This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/imbuf/intern/scaling.c
Campbell Barton de13d0a80c doxygen: add newline after \file
While \file doesn't need an argument, it can't have another doxy
command after it.
2019-02-18 08:22:12 +11:00

1764 lines
44 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* allocimbuf.c
*/
/** \file
* \ingroup imbuf
*/
#include "BLI_utildefines.h"
#include "BLI_math_color.h"
#include "BLI_math_interp.h"
#include "MEM_guardedalloc.h"
#include "imbuf.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "IMB_filter.h"
#include "BLI_sys_types.h" // for intptr_t support
static void imb_half_x_no_alloc(struct ImBuf *ibuf2, struct ImBuf *ibuf1)
{
uchar *p1, *_p1, *dest;
short a, r, g, b;
int x, y;
float af, rf, gf, bf, *p1f, *_p1f, *destf;
bool do_rect, do_float;
do_rect = (ibuf1->rect != NULL);
do_float = (ibuf1->rect_float != NULL && ibuf2->rect_float != NULL);
_p1 = (uchar *) ibuf1->rect;
dest = (uchar *) ibuf2->rect;
_p1f = ibuf1->rect_float;
destf = ibuf2->rect_float;
for (y = ibuf2->y; y > 0; y--) {
p1 = _p1;
p1f = _p1f;
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p1++);
b += *(p1++);
g += *(p1++);
r += *(p1++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p1f++);
bf += *(p1f++);
gf += *(p1f++);
rf += *(p1f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) _p1 += (ibuf1->x << 2);
if (do_float) _p1f += (ibuf1->x << 2);
}
}
struct ImBuf *IMB_half_x(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
if (ibuf1->x <= 1) return(IMB_dupImBuf(ibuf1));
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == NULL) return (NULL);
imb_half_x_no_alloc(ibuf2, ibuf1);
return (ibuf2);
}
struct ImBuf *IMB_double_fast_x(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
int *p1, *dest, i, col, do_rect, do_float;
float *p1f, *destf;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
do_rect = (ibuf1->rect != NULL);
do_float = (ibuf1->rect_float != NULL);
ibuf2 = IMB_allocImBuf(2 * ibuf1->x, ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == NULL) return (NULL);
p1 = (int *) ibuf1->rect;
dest = (int *) ibuf2->rect;
p1f = (float *)ibuf1->rect_float;
destf = (float *)ibuf2->rect_float;
for (i = ibuf1->y * ibuf1->x; i > 0; i--) {
if (do_rect) {
col = *p1++;
*dest++ = col;
*dest++ = col;
}
if (do_float) {
destf[0] = destf[4] = p1f[0];
destf[1] = destf[5] = p1f[1];
destf[2] = destf[6] = p1f[2];
destf[3] = destf[7] = p1f[3];
destf += 8;
p1f += 4;
}
}
return (ibuf2);
}
struct ImBuf *IMB_double_x(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
ibuf2 = IMB_double_fast_x(ibuf1);
imb_filterx(ibuf2);
return (ibuf2);
}
static void imb_half_y_no_alloc(struct ImBuf *ibuf2, struct ImBuf *ibuf1)
{
uchar *p1, *p2, *_p1, *dest;
short a, r, g, b;
int x, y;
int do_rect, do_float;
float af, rf, gf, bf, *p1f, *p2f, *_p1f, *destf;
p1 = p2 = NULL;
p1f = p2f = NULL;
do_rect = (ibuf1->rect != NULL);
do_float = (ibuf1->rect_float != NULL && ibuf2->rect_float != NULL);
_p1 = (uchar *) ibuf1->rect;
dest = (uchar *) ibuf2->rect;
_p1f = (float *) ibuf1->rect_float;
destf = (float *) ibuf2->rect_float;
for (y = ibuf2->y; y > 0; y--) {
if (do_rect) {
p1 = _p1;
p2 = _p1 + (ibuf1->x << 2);
}
if (do_float) {
p1f = _p1f;
p2f = _p1f + (ibuf1->x << 2);
}
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p2++);
b += *(p2++);
g += *(p2++);
r += *(p2++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p2f++);
bf += *(p2f++);
gf += *(p2f++);
rf += *(p2f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) _p1 += (ibuf1->x << 3);
if (do_float) _p1f += (ibuf1->x << 3);
}
}
struct ImBuf *IMB_half_y(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
if (ibuf1->y <= 1) return(IMB_dupImBuf(ibuf1));
ibuf2 = IMB_allocImBuf(ibuf1->x, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == NULL) return (NULL);
imb_half_y_no_alloc(ibuf2, ibuf1);
return (ibuf2);
}
struct ImBuf *IMB_double_fast_y(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
int *p1, *dest1, *dest2;
float *p1f, *dest1f, *dest2f;
int x, y;
int do_rect, do_float;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
do_rect = (ibuf1->rect != NULL);
do_float = (ibuf1->rect_float != NULL);
ibuf2 = IMB_allocImBuf(ibuf1->x, 2 * ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == NULL) return (NULL);
p1 = (int *) ibuf1->rect;
dest1 = (int *) ibuf2->rect;
p1f = (float *) ibuf1->rect_float;
dest1f = (float *) ibuf2->rect_float;
for (y = ibuf1->y; y > 0; y--) {
if (do_rect) {
dest2 = dest1 + ibuf2->x;
for (x = ibuf2->x; x > 0; x--) *dest1++ = *dest2++ = *p1++;
dest1 = dest2;
}
if (do_float) {
dest2f = dest1f + (4 * ibuf2->x);
for (x = ibuf2->x * 4; x > 0; x--) *dest1f++ = *dest2f++ = *p1f++;
dest1f = dest2f;
}
}
return (ibuf2);
