1112 lines
28 KiB
C
1112 lines
28 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor(s): Joseph Eagar.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/bmesh/operators/bmo_subdivide.c
|
|
* \ingroup bmesh
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_rand.h"
|
|
#include "BLI_array.h"
|
|
#include "BLI_noise.h"
|
|
|
|
#include "BKE_customdata.h"
|
|
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "ED_mesh.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "intern/bmesh_private.h"
|
|
|
|
#include "intern/bmesh_operators_private.h" /* own include */
|
|
|
|
#include "bmo_subdivide.h" /* own include */
|
|
|
|
/* flags for all elements share a common bitfield space */
|
|
#define SUBD_SPLIT 1
|
|
|
|
#define EDGE_PERCENT 2
|
|
|
|
/* I don't think new faces are flagged, currently, but
|
|
* better safe than sorry. */
|
|
#define FACE_CUSTOMFILL 4
|
|
#define ELE_INNER 8
|
|
#define ELE_SPLIT 16
|
|
|
|
/*
|
|
* NOTE: beauty has been renamed to flag!
|
|
*/
|
|
|
|
/* generic subdivision rules:
|
|
*
|
|
* - two selected edges in a face should make a link
|
|
* between them.
|
|
*
|
|
* - one edge should do, what? make pretty topology, or just
|
|
* split the edge only?
|
|
*/
|
|
|
|
/* connects face with smallest len, which I think should always be correct for
|
|
* edge subdivision */
|
|
static BMEdge *connect_smallest_face(BMesh *bm, BMVert *v1, BMVert *v2, BMFace **r_nf)
|
|
{
|
|
BMIter iter, iter2;
|
|
BMVert *v;
|
|
BMLoop *nl;
|
|
BMFace *face, *curf = NULL;
|
|
|
|
/* this isn't the best thing in the world. it doesn't handle cases where there's
|
|
* multiple faces yet. that might require a convexity test to figure out which
|
|
* face is "best" and who knows what for non-manifold conditions. */
|
|
for (face = BM_iter_new(&iter, bm, BM_FACES_OF_VERT, v1); face; face = BM_iter_step(&iter)) {
|
|
for (v = BM_iter_new(&iter2, bm, BM_VERTS_OF_FACE, face); v; v = BM_iter_step(&iter2)) {
|
|
if (v == v2) {
|
|
if (!curf || face->len < curf->len) curf = face;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (curf) {
|
|
face = BM_face_split(bm, curf, v1, v2, &nl, NULL, FALSE);
|
|
|
|
if (r_nf) *r_nf = face;
|
|
return nl ? nl->e : NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
/* calculates offset for co, based on fractal, sphere or smooth settings */
|
|
static void alter_co(BMesh *bm, BMVert *v, BMEdge *UNUSED(origed), const SubDParams *params, float perc,
|
|
BMVert *vsta, BMVert *vend)
|
|
{
|
|
float tvec[3], prev_co[3], fac;
|
|
float *co = NULL;
|
|
int i, totlayer = CustomData_number_of_layers(&bm->vdata, CD_SHAPEKEY);
|
|
|
|
BM_vert_normal_update_all(v);
|
|
|
|
co = CustomData_bmesh_get_n(&bm->vdata, v->head.data, CD_SHAPEKEY, params->origkey);
|
|
copy_v3_v3(co, v->co);
|
|
copy_v3_v3(prev_co, co);
|
|
|
|
if (params->beauty & B_SMOOTH) {
|
|
/* we calculate an offset vector vec1[], to be added to *co */
|
|
float len, nor[3], nor1[3], nor2[3], smooth = params->smooth;
|
|
|
|
sub_v3_v3v3(nor, vsta->co, vend->co);
|
|
len = 0.5f * normalize_v3(nor);
|
|
|
|
copy_v3_v3(nor1, vsta->no);
|
|
copy_v3_v3(nor2, vend->no);
|
|
|
|
/* cosine angle */
|
|
fac = dot_v3v3(nor, nor1);
|
|
mul_v3_v3fl(tvec, nor1, fac);
|
|
|
|
/* cosine angle */
|
|
fac = -dot_v3v3(nor, nor2);
|
|
madd_v3_v3fl(tvec, nor2, fac);
|
|
|
|
/* falloff for multi subdivide */
|
|
smooth *= sqrtf(fabsf(1.0f - 2.0f * fabsf(0.5f-perc)));
|
|
|
|
mul_v3_fl(tvec, smooth * len);
|
|
|
|
add_v3_v3(co, tvec);
|
|
}
|
|
else if (params->beauty & B_SPHERE) { /* subdivide sphere */
|
|
normalize_v3(co);
|
|
mul_v3_fl(co, params->smooth);
|
|
}
|
|
|
|
if (params->beauty & B_FRACTAL) {
|
|
float len = len_v3v3(vsta->co, vend->co);
|
|
float vec2[3] = {0.0f, 0.0f, 0.0f}, co2[3];
|
|
|
|
fac = params->fractal * len;
|
|
|
|
add_v3_v3(vec2, vsta->no);
|
|
add_v3_v3(vec2, vend->no);
|
|
mul_v3_fl(vec2, 0.5f);
|
|
|
|
add_v3_v3v3(co2, v->co, params->off);
|
|
tvec[0] = fac * (BLI_gTurbulence(1.0, co2[0], co2[1], co2[2], 15, 0, 1) - 0.5f);
|
|
tvec[1] = fac * (BLI_gTurbulence(1.0, co2[0], co2[1], co2[2], 15, 0, 1) - 0.5f);
|
|
tvec[2] = fac * (BLI_gTurbulence(1.0, co2[0], co2[1], co2[2], 15, 0, 1) - 0.5f);
|
|
|
|
mul_v3_v3(vec2, tvec);
|
|
|
|
/* add displacement */
|
|
add_v3_v3v3(co, co, vec2);
|
|
}
|
|
|
|
/* apply the new difference to the rest of the shape keys,
|
|
* note that this doent take rotations into account, we _could_ support
|
|
* this by getting the normals and coords for each shape key and
|
|
* re-calculate the smooth value for each but this is quite involved.
