This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/modifiers/intern/MOD_laplaciandeform.c

792 lines
25 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2013 by the Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup modifiers
*/
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_utildefines_stack.h"
#include "MEM_guardedalloc.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_library.h"
#include "BKE_mesh_mapping.h"
#include "BKE_mesh_runtime.h"
#include "BKE_particle.h"
#include "MOD_util.h"
#include "eigen_capi.h"
enum {
LAPDEFORM_SYSTEM_NOT_CHANGE = 0,
LAPDEFORM_SYSTEM_IS_DIFFERENT,
LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS,
LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP,
LAPDEFORM_SYSTEM_ONLY_CHANGE_MESH,
LAPDEFORM_SYSTEM_CHANGE_VERTEXES,
LAPDEFORM_SYSTEM_CHANGE_EDGES,
LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP,
};
typedef struct LaplacianSystem {
bool is_matrix_computed;
bool has_solution;
int total_verts;
int total_edges;
int total_tris;
int total_anchors;
int repeat;
char anchor_grp_name[64]; /* Vertex Group name */
float (*co)[3]; /* Original vertex coordinates */
float (*no)[3]; /* Original vertex normal */
float (*delta)[3]; /* Differential Coordinates */
unsigned int (*tris)[3]; /* Copy of MLoopTri (tessellation triangle) v1-v3 */
int *index_anchors; /* Static vertex index list */
int *unit_verts; /* Unit vectors of projected edges onto the plane orthogonal to n */
int *ringf_indices; /* Indices of faces per vertex */
int *ringv_indices; /* Indices of neighbors(vertex) per vertex */
LinearSolver *context; /* System for solve general implicit rotations */
MeshElemMap *ringf_map; /* Map of faces per vertex */
MeshElemMap *ringv_map; /* Map of vertex per vertex */
} LaplacianSystem;
static LaplacianSystem *newLaplacianSystem(void)
{
LaplacianSystem *sys;
sys = MEM_callocN(sizeof(LaplacianSystem), "DeformCache");
sys->is_matrix_computed = false;
sys->has_solution = false;
sys->total_verts = 0;
sys->total_edges = 0;
sys->total_anchors = 0;
sys->total_tris = 0;
sys->repeat = 1;
sys->anchor_grp_name[0] = '\0';
return sys;
}
static LaplacianSystem *initLaplacianSystem(
int totalVerts, int totalEdges, int totalTris, int totalAnchors,
const char defgrpName[64], int iterations)
{
LaplacianSystem *sys = newLaplacianSystem();
sys->is_matrix_computed = false;
sys->has_solution = false;
sys->total_verts = totalVerts;
sys->total_edges = totalEdges;
sys->total_tris = totalTris;
sys->total_anchors = totalAnchors;
sys->repeat = iterations;
BLI_strncpy(sys->anchor_grp_name, defgrpName, sizeof(sys->anchor_grp_name));
sys->co = MEM_malloc_arrayN(totalVerts, sizeof(float[3]), "DeformCoordinates");
sys->no = MEM_calloc_arrayN(totalVerts, sizeof(float[3]), "DeformNormals");
sys->delta = MEM_calloc_arrayN(totalVerts, sizeof(float[3]), "DeformDeltas");
sys->tris = MEM_malloc_arrayN(totalTris, sizeof(int[3]), "DeformFaces");
sys->index_anchors = MEM_malloc_arrayN((totalAnchors), sizeof(int), "DeformAnchors");
sys->unit_verts = MEM_calloc_arrayN(totalVerts, sizeof(int), "DeformUnitVerts");
return sys;
}
static void deleteLaplacianSystem(LaplacianSystem *sys)
{
MEM_SAFE_FREE(sys->co);
MEM_SAFE_FREE(sys->no);
MEM_SAFE_FREE(sys->delta);
MEM_SAFE_FREE(sys->tris);
MEM_SAFE_FREE(sys->index_anchors);
MEM_SAFE_FREE(sys->unit_verts);
MEM_SAFE_FREE(sys->ringf_indices);