}
struct ImBuf *IMB_double_y(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL) return (NULL);
ibuf2 = IMB_double_fast_y(ibuf1);
IMB_filtery(ibuf2);
return (ibuf2);
}
/* pretty much specific functions which converts uchar <-> ushort but assumes
* ushort range of 255*255 which is more convenient here
*/
MINLINE void straight_uchar_to_premul_ushort(unsigned short result[4], const unsigned char color[4])
{
unsigned short alpha = color[3];
result[0] = color[0] * alpha;
result[1] = color[1] * alpha;
result[2] = color[2] * alpha;
result[3] = alpha * 256;
}
MINLINE void premul_ushort_to_straight_uchar(unsigned char *result, const unsigned short color[4])
{
if (color[3] <= 255) {
result[0] = unit_ushort_to_uchar(color[0]);
result[1] = unit_ushort_to_uchar(color[1]);
result[2] = unit_ushort_to_uchar(color[2]);
result[3] = unit_ushort_to_uchar(color[3]);
}
else {
unsigned short alpha = color[3] / 256;
result[0] = unit_ushort_to_uchar((ushort)(color[0] / alpha * 256));
result[1] = unit_ushort_to_uchar((ushort)(color[1] / alpha * 256));
result[2] = unit_ushort_to_uchar((ushort)(color[2] / alpha * 256));
result[3] = unit_ushort_to_uchar(color[3]);
}
}
/* result in ibuf2, scaling should be done correctly */
void imb_onehalf_no_alloc(struct ImBuf *ibuf2, struct ImBuf *ibuf1)
{
int x, y;
const short do_rect = (ibuf1->rect != NULL);
const short do_float = (ibuf1->rect_float != NULL) && (ibuf2->rect_float != NULL);
if (do_rect && (ibuf2->rect == NULL)) {
imb_addrectImBuf(ibuf2);
}
if (ibuf1->x <= 1) {
imb_half_y_no_alloc(ibuf2, ibuf1);
return;
}
if (ibuf1->y <= 1) {
imb_half_x_no_alloc(ibuf2, ibuf1);
return;
}
if (do_rect) {
unsigned char *cp1, *cp2, *dest;
cp1 = (unsigned char *) ibuf1->rect;
dest = (unsigned char *) ibuf2->rect;
for (y = ibuf2->y; y > 0; y--) {
cp2 = cp1 + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
unsigned short p1i[8], p2i[8], desti[4];
straight_uchar_to_premul_ushort(p1i, cp1);
straight_uchar_to_premul_ushort(p2i, cp2);
straight_uchar_to_premul_ushort(p1i + 4, cp1 + 4);
straight_uchar_to_premul_ushort(p2i + 4, cp2 + 4);
desti[0] = ((unsigned int) p1i[0] + p2i[0] + p1i[4] + p2i[4]) >> 2;
desti[1] = ((unsigned int) p1i[1] + p2i[1] + p1i[5] + p2i[5]) >> 2;
desti[2] = ((unsigned int) p1i[2] + p2i[2] + p1i[6] + p2i[6]) >> 2;
desti[3] = ((unsigned int) p1i[3] + p2i[3] + p1i[7] + p2i[7]) >> 2;
premul_ushort_to_straight_uchar(dest, desti);
cp1 += 8;
cp2 += 8;
dest += 4;
}
cp1 = cp2;
if (ibuf1->x & 1) cp1 += 4;
}
}
if (do_float) {
float *p1f, *p2f, *destf;
p1f = ibuf1->rect_float;
destf = ibuf2->rect_float;
for (y = ibuf2->y; y > 0; y--) {
p2f = p1f + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
destf[0] = 0.25f * (p1f[0] + p2f[0] + p1f[4] + p2f[4]);
destf[1] = 0.25f * (p1f[1] + p2f[1] + p1f[5] + p2f[5]);
destf[2] = 0.25f * (p1f[2] + p2f[2] + p1f[6] + p2f[6]);
destf[3] = 0.25f * (p1f[3] + p2f[3] + p1f[7] + p2f[7]);
p1f += 8;
p2f += 8;
destf += 4;
}
p1f = p2f;
if (ibuf1->x & 1) p1f += 4;
}
}
}
ImBuf *IMB_onehalf(struct ImBuf *ibuf1)
{
struct ImBuf *ibuf2;
if (ibuf1 == NULL) return (NULL);
if (ibuf1->rect == NULL && ibuf1->rect_float == NULL) return (NULL);
if (ibuf1->x <= 1) return(IMB_half_y(ibuf1));
if (ibuf1->y <= 1) return(IMB_half_x(ibuf1));
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == NULL) return (NULL);
imb_onehalf_no_alloc(ibuf2, ibuf1);
return (ibuf2);
}
/* q_scale_linear_interpolation helper functions */
static void enlarge_picture_byte(
unsigned char *src, unsigned char *dst, int src_width,
int src_height, int dst_width, int dst_height)
{
double ratiox = (double) (dst_width - 1.0) / (double) (src_width - 1.001);
double ratioy = (double) (dst_height - 1.0) / (double) (src_height - 1.001);
uintptr_t x_src, dx_src, x_dst;
uintptr_t y_src, dy_src, y_dst;
dx_src = 65536.0 / ratiox;
dy_src = 65536.0 / ratioy;
y_src = 0;
for (y_dst = 0; y_dst < dst_height; y_dst++) {
unsigned char *line1 = src + (y_src >> 16) * 4 * src_width;
unsigned char *line2 = line1 + 4 * src_width;
uintptr_t weight1y = 65536 - (y_src & 0xffff);
uintptr_t weight2y = 65536 - weight1y;
if ((y_src >> 16) == src_height - 1) {
line2 = line1;
}
x_src = 0;
for (x_dst = 0; x_dst < dst_width; x_dst++) {
uintptr_t weight1x = 65536 - (x_src & 0xffff);
uintptr_t weight2x = 65536 - weight1x;
unsigned long x = (x_src >> 16) * 4;
*dst++ = ((((line1[x] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 1] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 1] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 1] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 1] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 2] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 2] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 2] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 2] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 3] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 3] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 3] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 3] * weight2y) >> 16) * weight2x) >> 16);