|
|
* for now its ok to simply apply the difference IMHO - campbell */
|
|
sub_v3_v3v3(tvec, prev_co, co);
|
|
|
|
for (i = 0; i < totlayer; i++) {
|
|
if (params->origkey != i) {
|
|
co = CustomData_bmesh_get_n(&bm->vdata, v->head.data, CD_SHAPEKEY, i);
|
|
sub_v3_v3(co, tvec);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* assumes in the edge is the correct interpolated vertices already */
|
|
/* percent defines the interpolation, rad and flag are for special options */
|
|
/* results in new vertex with correct coordinate, vertex normal and weight group info */
|
|
static BMVert *bm_subdivide_edge_addvert(BMesh *bm, BMEdge *edge, BMEdge *oedge,
|
|
const SubDParams *params, float percent,
|
|
float percent2,
|
|
BMEdge **out, BMVert *vsta, BMVert *vend)
|
|
{
|
|
BMVert *ev;
|
|
|
|
ev = BM_edge_split(bm, edge, edge->v1, out, percent);
|
|
|
|
BMO_elem_flag_enable(bm, ev, ELE_INNER);
|
|
|
|
/* offset for smooth or sphere or fractal */
|
|
alter_co(bm, ev, oedge, params, percent2, vsta, vend);
|
|
|
|
#if 0 //BMESH_TODO
|
|
/* clip if needed by mirror modifier */
|
|
if (edge->v1->f2) {
|
|
if (edge->v1->f2 & edge->v2->f2 & 1) {
|
|
co[0] = 0.0f;
|
|
}
|
|
if (edge->v1->f2 & edge->v2->f2 & 2) {
|
|
co[1] = 0.0f;
|
|
}
|
|
if (edge->v1->f2 & edge->v2->f2 & 4) {
|
|
co[2] = 0.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
interp_v3_v3v3(ev->no, vsta->no, vend->no, percent2);
|
|
normalize_v3(ev->no);
|
|
|
|
return ev;
|
|
}
|
|
|
|
static BMVert *subdivideedgenum(BMesh *bm, BMEdge *edge, BMEdge *oedge,
|
|
int curpoint, int totpoint, const SubDParams *params,
|
|
BMEdge **newe, BMVert *vsta, BMVert *vend)
|
|
{
|
|
BMVert *ev;
|
|
float percent, percent2 = 0.0f;
|
|
|
|
if (BMO_elem_flag_test(bm, edge, EDGE_PERCENT) && totpoint == 1)
|
|
percent = BMO_slot_map_float_get(bm, params->op, "edgepercents", edge);
|
|
else {
|
|
percent = 1.0f / (float)(totpoint + 1-curpoint);
|
|
percent2 = (float)(curpoint + 1) / (float)(totpoint + 1);
|
|
|
|
}
|
|
|
|
ev = bm_subdivide_edge_addvert(bm, edge, oedge, params, percent,
|
|
percent2, newe, vsta, vend);
|
|
return ev;
|
|
}
|
|
|
|
static void bm_subdivide_multicut(BMesh *bm, BMEdge *edge, const SubDParams *params,
|
|
BMVert *vsta, BMVert *vend)
|
|
{
|
|
BMEdge *eed = edge, *newe, temp = *edge;
|
|
BMVert *v, ov1 = *edge->v1, ov2 = *edge->v2, *v1 = edge->v1, *v2 = edge->v2;
|
|
int i, numcuts = params->numcuts;
|
|
|
|
temp.v1 = &ov1;
|
|
temp.v2 = &ov2;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
v = subdivideedgenum(bm, eed, &temp, i, params->numcuts, params, &newe, vsta, vend);
|
|
|
|
BMO_elem_flag_enable(bm, v, SUBD_SPLIT);
|
|
BMO_elem_flag_enable(bm, eed, SUBD_SPLIT);
|
|
BMO_elem_flag_enable(bm, newe, SUBD_SPLIT);
|
|
|
|
BMO_elem_flag_enable(bm, v, ELE_SPLIT);
|
|
BMO_elem_flag_enable(bm, eed, ELE_SPLIT);
|
|
BMO_elem_flag_enable(bm, newe, SUBD_SPLIT);
|
|
|
|
BM_CHECK_ELEMENT(v);
|
|
if (v->e) BM_CHECK_ELEMENT(v->e);
|
|
if (v->e && v->e->l) BM_CHECK_ELEMENT(v->e->l->f);
|
|
}
|
|
|
|
alter_co(bm, v1, &temp, params, 0, &ov1, &ov2);
|
|
alter_co(bm, v2, &temp, params, 1.0, &ov1, &ov2);
|
|
}
|
|
|
|
/* note: the patterns are rotated as necessary to
|
|
* match the input geometry. they're based on the
|
|
* pre-split state of the face */
|
|
|
|
/*
|
|
* v3---------v2
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* v4---v0---v1
|
|
*/
|
|
static void quad_1edge_split(BMesh *bm, BMFace *UNUSED(face),
|
|
BMVert **verts, const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