MEM_SAFE_FREE(sys->ringv_indices);
MEM_SAFE_FREE(sys->ringf_map);
MEM_SAFE_FREE(sys->ringv_map);
if (sys->context) {
EIG_linear_solver_delete(sys->context);
}
MEM_SAFE_FREE(sys);
}
static void createFaceRingMap(
const int mvert_tot, const MLoopTri *mlooptri, const int mtri_tot,
const MLoop *mloop, MeshElemMap **r_map, int **r_indices)
{
int i, j, totalr = 0;
int *indices, *index_iter;
MeshElemMap *map = MEM_calloc_arrayN(mvert_tot, sizeof(MeshElemMap), "DeformRingMap");
const MLoopTri *mlt;
for (i = 0, mlt = mlooptri; i < mtri_tot; i++, mlt++) {
for (j = 0; j < 3; j++) {
const unsigned int v_index = mloop[mlt->tri[j]].v;
map[v_index].count++;
totalr++;
}
}
indices = MEM_calloc_arrayN(totalr, sizeof(int), "DeformRingIndex");
index_iter = indices;
for (i = 0; i < mvert_tot; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
map[i].count = 0;
}
for (i = 0, mlt = mlooptri; i < mtri_tot; i++, mlt++) {
for (j = 0; j < 3; j++) {
const unsigned int v_index = mloop[mlt->tri[j]].v;
map[v_index].indices[map[v_index].count] = i;
map[v_index].count++;
}
}
*r_map = map;
*r_indices = indices;
}
static void createVertRingMap(
const int mvert_tot, const MEdge *medge, const int medge_tot,
MeshElemMap **r_map, int **r_indices)
{
MeshElemMap *map = MEM_calloc_arrayN(mvert_tot, sizeof(MeshElemMap), "DeformNeighborsMap");
int i, vid[2], totalr = 0;
int *indices, *index_iter;
const MEdge *me;
for (i = 0, me = medge; i < medge_tot; i++, me++) {
vid[0] = me->v1;
vid[1] = me->v2;
map[vid[0]].count++;
map[vid[1]].count++;
totalr += 2;
}
indices = MEM_calloc_arrayN(totalr, sizeof(int), "DeformNeighborsIndex");
index_iter = indices;
for (i = 0; i < mvert_tot; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
map[i].count = 0;
}
for (i = 0, me = medge; i < medge_tot; i++, me++) {
vid[0] = me->v1;
vid[1] = me->v2;
map[vid[0]].indices[map[vid[0]].count] = vid[1];
map[vid[0]].count++;
map[vid[1]].indices[map[vid[1]].count] = vid[0];
map[vid[1]].count++;
}
*r_map = map;
*r_indices = indices;
}
/**
* This method computes the Laplacian Matrix and Differential Coordinates for all vertex in the mesh.
* The Linear system is LV = d
* Where L is Laplacian Matrix, V as the vertices in Mesh, d is the differential coordinates
* The Laplacian Matrix is computes as a
* Lij = sum(Wij) (if i == j)
* Lij = Wij (if i != j)
* Wij is weight between vertex Vi and vertex Vj, we use cotangent weight
*
* The Differential Coordinate is computes as a
* di = Vi * sum(Wij) - sum(Wij * Vj)
* Where :
* di is the Differential Coordinate i
* sum (Wij) is the sum of all weights between vertex Vi and its vertices neighbors (Vj)
* sum (Wij * Vj) is the sum of the product between vertex neighbor Vj and weight Wij for all neighborhood.
*
* This Laplacian Matrix is described in the paper:
* Desbrun M. et.al, Implicit fairing of irregular meshes using diffusion and curvature flow, SIGGRAPH '99, pag 317-324,
* New York, USA
*
* The computation of Laplace Beltrami operator on Hybrid Triangle/Quad Meshes is described in the paper:
* Pinzon A., Romero E., Shape Inflation With an Adapted Laplacian Operator For Hybrid Quad/Triangle Meshes,
* Conference on Graphics Patterns and Images, SIBGRAPI, 2013
*
* The computation of Differential Coordinates is described in the paper:
* Sorkine, O. Laplacian Surface Editing. Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing,
* 2004. p. 179-188.