x_src += dx_src;
}
y_src += dy_src;
}
}
struct scale_outpix_byte {
uintptr_t r;
uintptr_t g;
uintptr_t b;
uintptr_t a;
uintptr_t weight;
};
static void shrink_picture_byte(
unsigned char *src, unsigned char *dst, int src_width,
int src_height, int dst_width, int dst_height)
{
double ratiox = (double) (dst_width) / (double) (src_width);
double ratioy = (double) (dst_height) / (double) (src_height);
uintptr_t x_src, dx_dst, x_dst;
uintptr_t y_src, dy_dst, y_dst;
intptr_t y_counter;
unsigned char *dst_begin = dst;
struct scale_outpix_byte *dst_line1 = NULL;
struct scale_outpix_byte *dst_line2 = NULL;
dst_line1 = (struct scale_outpix_byte *) MEM_callocN(
(dst_width + 1) * sizeof(struct scale_outpix_byte),
"shrink_picture_byte 1");
dst_line2 = (struct scale_outpix_byte *) MEM_callocN(
(dst_width + 1) * sizeof(struct scale_outpix_byte),
"shrink_picture_byte 2");
dx_dst = 65536.0 * ratiox;
dy_dst = 65536.0 * ratioy;
y_dst = 0;
y_counter = 65536;
for (y_src = 0; y_src < src_height; y_src++) {
unsigned char *line = src + y_src * 4 * src_width;
uintptr_t weight1y = 65535 - (y_dst & 0xffff);
uintptr_t weight2y = 65535 - weight1y;
x_dst = 0;
for (x_src = 0; x_src < src_width; x_src++) {
uintptr_t weight1x = 65535 - (x_dst & 0xffff);
uintptr_t weight2x = 65535 - weight1x;
uintptr_t x = x_dst >> 16;
uintptr_t w;
w = (weight1y * weight1x) >> 16;
/* ensure correct rounding, without this you get ugly banding, or too low color values (ton) */
dst_line1[x].r += (line[0] * w + 32767) >> 16;
dst_line1[x].g += (line[1] * w + 32767) >> 16;
dst_line1[x].b += (line[2] * w + 32767) >> 16;
dst_line1[x].a += (line[3] * w + 32767) >> 16;
dst_line1[x].weight += w;
w = (weight2y * weight1x) >> 16;
dst_line2[x].r += (line[0] * w + 32767) >> 16;
dst_line2[x].g += (line[1] * w + 32767) >> 16;
dst_line2[x].b += (line[2] * w + 32767) >> 16;
dst_line2[x].a += (line[3] * w + 32767) >> 16;
dst_line2[x].weight += w;
w = (weight1y * weight2x) >> 16;
dst_line1[x + 1].r += (line[0] * w + 32767) >> 16;
dst_line1[x + 1].g += (line[1] * w + 32767) >> 16;
dst_line1[x + 1].b += (line[2] * w + 32767) >> 16;
dst_line1[x + 1].a += (line[3] * w + 32767) >> 16;
dst_line1[x + 1].weight += w;
w = (weight2y * weight2x) >> 16;
dst_line2[x + 1].r += (line[0] * w + 32767) >> 16;
dst_line2[x + 1].g += (line[1] * w + 32767) >> 16;
dst_line2[x + 1].b += (line[2] * w + 32767) >> 16;
dst_line2[x + 1].a += (line[3] * w + 32767) >> 16;
dst_line2[x + 1].weight += w;
x_dst += dx_dst;
line += 4;
}
y_dst += dy_dst;
y_counter -= dy_dst;
if (y_counter < 0) {
int val;
uintptr_t x;
struct scale_outpix_byte *temp;
y_counter += 65536;
for (x = 0; x < dst_width; x++) {
uintptr_t f = 0x80000000UL / dst_line1[x].weight;
*dst++ = (val = (dst_line1[x].r * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].g * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].b * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].a * f) >> 15) > 255 ? 255 : val;
}
memset(dst_line1, 0, dst_width *
sizeof(struct scale_outpix_byte));
temp = dst_line1;
dst_line1 = dst_line2;
dst_line2 = temp;
}
}
if (dst - dst_begin < dst_width * dst_height * 4) {
int val;
uintptr_t x;
for (x = 0; x < dst_width; x++) {
uintptr_t f = 0x80000000UL / dst_line1[x].weight;
*dst++ = (val = (dst_line1[x].r * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].g * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].b * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].a * f) >> 15) > 255 ? 255 : val;
}
}
MEM_freeN(dst_line1);
MEM_freeN(dst_line2);
}
static void q_scale_byte(unsigned char *in, unsigned char *out, int in_width,
int in_height, int dst_width, int dst_height)
{
if (dst_width > in_width && dst_height > in_height) {
enlarge_picture_byte(in, out, in_width, in_height,
dst_width, dst_height);
}
else if (dst_width < in_width && dst_height < in_height) {
shrink_picture_byte(in, out, in_width, in_height,
dst_width, dst_height);
}
}
static void enlarge_picture_float(
float *src, float *dst, int src_width,
int src_height, int dst_width, int dst_height)
{
double ratiox = (double) (dst_width - 1.0) / (double) (src_width - 1.001);
double ratioy = (double) (dst_height - 1.0) / (double) (src_height - 1.001);
uintptr_t x_dst;
uintptr_t y_dst;
double x_src, dx_src;
double y_src, dy_src;
dx_src = 1.0 / ratiox;
dy_src = 1.0 / ratioy;
y_src = 0;
for (y_dst = 0; y_dst < dst_height; y_dst++) {