int i, add, numcuts = params->numcuts;
|
|
|
|
/* if it's odd, the middle face is a quad, otherwise it's a triangle */
|
|
if ((numcuts % 2) == 0) {
|
|
add = 2;
|
|
for (i = 0; i < numcuts; i++) {
|
|
if (i == numcuts / 2) {
|
|
add -= 1;
|
|
}
|
|
connect_smallest_face(bm, verts[i], verts[numcuts + add], &nf);
|
|
}
|
|
}
|
|
else {
|
|
add = 2;
|
|
for (i = 0; i < numcuts; i++) {
|
|
connect_smallest_face(bm, verts[i], verts[numcuts + add], &nf);
|
|
if (i == numcuts / 2) {
|
|
add -= 1;
|
|
connect_smallest_face(bm, verts[i], verts[numcuts + add], &nf);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static SubDPattern quad_1edge = {
|
|
{1, 0, 0, 0},
|
|
quad_1edge_split,
|
|
4,
|
|
};
|
|
|
|
|
|
/*
|
|
* v6--------v5
|
|
* | |
|
|
* | |v4s
|
|
* | |v3s
|
|
* | s s |
|
|
* v7-v0--v1-v2
|
|
*/
|
|
static void quad_2edge_split_path(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
int i, numcuts = params->numcuts;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
connect_smallest_face(bm, verts[i], verts[numcuts + (numcuts - i)], &nf);
|
|
}
|
|
connect_smallest_face(bm, verts[numcuts * 2 + 3], verts[numcuts * 2 + 1], &nf);
|
|
}
|
|
|
|
static SubDPattern quad_2edge_path = {
|
|
{1, 1, 0, 0},
|
|
quad_2edge_split_path,
|
|
4,
|
|
};
|
|
|
|
/*
|
|
* v6--------v5
|
|
* | |
|
|
* | |v4s
|
|
* | |v3s
|
|
* | s s |
|
|
* v7-v0--v1-v2
|
|
*/
|
|
static void quad_2edge_split_innervert(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
BMVert *v, *lastv;
|
|
BMEdge *e, *ne, olde;
|
|
int i, numcuts = params->numcuts;
|
|
|
|
lastv = verts[numcuts];
|
|
|
|
for (i = numcuts - 1; i >= 0; i--) {
|
|
e = connect_smallest_face(bm, verts[i], verts[numcuts + (numcuts - i)], &nf);
|
|
|
|
olde = *e;
|
|
v = bm_subdivide_edge_addvert(bm, e, &olde, params, 0.5f, 0.5f, &ne, e->v1, e->v2);
|
|
|
|
if (i != numcuts - 1) {
|
|
connect_smallest_face(bm, lastv, v, &nf);
|
|
}
|
|
|
|
lastv = v;
|
|
}
|
|
|
|
connect_smallest_face(bm, lastv, verts[numcuts * 2 + 2], &nf);
|
|
}
|
|
|
|
static SubDPattern quad_2edge_innervert = {
|
|
{1, 1, 0, 0},
|
|
quad_2edge_split_innervert,
|
|
4,
|
|
};
|
|
|
|
/*
|
|
* v6--------v5
|
|
* | |
|
|
* | |v4s
|
|
* | |v3s
|
|
* | s s |
|
|
* v7-v0--v1-v2
|
|
*
|
|
*/
|
|
static void quad_2edge_split_fan(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
/* BMVert *v; */ /* UNUSED */
|
|
/* BMVert *lastv = verts[2]; */ /* UNUSED */
|
|
/* BMEdge *e, *ne; */ /* UNUSED */
|
|
int i, numcuts = params->numcuts;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
connect_smallest_face(bm, verts[i], verts[numcuts * 2 + 2], &nf);
|
|
connect_smallest_face(bm, verts[numcuts + (numcuts - i)], verts[numcuts * 2 + 2], &nf);
|
|
}
|
|
}
|
|
|
|
static SubDPattern quad_2edge_fan = {
|
|
{1, 1, 0, 0},
|
|
quad_2edge_split_fan,
|
|
4,
|
|
};
|
|
|
|
/*
|
|
* s s
|
|
* v8--v7--v6-v5
|
|
* | |
|
|
* | v4 s
|
|
* | |
|
|
* | v3 s
|
|
* | s s |
|
|
* v9-v0--v1-v2
|
|
*/
|
|
static void quad_3edge_split(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
int i, add = 0, numcuts = params->numcuts;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
if (i == numcuts / 2) {
|
|
if (numcuts % 2 != 0) {
|
|
connect_smallest_face(bm, verts[numcuts - i - 1 + add], verts[i + numcuts + 1], &nf);
|
|
}
|
|
add = numcuts * 2 + 2;
|
|
}
|
|
connect_smallest_face(bm, verts[numcuts - i - 1 + add], verts[i + numcuts + 1], &nf);
|
|
}
|
|
|
|
for (i = 0; i < numcuts / 2 + 1; i++) {
|
|
connect_smallest_face(bm, verts[i], verts[(numcuts - i) + numcuts * 2 + 1], &nf);
