This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/imbuf/intern/divers.c
Campbell Barton de13d0a80c doxygen: add newline after \file
While \file doesn't need an argument, it can't have another doxy
command after it.
2019-02-18 08:22:12 +11:00

897 lines
27 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* allocimbuf.c
*/
/** \file
* \ingroup imbuf
*/
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "imbuf.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "IMB_filter.h"
#include "IMB_colormanagement.h"
#include "IMB_colormanagement_intern.h"
#include "MEM_guardedalloc.h"
/************************* Floyd-Steinberg dithering *************************/
typedef struct DitherContext {
float dither;
} DitherContext;
static DitherContext *create_dither_context(float dither)
{
DitherContext *di;
di = MEM_mallocN(sizeof(DitherContext), "dithering context");
di->dither = dither;
return di;
}
static void clear_dither_context(DitherContext *di)
{
MEM_freeN(di);
}
/************************* Generic Buffer Conversion *************************/
MINLINE void ushort_to_byte_v4(uchar b[4], const unsigned short us[4])
{
b[0] = unit_ushort_to_uchar(us[0]);
b[1] = unit_ushort_to_uchar(us[1]);
b[2] = unit_ushort_to_uchar(us[2]);
b[3] = unit_ushort_to_uchar(us[3]);
}
MINLINE unsigned char ftochar(float value)
{
return unit_float_to_uchar_clamp(value);
}
MINLINE void ushort_to_byte_dither_v4(uchar b[4], const unsigned short us[4], DitherContext *di, float s, float t)
{
#define USHORTTOFLOAT(val) ((float)val / 65535.0f)
float dither_value = dither_random_value(s, t) * 0.005f * di->dither;
b[0] = ftochar(dither_value + USHORTTOFLOAT(us[0]));
b[1] = ftochar(dither_value + USHORTTOFLOAT(us[1]));
b[2] = ftochar(dither_value + USHORTTOFLOAT(us[2]));
b[3] = unit_ushort_to_uchar(us[3]);
#undef USHORTTOFLOAT
}
MINLINE void float_to_byte_dither_v4(uchar b[4], const float f[4], DitherContext *di, float s, float t)
{
float dither_value = dither_random_value(s, t) * 0.005f * di->dither;
b[0] = ftochar(dither_value + f[0]);
b[1] = ftochar(dither_value + f[1]);
b[2] = ftochar(dither_value + f[2]);
b[3] = unit_float_to_uchar_clamp(f[3]);
}
/* float to byte pixels, output 4-channel RGBA */
void IMB_buffer_byte_from_float(uchar *rect_to, const float *rect_from,
int channels_from, float dither, int profile_to, int profile_from, bool predivide,
int width, int height, int stride_to, int stride_from)
{
float tmp[4];
int x, y;
DitherContext *di = NULL;
float inv_width = 1.0f / width;
float inv_height = 1.0f / height;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
if (dither)
di = create_dither_context(dither);
for (y = 0; y < height; y++) {
float t = y * inv_height;
if (channels_from == 1) {
/* single channel input */
const float *from = rect_from + ((size_t)stride_from) * y;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4)
to[0] = to[1] = to[2] = to[3] = unit_float_to_uchar_clamp(from[0]);
}
else if (channels_from == 3) {
/* RGB input */
const float *from = rect_from + ((size_t)stride_from) * y * 3;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 3, to += 4) {
rgb_float_to_uchar(to, from);
to[3] = 255;
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
for (x = 0; x < width; x++, from += 3, to += 4) {
linearrgb_to_srgb_v3_v3(tmp, from);
rgb_float_to_uchar(to, tmp);
to[3] = 255;
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
for (x = 0; x < width; x++, from += 3, to += 4) {
srgb_to_linearrgb_v3_v3(tmp, from);
rgb_float_to_uchar(to, tmp);
to[3] = 255;
}
}
}
else if (channels_from == 4) {
/* RGBA input */
const float *from = rect_from + ((size_t)stride_from) * y * 4;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
float straight[4];
/* no color space conversion */
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
float_to_byte_dither_v4(to, straight, di, (float) x * inv_width, t);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4)
float_to_byte_dither_v4(to, from, di, (float) x * inv_width, t);
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
rgba_float_to_uchar(to, straight);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4)