float *line1 = src + ((int) y_src) * 4 * src_width;
const float *line2 = line1 + 4 * src_width;
const float weight1y = (float)(1.0 - (y_src - (int) y_src));
const float weight2y = 1.0f - weight1y;
if ((int) y_src == src_height - 1) {
line2 = line1;
}
x_src = 0;
for (x_dst = 0; x_dst < dst_width; x_dst++) {
const float weight1x = (float)(1.0 - (x_src - (int) x_src));
const float weight2x = (float)(1.0f - weight1x);
const float w11 = weight1y * weight1x;
const float w21 = weight2y * weight1x;
const float w12 = weight1y * weight2x;
const float w22 = weight2y * weight2x;
uintptr_t x = ((int) x_src) * 4;
*dst++ = line1[x] * w11 +
line2[x] * w21 +
line1[4 + x] * w12 +
line2[4 + x] * w22;
*dst++ = line1[x + 1] * w11 +
line2[x + 1] * w21 +
line1[4 + x + 1] * w12 +
line2[4 + x + 1] * w22;
*dst++ = line1[x + 2] * w11 +
line2[x + 2] * w21 +
line1[4 + x + 2] * w12 +
line2[4 + x + 2] * w22;
*dst++ = line1[x + 3] * w11 +
line2[x + 3] * w21 +
line1[4 + x + 3] * w12 +
line2[4 + x + 3] * w22;
x_src += dx_src;
}
y_src += dy_src;
}
}
struct scale_outpix_float {
float r;
float g;
float b;
float a;
float weight;
};
static void shrink_picture_float(
const float *src, float *dst, int src_width,
int src_height, int dst_width, int dst_height)
{
double ratiox = (double) (dst_width) / (double) (src_width);
double ratioy = (double) (dst_height) / (double) (src_height);
uintptr_t x_src;
uintptr_t y_src;
float dx_dst, x_dst;
float dy_dst, y_dst;
float y_counter;
const float *dst_begin = dst;
struct scale_outpix_float *dst_line1;
struct scale_outpix_float *dst_line2;
dst_line1 = (struct scale_outpix_float *) MEM_callocN(
(dst_width + 1) * sizeof(struct scale_outpix_float),
"shrink_picture_float 1");
dst_line2 = (struct scale_outpix_float *) MEM_callocN(
(dst_width + 1) * sizeof(struct scale_outpix_float),
"shrink_picture_float 2");
dx_dst = ratiox;
dy_dst = ratioy;
y_dst = 0;
y_counter = 1.0;
for (y_src = 0; y_src < src_height; y_src++) {
const float *line = src + y_src * 4 * src_width;
uintptr_t weight1y = 1.0f - (y_dst - (int) y_dst);
uintptr_t weight2y = 1.0f - weight1y;
x_dst = 0;
for (x_src = 0; x_src < src_width; x_src++) {
uintptr_t weight1x = 1.0f - (x_dst - (int) x_dst);
uintptr_t weight2x = 1.0f - weight1x;
uintptr_t x = (int) x_dst;
float w;
w = weight1y * weight1x;
dst_line1[x].r += line[0] * w;
dst_line1[x].g += line[1] * w;
dst_line1[x].b += line[2] * w;
dst_line1[x].a += line[3] * w;
dst_line1[x].weight += w;
w = weight2y * weight1x;
dst_line2[x].r += line[0] * w;
dst_line2[x].g += line[1] * w;
dst_line2[x].b += line[2] * w;
dst_line2[x].a += line[3] * w;
dst_line2[x].weight += w;
w = weight1y * weight2x;
dst_line1[x + 1].r += line[0] * w;
dst_line1[x + 1].g += line[1] * w;
dst_line1[x + 1].b += line[2] * w;
dst_line1[x + 1].a += line[3] * w;
dst_line1[x + 1].weight += w;
w = weight2y * weight2x;
dst_line2[x + 1].r += line[0] * w;
dst_line2[x + 1].g += line[1] * w;
dst_line2[x + 1].b += line[2] * w;
dst_line2[x + 1].a += line[3] * w;
dst_line2[x + 1].weight += w;
x_dst += dx_dst;
line += 4;
}
y_dst += dy_dst;
y_counter -= dy_dst;
if (y_counter < 0) {
uintptr_t x;
struct scale_outpix_float *temp;
y_counter += 1.0f;
for (x = 0; x < dst_width; x++) {
float f = 1.0f / dst_line1[x].weight;
*dst++ = dst_line1[x].r * f;
*dst++ = dst_line1[x].g * f;
*dst++ = dst_line1[x].b * f;
*dst++ = dst_line1[x].a * f;
}
memset(dst_line1, 0, dst_width *
sizeof(struct scale_outpix_float));
temp = dst_line1;
dst_line1 = dst_line2;
dst_line2 = temp;
}
}
if (dst - dst_begin < dst_width * dst_height * 4) {
uintptr_t x;
for (x = 0; x < dst_width; x++) {
float f = 1.0f / dst_line1[x].weight;
*dst++ = dst_line1[x].r * f;
*dst++ = dst_line1[x].g * f;
*dst++ = dst_line1[x].b * f;
*dst++ = dst_line1[x].a * f;
}
}
MEM_freeN(dst_line1);
MEM_freeN(dst_line2);
}
static void q_scale_float(float *in, float *out, int in_width,
int in_height, int dst_width, int dst_height)
{
if (dst_width > in_width && dst_height > in_height) {
enlarge_picture_float(in, out, in_width, in_height,
dst_width, dst_height);
}
else if (dst_width < in_width && dst_height < in_height) {
shrink_picture_float(in, out, in_width, in_height,
dst_width, dst_height);
}
}
/**
* q_scale_linear_interpolation (derived from ppmqscale, http://libdv.sf.net)
*
* q stands for quick _and_ quality :)
*
* only handles common cases when we either
*
* scale both, x and y or
* shrink both, x and y
*
* but that is pretty fast:
* - does only blit once instead of two passes like the old code
* (fewer cache misses)
* - uses fixed point integer arithmetic for byte buffers
* - doesn't branch in tight loops
*
* Should be comparable in speed to the ImBuf ..._fast functions at least
* for byte-buffers.