|
|
}
|
|
}
|
|
|
|
static SubDPattern quad_3edge = {
|
|
{1, 1, 1, 0},
|
|
quad_3edge_split,
|
|
4,
|
|
};
|
|
|
|
/*
|
|
* v8--v7-v6--v5
|
|
* | s |
|
|
* |v9 s s|v4
|
|
* first line | | last line
|
|
* |v10s s s|v3
|
|
* v11-v0--v1-v2
|
|
*
|
|
* it goes from bottom up
|
|
*/
|
|
static void quad_4edge_subdivide(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
BMVert *v, *v1, *v2;
|
|
BMEdge *e, *ne, temp;
|
|
BMVert **lines;
|
|
int numcuts = params->numcuts;
|
|
int i, j, a, b, s = numcuts + 2 /* , totv = numcuts * 4 + 4 */;
|
|
|
|
lines = MEM_callocN(sizeof(BMVert *) * (numcuts + 2) * (numcuts + 2), "q_4edge_split");
|
|
/* build a 2-dimensional array of verts,
|
|
* containing every vert (and all new ones)
|
|
* in the face */
|
|
|
|
/* first line */
|
|
for (i = 0; i < numcuts + 2; i++) {
|
|
lines[i] = verts[numcuts * 3 + 2 + (numcuts - i + 1)];
|
|
}
|
|
|
|
/* last line */
|
|
for (i = 0; i < numcuts + 2; i++) {
|
|
lines[(s - 1) * s + i] = verts[numcuts + i];
|
|
}
|
|
|
|
/* first and last members of middle lines */
|
|
for (i = 0; i < numcuts; i++) {
|
|
a = i;
|
|
b = numcuts + 1 + numcuts + 1 + (numcuts - i - 1);
|
|
|
|
e = connect_smallest_face(bm, verts[a], verts[b], &nf);
|
|
if (!e)
|
|
continue;
|
|
|
|
BMO_elem_flag_enable(bm, e, ELE_INNER);
|
|
BMO_elem_flag_enable(bm, nf, ELE_INNER);
|
|
|
|
|
|
v1 = lines[(i + 1) * s] = verts[a];
|
|
v2 = lines[(i + 1) * s + s - 1] = verts[b];
|
|
|
|
temp = *e;
|
|
for (a = 0; a < numcuts; a++) {
|
|
v = subdivideedgenum(bm, e, &temp, a, numcuts, params, &ne,
|
|
v1, v2);
|
|
|
|
BMESH_ASSERT(v != NULL);
|
|
|
|
BMO_elem_flag_enable(bm, ne, ELE_INNER);
|
|
lines[(i + 1) * s + a + 1] = v;
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < numcuts + 2; i++) {
|
|
for (j = 1; j < numcuts + 1; j++) {
|
|
a = i * s + j;
|
|
b = (i - 1) * s + j;
|
|
e = connect_smallest_face(bm, lines[a], lines[b], &nf);
|
|
if (!e)
|
|
continue;
|
|
|
|
BMO_elem_flag_enable(bm, e, ELE_INNER);
|
|
BMO_elem_flag_enable(bm, nf, ELE_INNER);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(lines);
|
|
}
|
|
|
|
/*
|
|
* v3
|
|
* / \
|
|
* / \
|
|
* / \
|
|
* / \
|
|
* / \
|
|
* v4--v0--v1--v2
|
|
* s s
|
|
*/
|
|
static void tri_1edge_split(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
int i, numcuts = params->numcuts;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
connect_smallest_face(bm, verts[i], verts[numcuts + 1], &nf);
|
|
}
|
|
}
|
|
|
|
static SubDPattern tri_1edge = {
|
|
{1, 0, 0},
|
|
tri_1edge_split,
|
|
3,
|
|
};
|
|
|
|
/* v5
|
|
* / \
|
|
* s v6/---\ v4 s
|
|
* / \ / \
|
|
* sv7/---v---\ v3 s
|
|
* / \/ \/ \
|
|
* v8--v0--v1--v2
|
|
* s s
|
|
*/
|
|
static void tri_3edge_subdivide(BMesh *bm, BMFace *UNUSED(face), BMVert **verts,
|
|
const SubDParams *params)
|
|
{
|
|
BMFace *nf;
|
|
BMEdge *e, *ne, temp;
|
|
BMVert ***lines, *v, ov1, ov2;
|
|
void *stackarr[1];
|
|
int i, j, a, b, numcuts = params->numcuts;
|
|
|
|
/* number of verts in each lin */
|
|
lines = MEM_callocN(sizeof(void *) * (numcuts + 2), "triangle vert table");
|
|
|
|
lines[0] = (BMVert **) stackarr;
|
|
lines[0][0] = verts[numcuts * 2 + 1];
|
|
|
|
lines[numcuts + 1] = MEM_callocN(sizeof(void *) * (numcuts + 2), "triangle vert table 2");
|
|
for (i = 0; i < numcuts; i++) {
|
|
lines[numcuts + 1][i + 1] = verts[i];
|
|
}
|
|
lines[numcuts + 1][0] = verts[numcuts * 3 + 2];
|
|
lines[numcuts + 1][numcuts + 1] = verts[numcuts];
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