*/
static void initLaplacianMatrix(LaplacianSystem *sys)
{
float no[3];
float w2, w3;
int i = 3, j, ti;
int idv[3];
for (ti = 0; ti < sys->total_tris; ti++) {
const unsigned int *vidt = sys->tris[ti];
const float *co[3];
co[0] = sys->co[vidt[0]];
co[1] = sys->co[vidt[1]];
co[2] = sys->co[vidt[2]];
normal_tri_v3(no, UNPACK3(co));
add_v3_v3(sys->no[vidt[0]], no);
add_v3_v3(sys->no[vidt[1]], no);
add_v3_v3(sys->no[vidt[2]], no);
for (j = 0; j < 3; j++) {
const float *v1, *v2, *v3;
idv[0] = vidt[j];
idv[1] = vidt[(j + 1) % i];
idv[2] = vidt[(j + 2) % i];
v1 = sys->co[idv[0]];
v2 = sys->co[idv[1]];
v3 = sys->co[idv[2]];
w2 = cotangent_tri_weight_v3(v3, v1, v2);
w3 = cotangent_tri_weight_v3(v2, v3, v1);
sys->delta[idv[0]][0] += v1[0] * (w2 + w3);
sys->delta[idv[0]][1] += v1[1] * (w2 + w3);
sys->delta[idv[0]][2] += v1[2] * (w2 + w3);
sys->delta[idv[0]][0] -= v2[0] * w2;
sys->delta[idv[0]][1] -= v2[1] * w2;
sys->delta[idv[0]][2] -= v2[2] * w2;
sys->delta[idv[0]][0] -= v3[0] * w3;
sys->delta[idv[0]][1] -= v3[1] * w3;
sys->delta[idv[0]][2] -= v3[2] * w3;
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[1], -w2);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[2], -w3);
EIG_linear_solver_matrix_add(sys->context, idv[0], idv[0], w2 + w3);
}
}
}
static void computeImplictRotations(LaplacianSystem *sys)
{
int vid, *vidn = NULL;
float minj, mjt, qj[3], vj[3];
int i, j, ln;
for (i = 0; i < sys->total_verts; i++) {
normalize_v3(sys->no[i]);
vidn = sys->ringv_map[i].indices;
ln = sys->ringv_map[i].count;
minj = 1000000.0f;
for (j = 0; j < ln; j++) {
vid = vidn[j];
copy_v3_v3(qj, sys->co[vid]);
sub_v3_v3v3(vj, qj, sys->co[i]);
normalize_v3(vj);
mjt = fabsf(dot_v3v3(vj, sys->no[i]));
if (mjt < minj) {
minj = mjt;
sys->unit_verts[i] = vidn[j];
}
}
}
}
static void rotateDifferentialCoordinates(LaplacianSystem *sys)
{
float alpha, beta, gamma;
float pj[3], ni[3], di[3];
float uij[3], dun[3], e2[3], pi[3], fni[3], vn[3][3];
int i, j, num_fni, k, fi;
int *fidn;
for (i = 0; i < sys->total_verts; i++) {
copy_v3_v3(pi, sys->co[i]);
copy_v3_v3(ni, sys->no[i]);
k = sys->unit_verts[i];
copy_v3_v3(pj, sys->co[k]);
sub_v3_v3v3(uij, pj, pi);
mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
sub_v3_v3(uij, dun);
normalize_v3(uij);
cross_v3_v3v3(e2, ni, uij);
copy_v3_v3(di, sys->delta[i]);
alpha = dot_v3v3(ni, di);
beta = dot_v3v3(uij, di);
gamma = dot_v3v3(e2, di);
pi[0] = EIG_linear_solver_variable_get(sys->context, 0, i);
pi[1] = EIG_linear_solver_variable_get(sys->context, 1, i);
pi[2] = EIG_linear_solver_variable_get(sys->context, 2, i);
zero_v3(ni);
num_fni = sys->ringf_map[i].count;
for (fi = 0; fi < num_fni; fi++) {
const unsigned int *vin;
fidn = sys->ringf_map[i].indices;
vin = sys->tris[fidn[fi]];
for (j = 0; j < 3; j++) {
vn[j][0] = EIG_linear_solver_variable_get(sys->context, 0, vin[j]);
vn[j][1] = EIG_linear_solver_variable_get(sys->context, 1, vin[j]);
vn[j][2] = EIG_linear_solver_variable_get(sys->context, 2, vin[j]);
if (vin[j] == sys->unit_verts[i]) {
copy_v3_v3(pj, vn[j]);
}
}
normal_tri_v3(fni, UNPACK3(vn));
add_v3_v3(ni, fni);
}
normalize_v3(ni);
sub_v3_v3v3(uij, pj, pi);
mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
sub_v3_v3(uij, dun);
normalize_v3(uij);
cross_v3_v3v3(e2, ni, uij);
fni[0] = alpha * ni[0] + beta * uij[0] + gamma * e2[0];
fni[1] = alpha * ni[1] + beta * uij[1] + gamma * e2[1];
fni[2] = alpha * ni[2] + beta * uij[2] + gamma * e2[2];
if (len_squared_v3(fni) > FLT_EPSILON) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, fni[0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, fni[1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, fni[2]);