rgba_float_to_uchar(to, from);
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
unsigned short us[4];
float straight[4];
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_dither_v4(to, us, di, (float) x * inv_width, t);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_dither_v4(to, us, di, (float) x * inv_width, t);
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
premul_to_straight_v4_v4(straight, from);
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_v4(to, us);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
linearrgb_to_srgb_ushort4(us, from);
ushort_to_byte_v4(to, us);
}
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_predivide_v4(tmp, from);
float_to_byte_dither_v4(to, tmp, di, (float) x * inv_width, t);
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_v4(tmp, from);
float_to_byte_dither_v4(to, tmp, di, (float) x * inv_width, t);
}
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_predivide_v4(tmp, from);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_v4(tmp, from);
rgba_float_to_uchar(to, tmp);
}
}
}
}
}
if (dither)
clear_dither_context(di);
}
/* float to byte pixels, output 4-channel RGBA */
void IMB_buffer_byte_from_float_mask(uchar *rect_to, const float *rect_from,
int channels_from, float dither, bool predivide,
int width, int height, int stride_to, int stride_from, char *mask)
{
int x, y;
DitherContext *di = NULL;
float inv_width = 1.0f / width,
inv_height = 1.0f / height;
if (dither)
di = create_dither_context(dither);
for (y = 0; y < height; y++) {
float t = y * inv_height;
if (channels_from == 1) {
/* single channel input */
const float *from = rect_from + ((size_t)stride_from) * y;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4)
if (*mask++ == FILTER_MASK_USED)
to[0] = to[1] = to[2] = to[3] = unit_float_to_uchar_clamp(from[0]);
}
else if (channels_from == 3) {
/* RGB input */
const float *from = rect_from + ((size_t)stride_from) * y * 3;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from += 3, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
rgb_float_to_uchar(to, from);
to[3] = 255;
}
}
}
else if (channels_from == 4) {
/* RGBA input */
const float *from = rect_from + ((size_t)stride_from) * y * 4;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
float straight[4];
if (dither && predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
premul_to_straight_v4_v4(straight, from);
float_to_byte_dither_v4(to, straight, di, (float) x * inv_width, t);
}
}
}
else if (dither) {
for (x = 0; x < width; x++, from += 4, to += 4)
if (*mask++ == FILTER_MASK_USED)
float_to_byte_dither_v4(to, from, di, (float) x * inv_width, t);
}
else if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
premul_to_straight_v4_v4(straight, from);
rgba_float_to_uchar(to, straight);
}
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4)
if (*mask++ == FILTER_MASK_USED)
rgba_float_to_uchar(to, from);
}
}
}
if (dither)
clear_dither_context(di);
}
/* byte to float pixels, input and output 4-channel RGBA */
void IMB_buffer_float_from_byte(float *rect_to, const uchar *rect_from,
int profile_to, int profile_from, bool predivide,
int width, int height, int stride_to, int stride_from)
{
float tmp[4];
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
/* RGBA input */
for (y = 0; y < height; y++) {
const uchar *from = rect_from + stride_from * y * 4;
float *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 4, to += 4)
rgba_uchar_to_float(to, from);
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_uchar4_predivide(to, from);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
srgb_to_linearrgb_uchar4(to, from);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_predivide_v4(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_v4(to, tmp);
}
}
}
}
}
/* float to float pixels, output 4-channel RGBA */
void IMB_buffer_float_from_float(float *rect_to, const float *rect_from,
int channels_from, int profile_to, int profile_from, bool predivide,
int width, int height, int stride_to, int stride_from)
{