*
* NOTE: disabled, due to unacceptable inaccuracy and quality loss, see bug #18609 (ton)
*/
static bool q_scale_linear_interpolation(
struct ImBuf *ibuf, int newx, int newy)
{
if ((newx >= ibuf->x && newy <= ibuf->y) ||
(newx <= ibuf->x && newy >= ibuf->y))
{
return false;
}
if (ibuf->rect) {
unsigned char *newrect =
MEM_mallocN(newx * newy * sizeof(int), "q_scale rect");
q_scale_byte((unsigned char *)ibuf->rect, newrect, ibuf->x, ibuf->y,
newx, newy);
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) newrect;
}
if (ibuf->rect_float) {
float *newrect =
MEM_mallocN(newx * newy * 4 * sizeof(float),
"q_scale rectfloat");
q_scale_float(ibuf->rect_float, newrect, ibuf->x, ibuf->y,
newx, newy);
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = newrect;
}
ibuf->x = newx;
ibuf->y = newy;
return true;
}
static ImBuf *scaledownx(struct ImBuf *ibuf, int newx)
{
const int do_rect = (ibuf->rect != NULL);
const int do_float = (ibuf->rect_float != NULL);
const size_t rect_size = ibuf->x * ibuf->y * 4;
uchar *rect, *_newrect, *newrect;
float *rectf, *_newrectf, *newrectf;
float sample, add, val[4], nval[4], valf[4], nvalf[4];
int x, y;
rectf = _newrectf = newrectf = NULL;
rect = _newrect = newrect = NULL;
nval[0] = nval[1] = nval[2] = nval[3] = 0.0f;
nvalf[0] = nvalf[1] = nvalf[2] = nvalf[3] = 0.0f;
if (!do_rect && !do_float) return (ibuf);
if (do_rect) {
_newrect = MEM_mallocN(newx * ibuf->y * sizeof(uchar) * 4, "scaledownx");
if (_newrect == NULL) return(ibuf);
}
if (do_float) {
_newrectf = MEM_mallocN(newx * ibuf->y * sizeof(float) * 4, "scaledownxf");
if (_newrectf == NULL) {
if (_newrect) MEM_freeN(_newrect);
return(ibuf);
}
}
add = (ibuf->x - 0.01) / newx;
if (do_rect) {
rect = (uchar *) ibuf->rect;
newrect = _newrect;
}
if (do_float) {
rectf = ibuf->rect_float;
newrectf = _newrectf;
}
for (y = ibuf->y; y > 0; y--) {
sample = 0.0f;
val[0] = val[1] = val[2] = val[3] = 0.0f;
valf[0] = valf[1] = valf[2] = valf[3] = 0.0f;
for (x = newx; x > 0; x--) {
if (do_rect) {
nval[0] = -val[0] * sample;
nval[1] = -val[1] * sample;
nval[2] = -val[2] * sample;
nval[3] = -val[3] * sample;
}
if (do_float) {
nvalf[0] = -valf[0] * sample;
nvalf[1] = -valf[1] * sample;
nvalf[2] = -valf[2] * sample;
nvalf[3] = -valf[3] * sample;
}
sample += add;
while (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
nval[0] += rect[0];
nval[1] += rect[1];
nval[2] += rect[2];
nval[3] += rect[3];
rect += 4;
}
if (do_float) {
nvalf[0] += rectf[0];
nvalf[1] += rectf[1];
nvalf[2] += rectf[2];
nvalf[3] += rectf[3];
rectf += 4;
}
}
if (do_rect) {
val[0] = rect[0]; val[1] = rect[1]; val[2] = rect[2]; val[3] = rect[3];
rect += 4;
newrect[0] = ((nval[0] + sample * val[0]) / add + 0.5f);
newrect[1] = ((nval[1] + sample * val[1]) / add + 0.5f);
newrect[2] = ((nval[2] + sample * val[2]) / add + 0.5f);
newrect[3] = ((nval[3] + sample * val[3]) / add + 0.5f);
newrect += 4;
}
if (do_float) {
valf[0] = rectf[0]; valf[1] = rectf[1]; valf[2] = rectf[2]; valf[3] = rectf[3];
rectf += 4;
newrectf[0] = ((nvalf[0] + sample * valf[0]) / add);
newrectf[1] = ((nvalf[1] + sample * valf[1]) / add);
newrectf[2] = ((nvalf[2] + sample * valf[2]) / add);
newrectf[3] = ((nvalf[3] + sample * valf[3]) / add);
newrectf += 4;
}
sample -= 1.0f;
}
}
if (do_rect) {
// printf("%ld %ld\n", (uchar *)rect - ((uchar *)ibuf->rect), rect_size);
BLI_assert((uchar *)rect - ((uchar *)ibuf->rect) == rect_size); /* see bug [#26502] */
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) _newrect;
}
if (do_float) {
// printf("%ld %ld\n", rectf - ibuf->rect_float, rect_size);
BLI_assert((rectf - ibuf->rect_float) == rect_size); /* see bug [#26502] */
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = _newrectf;
}
(void)rect_size; /* UNUSED in release builds */
ibuf->x = newx;
return(ibuf);
}
static ImBuf *scaledowny(struct ImBuf *ibuf, int newy)
{
const int do_rect = (ibuf->rect != NULL);
const int do_float = (ibuf->rect_float != NULL);
const size_t rect_size = ibuf->x * ibuf->y * 4;
uchar *rect, *_newrect, *newrect;
float *rectf, *_newrectf, *newrectf;
float sample, add, val[4], nval[4], valf[4], nvalf[4];
int x, y, skipx;
rectf = _newrectf = newrectf = NULL;
rect = _newrect = newrect = NULL;
nval[0] = nval[1] = nval[2] = nval[3] = 0.0f;
nvalf[0] = nvalf[1] = nvalf[2] = nvalf[3] = 0.0f;
if (!do_rect && !do_float) return (ibuf);
if (do_rect) {
_newrect = MEM_mallocN(newy * ibuf->x * sizeof(uchar) * 4, "scaledowny");
if (_newrect == NULL) return(ibuf);
}
if (do_float) {
_newrectf = MEM_mallocN(newy * ibuf->x * sizeof(float) * 4, "scaledownyf");
if (_newrectf == NULL) {
if (_newrect) MEM_freeN(_newrect);
return(ibuf);
}
}
add = (ibuf->y - 0.01) / newy;
skipx = 4 * ibuf->x;
for (x = skipx - 4; x >= 0; x -= 4) {
if (do_rect) {
rect = ((uchar *) ibuf->rect) + x;
newrect = _newrect + x;
}
if (do_float) {
rectf = ibuf->rect_float + x;
newrectf = _newrectf + x;
}
sample = 0.0f;
val[0] = val[1] = val[2] = val[3] = 0.0f;
valf[0] = valf[1] = valf[2] = valf[3] = 0.0f;