}
else {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
}
}
static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
{
int vid, i, j, n, na;
n = sys->total_verts;
na = sys->total_anchors;
if (!sys->is_matrix_computed) {
sys->context = EIG_linear_least_squares_solver_new(n + na, n, 3);
for (i = 0; i < n; i++) {
EIG_linear_solver_variable_set(sys->context, 0, i, sys->co[i][0]);
EIG_linear_solver_variable_set(sys->context, 1, i, sys->co[i][1]);
EIG_linear_solver_variable_set(sys->context, 2, i, sys->co[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_variable_set(sys->context, 0, vid, vertexCos[vid][0]);
EIG_linear_solver_variable_set(sys->context, 1, vid, vertexCos[vid][1]);
EIG_linear_solver_variable_set(sys->context, 2, vid, vertexCos[vid][2]);
}
initLaplacianMatrix(sys);
computeImplictRotations(sys);
for (i = 0; i < n; i++) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
sys->has_solution = false;
}
}
else {
sys->has_solution = false;
}
sys->is_matrix_computed = true;
}
else if (sys->has_solution) {
for (i = 0; i < n; i++) {
EIG_linear_solver_right_hand_side_add(sys->context, 0, i, sys->delta[i][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, i, sys->delta[i][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, i, sys->delta[i][2]);
}
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
EIG_linear_solver_matrix_add(sys->context, n + i, vid, 1.0f);
}
if (EIG_linear_solver_solve(sys->context)) {
sys->has_solution = true;
for (j = 1; j <= sys->repeat; j++) {
rotateDifferentialCoordinates(sys);
for (i = 0; i < na; i++) {
vid = sys->index_anchors[i];
EIG_linear_solver_right_hand_side_add(sys->context, 0, n + i, vertexCos[vid][0]);
EIG_linear_solver_right_hand_side_add(sys->context, 1, n + i, vertexCos[vid][1]);
EIG_linear_solver_right_hand_side_add(sys->context, 2, n + i, vertexCos[vid][2]);
}
if (!EIG_linear_solver_solve(sys->context)) {
sys->has_solution = false;
break;
}
}
if (sys->has_solution) {
for (vid = 0; vid < sys->total_verts; vid++) {
vertexCos[vid][0] = EIG_linear_solver_variable_get(sys->context, 0, vid);
vertexCos[vid][1] = EIG_linear_solver_variable_get(sys->context, 1, vid);
vertexCos[vid][2] = EIG_linear_solver_variable_get(sys->context, 2, vid);
}
}
else {
sys->has_solution = false;
}
}
else {
sys->has_solution = false;
}
}
}
static bool isValidVertexGroup(LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh)
{
int defgrp_index;
MDeformVert *dvert = NULL;
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
return (dvert != NULL);
}
static void initSystem(
LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
int i;
int defgrp_index;
int total_anchors;
float wpaint;
MDeformVert *dvert = NULL;
MDeformVert *dv = NULL;
LaplacianSystem *sys;
if (isValidVertexGroup(lmd, ob, mesh)) {
int *index_anchors = MEM_malloc_arrayN(numVerts, sizeof(int), __func__); /* over-alloc */
const MLoopTri *mlooptri;
const MLoop *mloop;
STACK_DECLARE(index_anchors);
STACK_INIT(index_anchors, numVerts);
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
BLI_assert(dvert != NULL);
dv = dvert;
for (i = 0; i < numVerts; i++) {
wpaint = defvert_find_weight(dv, defgrp_index);
dv++;
if (wpaint > 0.0f) {
STACK_PUSH(index_anchors, i);
}
}
total_anchors = STACK_SIZE(index_anchors);
lmd->cache_system = initLaplacianSystem(numVerts, mesh->totedge, BKE_mesh_runtime_looptri_len(mesh),
total_anchors, lmd->anchor_grp_name, lmd->repeat);
sys = (LaplacianSystem *)lmd->cache_system;
memcpy(sys->index_anchors, index_anchors, sizeof(int) * total_anchors);