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
if (channels_from == 1) {
/* single channel input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y;
float *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4)
to[0] = to[1] = to[2] = to[3] = from[0];
}
}
else if (channels_from == 3) {
/* RGB input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y * 3;
float *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
/* no color space conversion */
for (x = 0; x < width; x++, from += 3, to += 4) {
copy_v3_v3(to, from);
to[3] = 1.0f;
}
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert from sRGB to linear */
for (x = 0; x < width; x++, from += 3, to += 4) {
srgb_to_linearrgb_v3_v3(to, from);
to[3] = 1.0f;
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
for (x = 0; x < width; x++, from += 3, to += 4) {
linearrgb_to_srgb_v3_v3(to, from);
to[3] = 1.0f;
}
}
}
}
else if (channels_from == 4) {
/* RGBA input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y * 4;
float *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
/* same profile, copy */
memcpy(to, from, sizeof(float) * ((size_t)4) * width);
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert to sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4)
srgb_to_linearrgb_predivide_v4(to, from);
}
else {
for (x = 0; x < width; x++, from += 4, to += 4)
srgb_to_linearrgb_v4(to, from);
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4)
linearrgb_to_srgb_predivide_v4(to, from);
}
else {
for (x = 0; x < width; x++, from += 4, to += 4)
linearrgb_to_srgb_v4(to, from);
}
}
}
}
}
typedef struct FloatToFloatThreadData {
float *rect_to;
const float *rect_from;
int channels_from;
int profile_to;
int profile_from;
bool predivide;
int width;
int stride_to;
int stride_from;
} FloatToFloatThreadData;
static void imb_buffer_float_from_float_thread_do(void *data_v,
int start_scanline,
int num_scanlines)
{
FloatToFloatThreadData *data = (FloatToFloatThreadData *)data_v;
size_t offset_from = ((size_t)start_scanline) * data->stride_from * data->channels_from;
size_t offset_to = ((size_t)start_scanline) * data->stride_to * data->channels_from;
IMB_buffer_float_from_float(data->rect_to + offset_to,
data->rect_from + offset_from,
data->channels_from,
data->profile_to,
data->profile_from,
data->predivide,
data->width,
num_scanlines,
data->stride_to,
data->stride_from);
}
void IMB_buffer_float_from_float_threaded(float *rect_to,
const float *rect_from,
int channels_from,
int profile_to,
int profile_from,
bool predivide,
int width,
int height,
int stride_to,
int stride_from)
{
if (((size_t)width) * height < 64 * 64) {
IMB_buffer_float_from_float(rect_to,
rect_from,
channels_from,
profile_to,
profile_from,
predivide,
width,
height,
stride_to,
stride_from);
}
else {
FloatToFloatThreadData data;
data.rect_to = rect_to;
data.rect_from = rect_from;
data.channels_from = channels_from;
data.profile_to = profile_to;
data.profile_from = profile_from;
data.predivide = predivide;
data.width = width;
data.stride_to = stride_to;
data.stride_from = stride_from;
IMB_processor_apply_threaded_scanlines(
height, imb_buffer_float_from_float_thread_do, &data);
}
}
/* float to float pixels, output 4-channel RGBA */
void IMB_buffer_float_from_float_mask(float *rect_to, const float *rect_from, int channels_from,
int width, int height, int stride_to, int stride_from, char *mask)
{
int x, y;
if (channels_from == 1) {
/* single channel input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y;
float *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from++, to += 4)
if (*mask++ == FILTER_MASK_USED)
to[0] = to[1] = to[2] = to[3] = from[0];
}
}
else if (channels_from == 3) {
/* RGB input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y * 3;
float *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from += 3, to += 4) {
if (*mask++ == FILTER_MASK_USED) {
copy_v3_v3(to, from);
to[3] = 1.0f;
}
}
}
}
else if (channels_from == 4) {
/* RGBA input */
for (y = 0; y < height; y++) {
const float *from = rect_from + ((size_t)stride_from) * y * 4;
float *to = rect_to + ((size_t)stride_to) * y * 4;