lines[i + 1] = MEM_callocN(sizeof(void *) * (2 + i), "triangle vert table row");
|
|
a = numcuts * 2 + 2 + i;
|
|
b = numcuts + numcuts - i;
|
|
e = connect_smallest_face(bm, verts[a], verts[b], &nf);
|
|
if (!e) goto cleanup;
|
|
|
|
BMO_elem_flag_enable(bm, e, ELE_INNER);
|
|
BMO_elem_flag_enable(bm, nf, ELE_INNER);
|
|
|
|
lines[i + 1][0] = verts[a];
|
|
lines[i + 1][i + 1] = verts[b];
|
|
|
|
temp = *e;
|
|
ov1 = *verts[a];
|
|
ov2 = *verts[b];
|
|
temp.v1 = &ov1;
|
|
temp.v2 = &ov2;
|
|
for (j = 0; j < i; j++) {
|
|
v = subdivideedgenum(bm, e, &temp, j, i, params, &ne,
|
|
verts[a], verts[b]);
|
|
lines[i + 1][j + 1] = v;
|
|
|
|
BMO_elem_flag_enable(bm, ne, ELE_INNER);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* v5
|
|
* / \
|
|
* s v6/---\ v4 s
|
|
* / \ / \
|
|
* sv7/---v---\ v3 s
|
|
* / \/ \/ \
|
|
* v8--v0--v1--v2
|
|
* s s
|
|
*/
|
|
for (i = 1; i < numcuts + 1; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
e = connect_smallest_face(bm, lines[i][j], lines[i + 1][j + 1], &nf);
|
|
|
|
BMO_elem_flag_enable(bm, e, ELE_INNER);
|
|
BMO_elem_flag_enable(bm, nf, ELE_INNER);
|
|
|
|
e = connect_smallest_face(bm, lines[i][j + 1], lines[i + 1][j + 1], &nf);
|
|
|
|
BMO_elem_flag_enable(bm, e, ELE_INNER);
|
|
BMO_elem_flag_enable(bm, nf, ELE_INNER);
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
for (i = 1; i < numcuts + 2; i++) {
|
|
if (lines[i]) MEM_freeN(lines[i]);
|
|
}
|
|
|
|
MEM_freeN(lines);
|
|
}
|
|
|
|
static SubDPattern tri_3edge = {
|
|
{1, 1, 1},
|
|
tri_3edge_subdivide,
|
|
3,
|
|
};
|
|
|
|
|
|
static SubDPattern quad_4edge = {
|
|
{1, 1, 1, 1},
|
|
quad_4edge_subdivide,
|
|
4,
|
|
};
|
|
|
|
static SubDPattern *patterns[] = {
|
|
NULL, //quad single edge pattern is inserted here
|
|
NULL, //quad corner vert pattern is inserted here
|
|
NULL, //tri single edge pattern is inserted here
|
|
NULL,
|
|
&quad_3edge,
|
|
NULL,
|
|
};
|
|
|
|
#define PLEN (sizeof(patterns) / sizeof(void *))
|
|
|
|
typedef struct SubDFaceData {
|
|
BMVert *start; SubDPattern *pat;
|
|
int totedgesel; //only used if pat was NULL, e.g. no pattern was found
|
|
BMFace *face;
|
|
} SubDFaceData;
|
|
|
|
void bmo_esubd_exec(BMesh *bm, BMOperator *op)
|
|
{
|
|
BMOpSlot *einput;
|
|
SubDPattern *pat;
|
|
SubDParams params;
|
|
SubDFaceData *facedata = NULL;
|
|
BMIter viter, fiter, liter;
|
|
BMVert *v, **verts = NULL;
|
|
BMEdge *edge, **edges = NULL;
|
|
BMLoop *nl, *l, **splits = NULL, **loops = NULL;
|
|
BMFace *face;
|
|
BLI_array_declare(splits);
|
|
BLI_array_declare(loops);
|
|
BLI_array_declare(facedata);
|
|
BLI_array_declare(edges);
|
|
BLI_array_declare(verts);
|
|
float smooth, fractal;
|
|
int beauty, cornertype, singleedge, gridfill;
|
|
int skey, seed, i, j, matched, a, b, numcuts, totesel;
|
|
|
|
BMO_slot_buffer_flag_enable(bm, op, "edges", BM_EDGE, SUBD_SPLIT);
|
|
|
|
numcuts = BMO_slot_int_get(op, "numcuts");
|
|
seed = BMO_slot_int_get(op, "seed");
|
|
smooth = BMO_slot_float_get(op, "smooth");
|
|
fractal = BMO_slot_float_get(op, "fractal");
|
|
beauty = BMO_slot_int_get(op, "beauty");
|
|
cornertype = BMO_slot_int_get(op, "quadcornertype");
|
|
singleedge = BMO_slot_bool_get(op, "singleedge");
|
|
gridfill = BMO_slot_bool_get(op, "gridfill");
|
|
|
|
BLI_srandom(seed);
|
|
|
|
patterns[1] = NULL;
|
|
//straight cut is patterns[1] == NULL
|
|
switch (cornertype) {
|
|
case SUBD_PATH:
|
|
patterns[1] = &quad_2edge_path;
|
|
break;
|
|
case SUBD_INNERVERT:
|
|
patterns[1] = &quad_2edge_innervert;