for (y = newy; y > 0; y--) {
if (do_rect) {
nval[0] = -val[0] * sample;
nval[1] = -val[1] * sample;
nval[2] = -val[2] * sample;
nval[3] = -val[3] * sample;
}
if (do_float) {
nvalf[0] = -valf[0] * sample;
nvalf[1] = -valf[1] * sample;
nvalf[2] = -valf[2] * sample;
nvalf[3] = -valf[3] * sample;
}
sample += add;
while (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
nval[0] += rect[0];
nval[1] += rect[1];
nval[2] += rect[2];
nval[3] += rect[3];
rect += skipx;
}
if (do_float) {
nvalf[0] += rectf[0];
nvalf[1] += rectf[1];
nvalf[2] += rectf[2];
nvalf[3] += rectf[3];
rectf += skipx;
}
}
if (do_rect) {
val[0] = rect[0]; val[1] = rect[1]; val[2] = rect[2]; val[3] = rect[3];
rect += skipx;
newrect[0] = ((nval[0] + sample * val[0]) / add + 0.5f);
newrect[1] = ((nval[1] + sample * val[1]) / add + 0.5f);
newrect[2] = ((nval[2] + sample * val[2]) / add + 0.5f);
newrect[3] = ((nval[3] + sample * val[3]) / add + 0.5f);
newrect += skipx;
}
if (do_float) {
valf[0] = rectf[0]; valf[1] = rectf[1]; valf[2] = rectf[2]; valf[3] = rectf[3];
rectf += skipx;
newrectf[0] = ((nvalf[0] + sample * valf[0]) / add);
newrectf[1] = ((nvalf[1] + sample * valf[1]) / add);
newrectf[2] = ((nvalf[2] + sample * valf[2]) / add);
newrectf[3] = ((nvalf[3] + sample * valf[3]) / add);
newrectf += skipx;
}
sample -= 1.0f;
}
}
if (do_rect) {
// printf("%ld %ld\n", (uchar *)rect - ((uchar *)ibuf->rect), rect_size);
BLI_assert((uchar *)rect - ((uchar *)ibuf->rect) == rect_size); /* see bug [#26502] */
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) _newrect;
}
if (do_float) {
// printf("%ld %ld\n", rectf - ibuf->rect_float, rect_size);
BLI_assert((rectf - ibuf->rect_float) == rect_size); /* see bug [#26502] */
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = (float *) _newrectf;
}
(void)rect_size; /* UNUSED in release builds */
ibuf->y = newy;
return(ibuf);
}
static ImBuf *scaleupx(struct ImBuf *ibuf, int newx)
{
uchar *rect, *_newrect = NULL, *newrect;
float *rectf, *_newrectf = NULL, *newrectf;
float sample, add;
float val_a, nval_a, diff_a;
float val_b, nval_b, diff_b;
float val_g, nval_g, diff_g;
float val_r, nval_r, diff_r;
float val_af, nval_af, diff_af;
float val_bf, nval_bf, diff_bf;
float val_gf, nval_gf, diff_gf;
float val_rf, nval_rf, diff_rf;
int x, y;
bool do_rect = false, do_float = false;
val_a = nval_a = diff_a = val_b = nval_b = diff_b = 0;
val_g = nval_g = diff_g = val_r = nval_r = diff_r = 0;
val_af = nval_af = diff_af = val_bf = nval_bf = diff_bf = 0;
val_gf = nval_gf = diff_gf = val_rf = nval_rf = diff_rf = 0;
if (ibuf == NULL) return(NULL);
if (ibuf->rect == NULL && ibuf->rect_float == NULL) return (ibuf);
if (ibuf->rect) {
do_rect = true;
_newrect = MEM_mallocN(newx * ibuf->y * sizeof(int), "scaleupx");
if (_newrect == NULL) return(ibuf);
}
if (ibuf->rect_float) {
do_float = true;
_newrectf = MEM_mallocN(newx * ibuf->y * sizeof(float) * 4, "scaleupxf");
if (_newrectf == NULL) {
if (_newrect) MEM_freeN(_newrect);
return(ibuf);
}
}
add = (ibuf->x - 1.001) / (newx - 1.0);
rect = (uchar *) ibuf->rect;
rectf = (float *) ibuf->rect_float;
newrect = _newrect;
newrectf = _newrectf;
for (y = ibuf->y; y > 0; y--) {
sample = 0;
if (do_rect) {
val_a = rect[0];
nval_a = rect[4];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = rect[1];
nval_b = rect[5];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = rect[2];
nval_g = rect[6];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = rect[3];
nval_r = rect[7];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 8;
}
if (do_float) {
val_af = rectf[0];
nval_af = rectf[4];
diff_af = nval_af - val_af;
val_bf = rectf[1];
nval_bf = rectf[5];
diff_bf = nval_bf - val_bf;
val_gf = rectf[2];
nval_gf = rectf[6];
diff_gf = nval_gf - val_gf;
val_rf = rectf[3];
nval_rf = rectf[7];
diff_rf = nval_rf - val_rf;
rectf += 8;
}
for (x = newx; x > 0; x--) {
if (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
val_a = nval_a;
nval_a = rect[0];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = nval_b;
nval_b = rect[1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = nval_g;
nval_g = rect[2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = nval_r;
nval_r = rect[3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 4;
}
if (do_float) {
val_af = nval_af;
nval_af = rectf[0];
diff_af = nval_af - val_af;
val_bf = nval_bf;
nval_bf = rectf[1];
diff_bf = nval_bf - val_bf;
val_gf = nval_gf;
nval_gf = rectf[2];
diff_gf = nval_gf - val_gf;
val_rf = nval_rf;
nval_rf = rectf[3];
diff_rf = nval_rf - val_rf;
rectf += 4;
}
}
if (do_rect) {
newrect[0] = val_a + sample * diff_a;
newrect[1] = val_b + sample * diff_b;
newrect[2] = val_g + sample * diff_g;
newrect[3] = val_r + sample * diff_r;
newrect += 4;
}
if (do_float) {
newrectf[0] = val_af + sample * diff_af;
newrectf[1] = val_bf + sample * diff_bf;
newrectf[2] = val_gf + sample * diff_gf;
newrectf[3] = val_rf + sample * diff_rf;
newrectf += 4;
}
sample += add;