for (x = 0; x < width; x++, from += 4, to += 4)
if (*mask++ == FILTER_MASK_USED)
copy_v4_v4(to, from);
}
}
}
/* byte to byte pixels, input and output 4-channel RGBA */
void IMB_buffer_byte_from_byte(uchar *rect_to, const uchar *rect_from,
int profile_to, int profile_from, bool predivide,
int width, int height, int stride_to, int stride_from)
{
float tmp[4];
int x, y;
/* we need valid profiles */
BLI_assert(profile_to != IB_PROFILE_NONE);
BLI_assert(profile_from != IB_PROFILE_NONE);
/* always RGBA input */
for (y = 0; y < height; y++) {
const uchar *from = rect_from + ((size_t)stride_from) * y * 4;
uchar *to = rect_to + ((size_t)stride_to) * y * 4;
if (profile_to == profile_from) {
/* same profile, copy */
memcpy(to, from, sizeof(uchar) * 4 * width);
}
else if (profile_to == IB_PROFILE_LINEAR_RGB) {
/* convert to sRGB to linear */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
srgb_to_linearrgb_predivide_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
srgb_to_linearrgb_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
}
else if (profile_to == IB_PROFILE_SRGB) {
/* convert from linear to sRGB */
if (predivide) {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_predivide_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
else {
for (x = 0; x < width; x++, from += 4, to += 4) {
rgba_uchar_to_float(tmp, from);
linearrgb_to_srgb_v4(tmp, tmp);
rgba_float_to_uchar(to, tmp);
}
}
}
}
}
/****************************** ImBuf Conversion *****************************/
void IMB_rect_from_float(ImBuf *ibuf)
{
float *buffer;
const char *from_colorspace;
/* verify we have a float buffer */
if (ibuf->rect_float == NULL)
return;
/* create byte rect if it didn't exist yet */
if (ibuf->rect == NULL) {
if (imb_addrectImBuf(ibuf) == 0)
return;
}
if (ibuf->float_colorspace == NULL)
from_colorspace = IMB_colormanagement_role_colorspace_name_get(COLOR_ROLE_SCENE_LINEAR);
else
from_colorspace = ibuf->float_colorspace->name;
buffer = MEM_dupallocN(ibuf->rect_float);
/* first make float buffer in byte space */
IMB_colormanagement_transform(buffer, ibuf->x, ibuf->y, ibuf->channels, from_colorspace, ibuf->rect_colorspace->name, true);
/* convert from float's premul alpha to byte's straight alpha */
IMB_unpremultiply_rect_float(buffer, ibuf->channels, ibuf->x, ibuf->y);
/* convert float to byte */
IMB_buffer_byte_from_float((unsigned char *) ibuf->rect, buffer, ibuf->channels, ibuf->dither, IB_PROFILE_SRGB, IB_PROFILE_SRGB,
false, ibuf->x, ibuf->y, ibuf->x, ibuf->x);
MEM_freeN(buffer);
/* ensure user flag is reset */
ibuf->userflags &= ~IB_RECT_INVALID;
}
typedef struct PartialThreadData {
ImBuf *ibuf;
float *buffer;
uchar *rect_byte;
const float *rect_float;
int width;
bool is_data;
} PartialThreadData;
static void partial_rect_from_float_slice(float *buffer,
uchar *rect_byte,
ImBuf *ibuf,
const float *rect_float,
const int w,
const int h,
const bool is_data)
{
const int profile_from = IB_PROFILE_LINEAR_RGB;
if (is_data) {
/* exception for non-color data, just copy float */
IMB_buffer_float_from_float(buffer, rect_float,
ibuf->channels, IB_PROFILE_LINEAR_RGB, IB_PROFILE_LINEAR_RGB, 0,
w, h, w, ibuf->x);
/* and do color space conversion to byte */
IMB_buffer_byte_from_float(rect_byte, rect_float,
4, ibuf->dither, IB_PROFILE_SRGB, profile_from, true,
w, h, ibuf->x, w);
}
else {
IMB_buffer_float_from_float(buffer, rect_float,
ibuf->channels, IB_PROFILE_SRGB, profile_from, true,
w, h, w, ibuf->x);
IMB_buffer_float_unpremultiply(buffer, w, h);
/* XXX: need to convert to image buffer's rect space */
IMB_buffer_byte_from_float(rect_byte, buffer,
4, ibuf->dither, IB_PROFILE_SRGB, IB_PROFILE_SRGB, 0,
w, h, ibuf->x, w);
}
}
static void partial_rect_from_float_thread_do(void *data_v,
int start_scanline,
int num_scanlines)
{
PartialThreadData *data = (PartialThreadData *)data_v;
ImBuf *ibuf = data->ibuf;
size_t global_offset = ((size_t)ibuf->x) * start_scanline;
size_t local_offset = ((size_t)data->width) * start_scanline;
partial_rect_from_float_slice(data->buffer + local_offset * ibuf->channels,