|
|
break;
|
|
case SUBD_FAN:
|
|
patterns[1] = &quad_2edge_fan;
|
|
break;
|
|
}
|
|
|
|
if (singleedge) {
|
|
patterns[0] = &quad_1edge;
|
|
patterns[2] = &tri_1edge;
|
|
}
|
|
else {
|
|
patterns[0] = NULL;
|
|
patterns[2] = NULL;
|
|
}
|
|
|
|
if (gridfill) {
|
|
patterns[3] = &quad_4edge;
|
|
patterns[5] = &tri_3edge;
|
|
}
|
|
else {
|
|
patterns[3] = NULL;
|
|
patterns[5] = NULL;
|
|
}
|
|
|
|
/* add a temporary shapekey layer to store displacements on current geometry */
|
|
BM_data_layer_add(bm, &bm->vdata, CD_SHAPEKEY);
|
|
skey = CustomData_number_of_layers(&bm->vdata, CD_SHAPEKEY) - 1;
|
|
|
|
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
|
|
float *co = CustomData_bmesh_get_n(&bm->vdata, v->head.data, CD_SHAPEKEY, skey);
|
|
copy_v3_v3(co, v->co);
|
|
}
|
|
|
|
/* first go through and tag edges */
|
|
BMO_slot_buffer_from_enabled_flag(bm, op, "edges", BM_EDGE, SUBD_SPLIT);
|
|
|
|
params.numcuts = numcuts;
|
|
params.op = op;
|
|
params.smooth = smooth;
|
|
params.seed = seed;
|
|
params.fractal = fractal;
|
|
params.beauty = beauty;
|
|
params.origkey = skey;
|
|
params.off[0] = (float)BLI_drand() * 200.0f;
|
|
params.off[1] = (float)BLI_drand() * 200.0f;
|
|
params.off[2] = (float)BLI_drand() * 200.0f;
|
|
|
|
BMO_slot_map_to_flag(bm, op, "custompatterns",
|
|
BM_FACE, FACE_CUSTOMFILL);
|
|
|
|
BMO_slot_map_to_flag(bm, op, "edgepercents",
|
|
BM_EDGE, EDGE_PERCENT);
|
|
|
|
|
|
BM_ITER_MESH (face, &fiter, bm, BM_FACES_OF_MESH) {
|
|
BMEdge *e1 = NULL, *e2 = NULL;
|
|
float vec1[3], vec2[3];
|
|
|
|
/* figure out which pattern to use */
|
|
|
|
BLI_array_empty(edges);
|
|
BLI_array_empty(verts);
|
|
|
|
BLI_array_growitems(edges, face->len);
|
|
BLI_array_growitems(verts, face->len);
|
|
|
|
matched = 0;
|
|
|
|
totesel = 0;
|
|
BM_ITER_ELEM_INDEX (nl, &liter, face, BM_LOOPS_OF_FACE, i) {
|
|
edges[i] = nl->e;
|
|
verts[i] = nl->v;
|
|
|
|
if (BMO_elem_flag_test(bm, edges[i], SUBD_SPLIT)) {
|
|
if (!e1) e1 = edges[i];
|
|
else e2 = edges[i];
|
|
|
|
totesel++;
|
|
}
|
|
}
|
|
|
|
/* make sure the two edges have a valid angle to each other */
|
|
if (totesel == 2 && BM_edge_share_vert_count(e1, e2)) {
|
|
float angle;
|
|
|
|
sub_v3_v3v3(vec1, e1->v2->co, e1->v1->co);
|
|
sub_v3_v3v3(vec2, e2->v2->co, e2->v1->co);
|
|
normalize_v3(vec1);
|
|
normalize_v3(vec2);
|
|
|
|
angle = dot_v3v3(vec1, vec2);
|
|
angle = fabsf(angle);
|
|
if (fabsf(angle - 1.0f) < 0.01f) {
|
|
totesel = 0;
|
|
}
|
|
}
|
|
|
|
if (BMO_elem_flag_test(bm, face, FACE_CUSTOMFILL)) {
|
|
pat = BMO_slot_map_data_get(bm, op,
|
|
"custompatterns", face);
|
|
for (i = 0; i < pat->len; i++) {
|
|
matched = 1;
|
|
for (j = 0; j < pat->len; j++) {
|
|
a = (j + i) % pat->len;
|
|
if ((!!BMO_elem_flag_test(bm, edges[a], SUBD_SPLIT)) != (!!pat->seledges[j])) {
|
|
matched = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (matched) {
|
|
BLI_array_growone(facedata);
|
|
b = BLI_array_count(facedata) - 1;
|
|
facedata[b].pat = pat;
|
|
facedata[b].start = verts[i];
|
|
facedata[b].face = face;
|
|
facedata[b].totedgesel = totesel;
|
|
BMO_elem_flag_enable(bm, face, SUBD_SPLIT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* obvously don't test for other patterns matching */
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < PLEN; i++) {
|
|
pat = patterns[i];
|
|
if (!pat) {
|
|
continue;
|
|
}
|
|
|
|
if (pat->len == face->len) {
|
|
for (a = 0; a < pat->len; a++) {
|
|
matched = 1;
|
|
for (b = 0; b < pat->len; b++) {
|
|
j = (b + a) % pat->len;
|
|