memcpy(sys->co, vertexCos, sizeof(float[3]) * numVerts);
MEM_freeN(index_anchors);
lmd->vertexco = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "ModDeformCoordinates");
memcpy(lmd->vertexco, vertexCos, sizeof(float[3]) * numVerts);
lmd->total_verts = numVerts;
createFaceRingMap(
mesh->totvert, BKE_mesh_runtime_looptri_ensure(mesh), BKE_mesh_runtime_looptri_len(mesh),
mesh->mloop, &sys->ringf_map, &sys->ringf_indices);
createVertRingMap(
mesh->totvert, mesh->medge, mesh->totedge,
&sys->ringv_map, &sys->ringv_indices);
mlooptri = BKE_mesh_runtime_looptri_ensure(mesh);
mloop = mesh->mloop;
for (i = 0; i < sys->total_tris; i++) {
sys->tris[i][0] = mloop[mlooptri[i].tri[0]].v;
sys->tris[i][1] = mloop[mlooptri[i].tri[1]].v;
sys->tris[i][2] = mloop[mlooptri[i].tri[2]].v;
}
}
}
static int isSystemDifferent(LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh, int numVerts)
{
int i;
int defgrp_index;
int total_anchors = 0;
float wpaint;
MDeformVert *dvert = NULL;
MDeformVert *dv = NULL;
LaplacianSystem *sys = (LaplacianSystem *)lmd->cache_system;
if (sys->total_verts != numVerts) {
return LAPDEFORM_SYSTEM_CHANGE_VERTEXES;
}
if (sys->total_edges != mesh->totedge) {
return LAPDEFORM_SYSTEM_CHANGE_EDGES;
}
if (!STREQ(lmd->anchor_grp_name, sys->anchor_grp_name)) {
return LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP;
}
MOD_get_vgroup(ob, mesh, lmd->anchor_grp_name, &dvert, &defgrp_index);
if (!dvert) {
return LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP;
}
dv = dvert;
for (i = 0; i < numVerts; i++) {
wpaint = defvert_find_weight(dv, defgrp_index);
dv++;
if (wpaint > 0.0f) {
total_anchors++;
}
}
if (sys->total_anchors != total_anchors) {
return LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS;
}
return LAPDEFORM_SYSTEM_NOT_CHANGE;
}
static void LaplacianDeformModifier_do(
LaplacianDeformModifierData *lmd, Object *ob, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
float (*filevertexCos)[3];
int sysdif;
LaplacianSystem *sys = NULL;
filevertexCos = NULL;
if (!(lmd->flag & MOD_LAPLACIANDEFORM_BIND)) {
if (lmd->cache_system) {
sys = lmd->cache_system;
deleteLaplacianSystem(sys);
lmd->cache_system = NULL;
}
lmd->total_verts = 0;
MEM_SAFE_FREE(lmd->vertexco);
return;
}
if (lmd->cache_system) {
sysdif = isSystemDifferent(lmd, ob, mesh, numVerts);
sys = lmd->cache_system;
if (sysdif) {
if (sysdif == LAPDEFORM_SYSTEM_ONLY_CHANGE_ANCHORS || sysdif == LAPDEFORM_SYSTEM_ONLY_CHANGE_GROUP) {
filevertexCos = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "TempModDeformCoordinates");
memcpy(filevertexCos, lmd->vertexco, sizeof(float[3]) * numVerts);
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
deleteLaplacianSystem(sys);
lmd->cache_system = NULL;
initSystem(lmd, ob, mesh, filevertexCos, numVerts);
sys = lmd->cache_system; /* may have been reallocated */
MEM_SAFE_FREE(filevertexCos);
if (sys) {
laplacianDeformPreview(sys, vertexCos);
}
}
else {
if (sysdif == LAPDEFORM_SYSTEM_CHANGE_VERTEXES) {
modifier_setError(&lmd->modifier, "Vertices changed from %d to %d", lmd->total_verts, numVerts);
}
else if (sysdif == LAPDEFORM_SYSTEM_CHANGE_EDGES) {
modifier_setError(&lmd->modifier, "Edges changed from %d to %d", sys->total_edges, mesh->totedge);
}
else if (sysdif == LAPDEFORM_SYSTEM_CHANGE_NOT_VALID_GROUP) {
modifier_setError(&lmd->modifier, "Vertex group '%s' is not valid", sys->anchor_grp_name);
}
}
}
else {
sys->repeat = lmd->repeat;
laplacianDeformPreview(sys, vertexCos);
}
}
else {
if (!isValidVertexGroup(lmd, ob, mesh)) {
modifier_setError(&lmd->modifier, "Vertex group '%s' is not valid", lmd->anchor_grp_name);