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) _newrect;
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = (float *) _newrectf;
}
ibuf->x = newx;
return(ibuf);
}
static ImBuf *scaleupy(struct ImBuf *ibuf, int newy)
{
uchar *rect, *_newrect = NULL, *newrect;
float *rectf, *_newrectf = NULL, *newrectf;
float sample, add;
float val_a, nval_a, diff_a;
float val_b, nval_b, diff_b;
float val_g, nval_g, diff_g;
float val_r, nval_r, diff_r;
float val_af, nval_af, diff_af;
float val_bf, nval_bf, diff_bf;
float val_gf, nval_gf, diff_gf;
float val_rf, nval_rf, diff_rf;
int x, y, skipx;
bool do_rect = false, do_float = false;
val_a = nval_a = diff_a = val_b = nval_b = diff_b = 0;
val_g = nval_g = diff_g = val_r = nval_r = diff_r = 0;
val_af = nval_af = diff_af = val_bf = nval_bf = diff_bf = 0;
val_gf = nval_gf = diff_gf = val_rf = nval_rf = diff_rf = 0;
if (ibuf == NULL) return(NULL);
if (ibuf->rect == NULL && ibuf->rect_float == NULL) return (ibuf);
if (ibuf->rect) {
do_rect = true;
_newrect = MEM_mallocN(ibuf->x * newy * sizeof(int), "scaleupy");
if (_newrect == NULL) return(ibuf);
}
if (ibuf->rect_float) {
do_float = true;
_newrectf = MEM_mallocN(ibuf->x * newy * sizeof(float) * 4, "scaleupyf");
if (_newrectf == NULL) {
if (_newrect) MEM_freeN(_newrect);
return(ibuf);
}
}
add = (ibuf->y - 1.001) / (newy - 1.0);
skipx = 4 * ibuf->x;
rect = (uchar *) ibuf->rect;
rectf = (float *) ibuf->rect_float;
newrect = _newrect;
newrectf = _newrectf;
for (x = ibuf->x; x > 0; x--) {
sample = 0;
if (do_rect) {
rect = ((uchar *)ibuf->rect) + 4 * (x - 1);
newrect = _newrect + 4 * (x - 1);
val_a = rect[0];
nval_a = rect[skipx];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = rect[1];
nval_b = rect[skipx + 1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = rect[2];
nval_g = rect[skipx + 2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = rect[3];
nval_r = rect[skipx + 3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 2 * skipx;
}
if (do_float) {
rectf = ibuf->rect_float + 4 * (x - 1);
newrectf = _newrectf + 4 * (x - 1);
val_af = rectf[0];
nval_af = rectf[skipx];
diff_af = nval_af - val_af;
val_bf = rectf[1];
nval_bf = rectf[skipx + 1];
diff_bf = nval_bf - val_bf;
val_gf = rectf[2];
nval_gf = rectf[skipx + 2];
diff_gf = nval_gf - val_gf;
val_rf = rectf[3];
nval_rf = rectf[skipx + 3];
diff_rf = nval_rf - val_rf;
rectf += 2 * skipx;
}
for (y = newy; y > 0; y--) {
if (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
val_a = nval_a;
nval_a = rect[0];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = nval_b;
nval_b = rect[1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = nval_g;
nval_g = rect[2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = nval_r;
nval_r = rect[3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += skipx;
}
if (do_float) {
val_af = nval_af;
nval_af = rectf[0];
diff_af = nval_af - val_af;
val_bf = nval_bf;
nval_bf = rectf[1];
diff_bf = nval_bf - val_bf;
val_gf = nval_gf;
nval_gf = rectf[2];
diff_gf = nval_gf - val_gf;
val_rf = nval_rf;
nval_rf = rectf[3];
diff_rf = nval_rf - val_rf;
rectf += skipx;
}
}
if (do_rect) {
newrect[0] = val_a + sample * diff_a;
newrect[1] = val_b + sample * diff_b;
newrect[2] = val_g + sample * diff_g;
newrect[3] = val_r + sample * diff_r;
newrect += skipx;
}
if (do_float) {
newrectf[0] = val_af + sample * diff_af;
newrectf[1] = val_bf + sample * diff_bf;
newrectf[2] = val_gf + sample * diff_gf;
newrectf[3] = val_rf + sample * diff_rf;
newrectf += skipx;
}
sample += add;
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) _newrect;
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = (float *) _newrectf;
}
ibuf->y = newy;
return(ibuf);
}
static void scalefast_Z_ImBuf(ImBuf *ibuf, int newx, int newy)
{
int *zbuf, *newzbuf, *_newzbuf = NULL;
float *zbuf_float, *newzbuf_float, *_newzbuf_float = NULL;
int x, y;
int ofsx, ofsy, stepx, stepy;
if (ibuf->zbuf) {
_newzbuf = MEM_mallocN(newx * newy * sizeof(int), __func__);
if (_newzbuf == NULL) {
IMB_freezbufImBuf(ibuf);
}
}
if (ibuf->zbuf_float) {
_newzbuf_float = MEM_mallocN((size_t)newx * newy * sizeof(float), __func__);
if (_newzbuf_float == NULL) {
IMB_freezbuffloatImBuf(ibuf);
}
}
if (!_newzbuf && !_newzbuf_float) {
return;
}
stepx = (65536.0 * (ibuf->x - 1.0) / (newx - 1.0)) + 0.5;
stepy = (65536.0 * (ibuf->y - 1.0) / (newy - 1.0)) + 0.5;
ofsy = 32768;
newzbuf = _newzbuf;
newzbuf_float = _newzbuf_float;
for (y = newy; y > 0; y--, ofsy += stepy) {
if (newzbuf) {
zbuf = ibuf->zbuf;
zbuf += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newzbuf++ = zbuf[ofsx >> 16];
}
}
if (newzbuf_float) {
zbuf_float = ibuf->zbuf_float;
zbuf_float += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newzbuf_float++ = zbuf_float[ofsx >> 16];
}
}
}
if (_newzbuf) {
IMB_freezbufImBuf(ibuf);
ibuf->mall |= IB_zbuf;
ibuf->zbuf = _newzbuf;
}
if (_newzbuf_float) {
IMB_freezbuffloatImBuf(ibuf);
ibuf->mall |= IB_zbuffloat;
ibuf->zbuf_float = _newzbuf_float;
}
}
/**
* Return true if \a ibuf is modified.