if ((!!BMO_elem_flag_test(bm, edges[j], SUBD_SPLIT)) != (!!pat->seledges[b])) {
|
|
matched = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (matched) {
|
|
break;
|
|
}
|
|
}
|
|
if (matched) {
|
|
BLI_array_growone(facedata);
|
|
j = BLI_array_count(facedata) - 1;
|
|
|
|
BMO_elem_flag_enable(bm, face, SUBD_SPLIT);
|
|
|
|
facedata[j].pat = pat;
|
|
facedata[j].start = verts[a];
|
|
facedata[j].face = face;
|
|
facedata[j].totedgesel = totesel;
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (!matched && totesel) {
|
|
BLI_array_growone(facedata);
|
|
j = BLI_array_count(facedata) - 1;
|
|
|
|
BMO_elem_flag_enable(bm, face, SUBD_SPLIT);
|
|
facedata[j].totedgesel = totesel;
|
|
facedata[j].face = face;
|
|
}
|
|
}
|
|
|
|
einput = BMO_slot_get(op, "edges");
|
|
|
|
/* go through and split edges */
|
|
for (i = 0; i < einput->len; i++) {
|
|
edge = ((BMEdge **)einput->data.p)[i];
|
|
bm_subdivide_multicut(bm, edge, ¶ms, edge->v1, edge->v2);
|
|
}
|
|
|
|
/* copy original-geometry displacements to current coordinates */
|
|
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
|
|
float *co = CustomData_bmesh_get_n(&bm->vdata, v->head.data, CD_SHAPEKEY, skey);
|
|
copy_v3_v3(v->co, co);
|
|
}
|
|
|
|
i = 0;
|
|
for (i = 0; i < BLI_array_count(facedata); i++) {
|
|
face = facedata[i].face;
|
|
|
|
/* figure out which pattern to use */
|
|
BLI_array_empty(verts);
|
|
|
|
pat = facedata[i].pat;
|
|
|
|
if (!pat && facedata[i].totedgesel == 2) {
|
|
int vlen;
|
|
|
|
/* ok, no pattern. we still may be able to do something */
|
|
BLI_array_empty(loops);
|
|
BLI_array_empty(splits);
|
|
|
|
/* for case of two edges, connecting them shouldn't be too hard */
|
|
BM_ITER_ELEM (l, &liter, face, BM_LOOPS_OF_FACE) {
|
|
BLI_array_growone(loops);
|
|
loops[BLI_array_count(loops) - 1] = l;
|
|
}
|
|
|
|
vlen = BLI_array_count(loops);
|
|
|
|
/* find the boundary of one of the split edges */
|
|
for (a = 1; a < vlen; a++) {
|
|
if (!BMO_elem_flag_test(bm, loops[a - 1]->v, ELE_INNER) &&
|
|
BMO_elem_flag_test(bm, loops[a]->v, ELE_INNER))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (BMO_elem_flag_test(bm, loops[(a + numcuts + 1) % vlen]->v, ELE_INNER)) {
|
|
b = (a + numcuts + 1) % vlen;
|
|
}
|
|
else {
|
|
/* find the boundary of the other edge. */
|
|
for (j = 0; j < vlen; j++) {
|
|
b = (j + a + numcuts + 1) % vlen;
|
|
if (!BMO_elem_flag_test(bm, loops[b == 0 ? vlen - 1 : b - 1]->v, ELE_INNER) &&
|
|
BMO_elem_flag_test(bm, loops[b]->v, ELE_INNER))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
b += numcuts - 1;
|
|
|
|
for (j = 0; j < numcuts; j++) {
|
|
BLI_array_growone(splits);
|
|
splits[BLI_array_count(splits) - 1] = loops[a];
|
|
|
|
BLI_array_growone(splits);
|
|
splits[BLI_array_count(splits) - 1] = loops[b];
|
|
|
|
b = (b - 1) % vlen;
|
|
a = (a + 1) % vlen;
|
|
}
|
|
|
|
//BM_face_legal_splits(bmesh, face, splits, BLI_array_count(splits) / 2);
|
|
|
|
for (j = 0; j < BLI_array_count(splits) / 2; j++) {
|
|
if (splits[j * 2]) {
|
|
/* BMFace *nf = */ /* UNUSED */
|
|
BM_face_split(bm, face, splits[j * 2]->v, splits[j * 2 + 1]->v, &nl, NULL, FALSE);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
else if (!pat) {
|
|
continue;
|
|
}
|
|
|
|
j = a = 0;
|
|
for (nl = BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, face);
|
|
nl;
|
|
nl = BM_iter_step(&liter))
|
|
{
|
|
if (nl->v == facedata[i].start) {
|
|
a = j + 1;
|
|
break;
|
|
}
|
|
j++;
|
|
}
|
|
|
|
for (j = 0; j < face->len; j++) {
|
|
BLI_array_growone(verts);
