
but this means for eg that
|
|
vec*mat and mat*vec both get sent to Vector_mul and it neesd to sort out the order
|
|
*/
|
|
|
|
PyTypeObject vector_Type = {
|
|
PyObject_HEAD_INIT( NULL ) /* required py macro */
|
|
0, /* ob_size */
|
|
/* For printing, in format "<module>.<name>" */
|
|
"Blender Vector", /* char *tp_name; */
|
|
sizeof( VectorObject ), /* int tp_basicsize; */
|
|
0, /* tp_itemsize; For allocation */
|
|
|
|
/* Methods to implement standard operations */
|
|
|
|
( destructor ) Vector_dealloc,/* destructor tp_dealloc; */
|
|
NULL, /* printfunc tp_print; */
|
|
NULL, /* getattrfunc tp_getattr; */
|
|
NULL, /* setattrfunc tp_setattr; */
|
|
NULL, /* cmpfunc tp_compare; */
|
|
( reprfunc ) Vector_repr, /* reprfunc tp_repr; */
|
|
|
|
/* Method suites for standard classes */
|
|
|
|
&Vector_NumMethods, /* PyNumberMethods *tp_as_number; */
|
|
&Vector_SeqMethods, /* PySequenceMethods *tp_as_sequence; */
|
|
NULL, /* PyMappingMethods *tp_as_mapping; */
|
|
|
|
/* More standard operations (here for binary compatibility) */
|
|
|
|
NULL, /* hashfunc tp_hash; */
|
|
NULL, /* ternaryfunc tp_call; */
|
|
NULL, /* reprfunc tp_str; */
|
|
NULL, /* getattrofunc tp_getattro; */
|
|
NULL, /* setattrofunc tp_setattro; */
|
|
|
|
/* Functions to access object as input/output buffer */
|
|
NULL, /* PyBufferProcs *tp_as_buffer; */
|
|
|
|
/*** Flags to define presence of optional/expanded features ***/
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES, /* long tp_flags; */
|
|
|
|
VectorObject_doc, /* char *tp_doc; Documentation string */
|
|
/*** Assigned meaning in release 2.0 ***/
|
|
/* call function for all accessible objects */
|
|
NULL, /* traverseproc tp_traverse; */
|
|
|
|
/* delete references to contained objects */
|
|
NULL, /* inquiry tp_clear; */
|
|
|
|
/*** Assigned meaning in release 2.1 ***/
|
|
/*** rich comparisons ***/
|
|
(richcmpfunc)Vector_richcmpr, /* richcmpfunc tp_richcompare; */
|
|
|
|
/*** weak reference enabler ***/
|
|
0, /* long tp_weaklistoffset; */
|
|
|
|
/*** Added in release 2.2 ***/
|
|
/* Iterators */
|
|
NULL, /* getiterfunc tp_iter; */
|
|
NULL, /* iternextfunc tp_iternext; */
|
|
|
|
/*** Attribute descriptor and subclassing stuff ***/
|
|
Vector_methods, /* struct PyMethodDef *tp_methods; */
|
|
NULL, /* struct PyMemberDef *tp_members; */
|
|
Vector_getseters, /* struct PyGetSetDef *tp_getset; */
|
|
NULL, /* struct _typeobject *tp_base; */
|
|
NULL, /* PyObject *tp_dict; */
|
|
NULL, /* descrgetfunc tp_descr_get; */
|
|
NULL, /* descrsetfunc tp_descr_set; */
|
|
0, /* long tp_dictoffset; */
|
|
NULL, /* initproc tp_init; */
|
|
NULL, /* allocfunc tp_alloc; */
|
|
NULL, /* newfunc tp_new; */
|
|
/* Low-level free-memory routine */
|
|
NULL, /* freefunc tp_free; */
|
|
/* For PyObject_IS_GC */
|
|
NULL, /* inquiry tp_is_gc; */
|
|
NULL, /* PyObject *tp_bases; */
|
|
/* method resolution order */
|
|
NULL, /* PyObject *tp_mro; */
|
|
NULL, /* PyObject *tp_cache; */
|
|
NULL, /* PyObject *tp_subclasses; */
|
|
NULL, /* PyObject *tp_weaklist; */
|
|
NULL
|
|
};
|
|
|
|
|
|
/*------------------------newVectorObject (internal)-------------
|
|
creates a new vector object
|
|
pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newVectorObject(float *vec, int size, int type)
|
|
{
|
|
int i;
|
|
VectorObject *self = PyObject_NEW(VectorObject, &vector_Type);
|
|
|
|
if(size > 4 || size < 2)
|
|
return NULL;
|
|
self->size = size;
|
|
|
|
if(type == Py_WRAP) {
|
|
self->vec = vec;
|
|
self->wrapped = Py_WRAP;
|
|
} else if (type == Py_NEW) {
|
|
self->vec = PyMem_Malloc(size * sizeof(float));
|
|
if(!vec) { /*new empty*/
|
|
for(i = 0; i < size; i++){
|
|
self->vec[i] = 0.0f;
|
|
}
|
|
if(size == 4) /* do the homogenous thing */
|
|
self->vec[3] = 1.0f;
|
|
}else{
|
|
for(i = 0; i < size; i++){
|
|
self->vec[i] = vec[i];
|
|
}
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ /*bad type*/
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
/*
|
|
#############################DEPRECATED################################
|
|
#######################################################################
|
|
----------------------------Vector.negate() --------------------
|
|
set the vector to it's negative -x, -y, -z */
|
|
PyObject *Vector_Negate(VectorObject * self)
|
|
{
|
|
int i;
|
|
for(i = 0; i < self->size; i++) {
|
|
self->vec[i] = -(self->vec[i]);
|
|
}
|
|
/*printf("Vector.negate(): Deprecated: use -vector instead\n");*/
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
/*###################################################################
|
|
###########################DEPRECATED##############################*/
|
|
|