*/
bool IMB_scaleImBuf(struct ImBuf *ibuf, unsigned int newx, unsigned int newy)
{
if (ibuf == NULL) return false;
if (ibuf->rect == NULL && ibuf->rect_float == NULL) return false;
if (newx == ibuf->x && newy == ibuf->y) {
return false;
}
/* scaleup / scaledown functions below change ibuf->x and ibuf->y
* so we first scale the Z-buffer (if any) */
scalefast_Z_ImBuf(ibuf, newx, newy);
/* try to scale common cases in a fast way */
/* disabled, quality loss is unacceptable, see report #18609 (ton) */
if (0 && q_scale_linear_interpolation(ibuf, newx, newy)) {
return true;
}
if (newx && (newx < ibuf->x)) scaledownx(ibuf, newx);
if (newy && (newy < ibuf->y)) scaledowny(ibuf, newy);
if (newx && (newx > ibuf->x)) scaleupx(ibuf, newx);
if (newy && (newy > ibuf->y)) scaleupy(ibuf, newy);
return true;
}
struct imbufRGBA {
float r, g, b, a;
};
/**
* Return true if \a ibuf is modified.
*/
bool IMB_scalefastImBuf(struct ImBuf *ibuf, unsigned int newx, unsigned int newy)
{
unsigned int *rect, *_newrect, *newrect;
struct imbufRGBA *rectf, *_newrectf, *newrectf;
int x, y;
bool do_float = false, do_rect = false;
size_t ofsx, ofsy, stepx, stepy;
rect = NULL; _newrect = NULL; newrect = NULL;
rectf = NULL; _newrectf = NULL; newrectf = NULL;
if (ibuf == NULL) return false;
if (ibuf->rect) do_rect = true;
if (ibuf->rect_float) do_float = true;
if (do_rect == false && do_float == false) return false;
if (newx == ibuf->x && newy == ibuf->y) return false;
if (do_rect) {
_newrect = MEM_mallocN(newx * newy * sizeof(int), "scalefastimbuf");
if (_newrect == NULL) return false;
newrect = _newrect;
}
if (do_float) {
_newrectf = MEM_mallocN(newx * newy * sizeof(float) * 4, "scalefastimbuf f");
if (_newrectf == NULL) {
if (_newrect) MEM_freeN(_newrect);
return false;
}
newrectf = _newrectf;
}
stepx = (65536.0 * (ibuf->x - 1.0) / (newx - 1.0)) + 0.5;
stepy = (65536.0 * (ibuf->y - 1.0) / (newy - 1.0)) + 0.5;
ofsy = 32768;
for (y = newy; y > 0; y--, ofsy += stepy) {
if (do_rect) {
rect = ibuf->rect;
rect += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newrect++ = rect[ofsx >> 16];
}
}
if (do_float) {
rectf = (struct imbufRGBA *)ibuf->rect_float;
rectf += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newrectf++ = rectf[ofsx >> 16];
}
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = _newrect;
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = (float *)_newrectf;
}
scalefast_Z_ImBuf(ibuf, newx, newy);
ibuf->x = newx;
ibuf->y = newy;
return true;
}
/* ******** threaded scaling ******** */
typedef struct ScaleTreadInitData {
ImBuf *ibuf;
unsigned int newx;
unsigned int newy;
unsigned char *byte_buffer;
float *float_buffer;
} ScaleTreadInitData;
typedef struct ScaleThreadData {
ImBuf *ibuf;
unsigned int newx;
unsigned int newy;
int start_line;
int tot_line;
unsigned char *byte_buffer;
float *float_buffer;
} ScaleThreadData;
static void scale_thread_init(void *data_v, int start_line, int tot_line, void *init_data_v)
{
ScaleThreadData *data = (ScaleThreadData *) data_v;
ScaleTreadInitData *init_data = (ScaleTreadInitData *) init_data_v;
data->ibuf = init_data->ibuf;
data->newx = init_data->newx;
data->newy = init_data->newy;
data->start_line = start_line;
data->tot_line = tot_line;
data->byte_buffer = init_data->byte_buffer;
data->float_buffer = init_data->float_buffer;
}
static void *do_scale_thread(void *data_v)
{
ScaleThreadData *data = (ScaleThreadData *) data_v;
ImBuf *ibuf = data->ibuf;
int i;
float factor_x = (float) ibuf->x / data->newx;
float factor_y = (float) ibuf->y / data->newy;
for (i = 0; i < data->tot_line; i++) {
int y = data->start_line + i;
int x;
for (x = 0; x < data->newx; x++) {
float u = (float) x * factor_x;
float v = (float) y * factor_y;
int offset = y * data->newx + x;
if (data->byte_buffer) {
unsigned char *pixel = data->byte_buffer + 4 * offset;
BLI_bilinear_interpolation_char((unsigned char *) ibuf->rect, pixel, ibuf->x, ibuf->y, 4, u, v);
}
if (data->float_buffer) {
float *pixel = data->float_buffer + ibuf->channels * offset;
BLI_bilinear_interpolation_fl(ibuf->rect_float, pixel, ibuf->x, ibuf->y, ibuf->channels, u, v);
}
}
}
return NULL;
}
void IMB_scaleImBuf_threaded(ImBuf *ibuf, unsigned int newx, unsigned int newy)
{
ScaleTreadInitData init_data = {NULL};
/* prepare initialization data */
init_data.ibuf = ibuf;
init_data.newx = newx;
init_data.newy = newy;
if (ibuf->rect)
init_data.byte_buffer = MEM_mallocN(4 * newx * newy * sizeof(char), "threaded scale byte buffer");
if (ibuf->rect_float)
init_data.float_buffer = MEM_mallocN(ibuf->channels * newx * newy * sizeof(float), "threaded scale float buffer");
/* actual scaling threads */
IMB_processor_apply_threaded(newy, sizeof(ScaleThreadData), &init_data,
scale_thread_init, do_scale_thread);
/* alter image buffer */
ibuf->x = newx;
ibuf->y = newy;
if (ibuf->rect) {
imb_freerectImBuf(ibuf);
ibuf->mall |= IB_rect;
ibuf->rect = (unsigned int *) init_data.byte_buffer;
}
if (ibuf->rect_float) {
imb_freerectfloatImBuf(ibuf);
ibuf->mall |= IB_rectfloat;
ibuf->rect_float = init_data.float_buffer;
}
}