|
|
}
|
|
|
|
j = 0;
|
|
for (nl = BM_iter_new(&liter, bm, BM_LOOPS_OF_FACE, face); nl; nl = BM_iter_step(&liter)) {
|
|
b = (j - a + face->len) % face->len;
|
|
verts[b] = nl->v;
|
|
j += 1;
|
|
}
|
|
|
|
BM_CHECK_ELEMENT(face);
|
|
pat->connectexec(bm, face, verts, ¶ms);
|
|
}
|
|
|
|
/* copy original-geometry displacements to current coordinates */
|
|
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
|
|
float *co = CustomData_bmesh_get_n(&bm->vdata, v->head.data, CD_SHAPEKEY, skey);
|
|
copy_v3_v3(v->co, co);
|
|
}
|
|
|
|
BM_data_layer_free_n(bm, &bm->vdata, CD_SHAPEKEY, skey);
|
|
|
|
if (facedata) BLI_array_free(facedata);
|
|
if (edges) BLI_array_free(edges);
|
|
if (verts) BLI_array_free(verts);
|
|
BLI_array_free(splits);
|
|
BLI_array_free(loops);
|
|
|
|
BMO_slot_buffer_from_enabled_flag(bm, op, "outinner", BM_ALL, ELE_INNER);
|
|
BMO_slot_buffer_from_enabled_flag(bm, op, "outsplit", BM_ALL, ELE_SPLIT);
|
|
|
|
BMO_slot_buffer_from_enabled_flag(bm, op, "geomout", BM_ALL, ELE_INNER|ELE_SPLIT|SUBD_SPLIT);
|
|
}
|
|
|
|
/* editmesh-emulating function */
|
|
void BM_mesh_esubdivideflag(Object *UNUSED(obedit), BMesh *bm, int flag, float smooth,
|
|
float fractal, int beauty, int numcuts,
|
|
int seltype, int cornertype, int singleedge,
|
|
int gridfill, int seed)
|
|
{
|
|
BMOperator op;
|
|
|
|
BMO_op_initf(bm, &op, "esubd edges=%he smooth=%f fractal=%f "
|
|
"beauty=%i numcuts=%i quadcornertype=%i singleedge=%b "
|
|
"gridfill=%b seed=%i",
|
|
flag, smooth, fractal, beauty, numcuts,
|
|
cornertype, singleedge, gridfill, seed);
|
|
|
|
BMO_op_exec(bm, &op);
|
|
|
|
if (seltype == SUBDIV_SELECT_INNER) {
|
|
BMOIter iter;
|
|
BMElem *ele;
|
|
// int i;
|
|
|
|
ele = BMO_iter_new(&iter, bm, &op, "outinner", BM_EDGE|BM_VERT);
|
|
for ( ; ele; ele = BMO_iter_step(&iter)) {
|
|
BM_elem_select_set(bm, ele, TRUE);
|
|
}
|
|
}
|
|
else if (seltype == SUBDIV_SELECT_LOOPCUT) {
|
|
BMOIter iter;
|
|
BMElem *ele;
|
|
// int i;
|
|
|
|
/* deselect input */
|
|
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, FALSE);
|
|
|
|
ele = BMO_iter_new(&iter, bm, &op, "outinner", BM_EDGE|BM_VERT);
|
|
for ( ; ele; ele = BMO_iter_step(&iter)) {
|
|
BM_elem_select_set(bm, ele, TRUE);
|
|
|
|
if (ele->head.htype == BM_VERT) {
|
|
BMEdge *e;
|
|
BMIter eiter;
|
|
|
|
BM_ITER_ELEM (e, &eiter, ele, BM_EDGES_OF_VERT) {
|
|
if (!BM_elem_flag_test(e, BM_ELEM_SELECT) &&
|
|
BM_elem_flag_test(e->v1, BM_ELEM_SELECT) &&
|
|
BM_elem_flag_test(e->v2, BM_ELEM_SELECT))
|
|
{
|
|
BM_elem_select_set(bm, e, TRUE);
|
|
}
|
|
else if (BM_elem_flag_test(e, BM_ELEM_SELECT) &&
|
|
(!BM_elem_flag_test(e->v1, BM_ELEM_SELECT) ||
|
|
!BM_elem_flag_test(e->v2, BM_ELEM_SELECT)))
|
|
{
|
|
BM_elem_select_set(bm, e, FALSE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BMO_op_finish(bm, &op);
|
|
}
|
|
|
|
void bmo_edgebisect_exec(BMesh *bm, BMOperator *op)
|
|
{
|
|
BMOIter siter;
|
|
BMEdge *e;
|
|
SubDParams params = {0};
|
|
int skey;
|
|
|
|
params.numcuts = BMO_slot_int_get(op, "numcuts");
|
|
params.op = op;
|
|
|
|
BM_data_layer_add(bm, &bm->vdata, CD_SHAPEKEY);
|
|
skey = CustomData_number_of_layers(&bm->vdata, CD_SHAPEKEY) - 1;
|
|
|
|
params.origkey = skey;
|
|
|
|
/* go through and split edges */
|
|
BMO_ITER (e, &siter, bm, op, "edges", BM_EDGE) {
|
|
bm_subdivide_multicut(bm, e, ¶ms, e->v1, e->v2);
|
|
}
|
|
|
|
BMO_slot_buffer_from_enabled_flag(bm, op, "outsplit", BM_ALL, ELE_SPLIT);
|
|
|
|
BM_data_layer_free_n(bm, &bm->vdata, CD_SHAPEKEY, skey);
|
|
}
|