lmd->flag &= ~MOD_LAPLACIANDEFORM_BIND;
}
else if (lmd->total_verts > 0 && lmd->total_verts == numVerts) {
filevertexCos = MEM_malloc_arrayN(numVerts, sizeof(float[3]), "TempDeformCoordinates");
memcpy(filevertexCos, lmd->vertexco, sizeof(float[3]) * numVerts);
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
initSystem(lmd, ob, mesh, filevertexCos, numVerts);
sys = lmd->cache_system;
MEM_SAFE_FREE(filevertexCos);
laplacianDeformPreview(sys, vertexCos);
}
else {
initSystem(lmd, ob, mesh, vertexCos, numVerts);
sys = lmd->cache_system;
laplacianDeformPreview(sys, vertexCos);
}
}
if (sys && sys->is_matrix_computed && !sys->has_solution) {
modifier_setError(&lmd->modifier, "The system did not find a solution");
}
}
static void initData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
lmd->anchor_grp_name[0] = '\0';
lmd->total_verts = 0;
lmd->repeat = 1;
lmd->vertexco = NULL;
lmd->cache_system = NULL;
lmd->flag = 0;
}
static void copyData(const ModifierData *md, ModifierData *target, const int flag)
{
const LaplacianDeformModifierData *lmd = (const LaplacianDeformModifierData *)md;
LaplacianDeformModifierData *tlmd = (LaplacianDeformModifierData *)target;
modifier_copyData_generic(md, target, flag);
tlmd->vertexco = MEM_dupallocN(lmd->vertexco);
tlmd->cache_system = NULL;
}
static bool isDisabled(const struct Scene *UNUSED(scene), ModifierData *md, bool UNUSED(useRenderParams))
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
if (lmd->anchor_grp_name[0]) return 0;
return 1;
}
static void requiredDataMask(Object *UNUSED(ob), ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
if (lmd->anchor_grp_name[0] != '\0') {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static void deformVerts(
ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh,
float (*vertexCos)[3], int numVerts)
{
Mesh *mesh_src = MOD_deform_mesh_eval_get(ctx->object, NULL, mesh, NULL, numVerts, false, false);
LaplacianDeformModifier_do((LaplacianDeformModifierData *)md, ctx->object, mesh_src, vertexCos, numVerts);
if (!ELEM(mesh_src, NULL, mesh)) {
BKE_id_free(NULL, mesh_src);
}
}
static void deformVertsEM(
ModifierData *md, const ModifierEvalContext *ctx, struct BMEditMesh *editData,
Mesh *mesh, float (*vertexCos)[3], int numVerts)
{
Mesh *mesh_src = MOD_deform_mesh_eval_get(ctx->object, editData, mesh, NULL, numVerts, false, false);
LaplacianDeformModifier_do((LaplacianDeformModifierData *)md, ctx->object, mesh_src,
vertexCos, numVerts);
if (!ELEM(mesh_src, NULL, mesh)) {
BKE_id_free(NULL, mesh_src);
}
}
static void freeData(ModifierData *md)
{
LaplacianDeformModifierData *lmd = (LaplacianDeformModifierData *)md;
LaplacianSystem *sys = (LaplacianSystem *)lmd->cache_system;
if (sys) {
deleteLaplacianSystem(sys);
}
MEM_SAFE_FREE(lmd->vertexco);
lmd->total_verts = 0;
}
ModifierTypeInfo modifierType_LaplacianDeform = {
/* name */ "LaplacianDeform",
/* structName */ "LaplacianDeformModifierData",
/* structSize */ sizeof(LaplacianDeformModifierData),
/* type */ eModifierTypeType_OnlyDeform,
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsEditmode,
/* copyData */ copyData,
/* deformVerts */ deformVerts,
/* deformMatrices */ NULL,
/* deformVertsEM */ deformVertsEM,
/* deformMatricesEM */ NULL,
/* applyModifier */ NULL,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ freeData,
/* isDisabled */ isDisabled,
/* updateDepsgraph */ NULL,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ NULL,
/* foreachObjectLink */ NULL,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
/* freeRuntimeData */ NULL,
};