data->rect_byte + global_offset * 4,
ibuf,
data->rect_float + global_offset * ibuf->channels,
data->width,
num_scanlines,
data->is_data);
}
/* converts from linear float to sRGB byte for part of the texture, buffer will hold the changed part */
void IMB_partial_rect_from_float(ImBuf *ibuf, float *buffer, int x, int y, int w, int h, bool is_data)
{
const float *rect_float;
uchar *rect_byte;
/* verify we have a float buffer */
if (ibuf->rect_float == NULL || buffer == NULL)
return;
/* create byte rect if it didn't exist yet */
if (ibuf->rect == NULL)
imb_addrectImBuf(ibuf);
/* do conversion */
rect_float = ibuf->rect_float + (x + ((size_t)y) * ibuf->x) * ibuf->channels;
rect_byte = (uchar *)ibuf->rect + (x + ((size_t)y) * ibuf->x) * 4;
if (((size_t)w) * h < 64 * 64) {
partial_rect_from_float_slice(
buffer, rect_byte, ibuf, rect_float, w, h, is_data);
}
else {
PartialThreadData data;
data.ibuf = ibuf;
data.buffer = buffer;
data.rect_byte = rect_byte;
data.rect_float = rect_float;
data.width = w;
data.is_data = is_data;
IMB_processor_apply_threaded_scanlines(
h, partial_rect_from_float_thread_do, &data);
}
/* ensure user flag is reset */
ibuf->userflags &= ~IB_RECT_INVALID;
}
void IMB_float_from_rect(ImBuf *ibuf)
{
float *rect_float;
/* verify if we byte and float buffers */
if (ibuf->rect == NULL)
return;
/* allocate float buffer outside of image buffer,
* so work-in-progress color space conversion doesn't
* interfere with other parts of blender
*/
rect_float = ibuf->rect_float;
if (rect_float == NULL) {
size_t size;
size = ((size_t)ibuf->x) * ibuf->y;
size = size * 4 * sizeof(float);
ibuf->channels = 4;
rect_float = MEM_mapallocN(size, "IMB_float_from_rect");
if (rect_float == NULL)
return;
}
/* first, create float buffer in non-linear space */
IMB_buffer_float_from_byte(rect_float, (unsigned char *) ibuf->rect, IB_PROFILE_SRGB, IB_PROFILE_SRGB,
false, ibuf->x, ibuf->y, ibuf->x, ibuf->x);
/* then make float be in linear space */
IMB_colormanagement_colorspace_to_scene_linear(rect_float, ibuf->x, ibuf->y, ibuf->channels,
ibuf->rect_colorspace, false);
/* byte buffer is straight alpha, float should always be premul */
IMB_premultiply_rect_float(rect_float, ibuf->channels, ibuf->x, ibuf->y);
if (ibuf->rect_float == NULL) {
ibuf->rect_float = rect_float;
ibuf->mall |= IB_rectfloat;
ibuf->flags |= IB_rectfloat;
}
}
/**************************** Color to Grayscale *****************************/
/* no profile conversion */
void IMB_color_to_bw(ImBuf *ibuf)
{
float *rct_fl = ibuf->rect_float;
uchar *rct = (uchar *)ibuf->rect;
size_t i;
if (rct_fl) {
for (i = ((size_t)ibuf->x) * ibuf->y; i > 0; i--, rct_fl += 4)
rct_fl[0] = rct_fl[1] = rct_fl[2] = IMB_colormanagement_get_luminance(rct_fl);
}
if (rct) {
for (i = ((size_t)ibuf->x * ibuf->y); i > 0; i--, rct += 4)
rct[0] = rct[1] = rct[2] = IMB_colormanagement_get_luminance_byte(rct);
}
}
void IMB_buffer_float_clamp(float *buf, int width, int height)
{
size_t i, total = ((size_t)width) * height * 4;
for (i = 0; i < total; i++) {
buf[i] = min_ff(1.0, buf[i]);
}
}
void IMB_buffer_float_unpremultiply(float *buf, int width, int height)
{
size_t total = ((size_t)width) * height;
float *fp = buf;
while (total--) {
premul_to_straight_v4(fp);
fp += 4;
}
}
void IMB_buffer_float_premultiply(float *buf, int width, int height)
{
size_t total = ((size_t)width) * height;
float *fp = buf;
while (total--) {
straight_to_premul_v4(fp);
fp += 4;
}
}
/**************************** alter saturation *****************************/
void IMB_saturation(ImBuf *ibuf, float sat)
{
size_t i;
unsigned char *rct = (unsigned char *)ibuf->rect;
float *rct_fl = ibuf->rect_float;
float hsv[3];
if (rct) {
float rgb[3];
for (i = ((size_t)ibuf->x) * ibuf->y; i > 0; i--, rct += 4) {
rgb_uchar_to_float(rgb, rct);
rgb_to_hsv_v(rgb, hsv);
hsv_to_rgb(hsv[0], hsv[1] * sat, hsv[2], rgb, rgb + 1, rgb + 2);
rgb_float_to_uchar(rct, rgb);
}
}
if (rct_fl) {
for (i = ((size_t)ibuf->x) * ibuf->y; i > 0; i--, rct_fl += 4) {
rgb_to_hsv_v(rct_fl, hsv);
hsv_to_rgb(hsv[0], hsv[1] * sat, hsv[2], rct_fl, rct_fl + 1, rct_fl + 2);
}
}
}