in rigs with layered IK constraints. Also removed the tolerance setting, this value wasn't used in the solver anymore.
2049 lines
49 KiB
C
2049 lines
49 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
#include "nla.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_arithb.h"
|
|
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_constraint_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_action_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_scene_types.h"
|
|
|
|
#include "BKE_utildefines.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_anim.h" // for the curve calculation part
|
|
#include "BKE_armature.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_ipo.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_library.h"
|
|
|
|
#include "blendef.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
/* used by object.c */
|
|
void Mat4BlendMat4(float [][4], float [][4], float [][4], float );
|
|
|
|
/* Local function prototypes */
|
|
|
|
/* ********************* Data level ****************** */
|
|
|
|
void free_constraint_data (bConstraint *con)
|
|
{
|
|
if (con->data){
|
|
switch (con->type){
|
|
default:
|
|
break;
|
|
};
|
|
|
|
MEM_freeN (con->data);
|
|
}
|
|
}
|
|
|
|
void free_constraints (ListBase *conlist)
|
|
{
|
|
bConstraint *con;
|
|
|
|
/* Do any specific freeing */
|
|
for (con=conlist->first; con; con=con->next) {
|
|
free_constraint_data (con);
|
|
}
|
|
|
|
/* Free the whole list */
|
|
BLI_freelistN(conlist);
|
|
}
|
|
|
|
void free_constraint_channels (ListBase *chanbase)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
for (chan=chanbase->first; chan; chan=chan->next)
|
|
{
|
|
if (chan->ipo){
|
|
chan->ipo->id.us--;
|
|
}
|
|
}
|
|
|
|
BLI_freelistN(chanbase);
|
|
}
|
|
|
|
void relink_constraints (struct ListBase *list)
|
|
{
|
|
bConstraint *con;
|
|
|
|
for (con = list->first; con; con=con->next){
|
|
switch (con->type){
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_NULL:
|
|
{
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
data = con->data;
|
|
|
|
ID_NEW(data->tar);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIMIT:
|
|
{
|
|
bLocLimitConstraint *data;
|
|
data = con->data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIMIT:
|
|
{
|
|
bRotLimitConstraint *data;
|
|
data = con->data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIMIT:
|
|
{
|
|
bSizeLimitConstraint *data;
|
|
data = con->data;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void copy_constraint_channels (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraintChannel *dchan, *schan;
|
|
|
|
dst->first=dst->last=NULL;
|
|
duplicatelist(dst, src);
|
|
|
|
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
|
|
dchan->ipo = copy_ipo(schan->ipo);
|
|
}
|
|
}
|
|
|
|
void clone_constraint_channels (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraintChannel *dchan, *schan;
|
|
|
|
dst->first=dst->last=NULL;
|
|
duplicatelist(dst, src);
|
|
|
|
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
|
|
id_us_plus((ID *)dchan->ipo);
|
|
}
|
|
}
|
|
|
|
void copy_constraints (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraint *con;
|
|
|
|
dst->first= dst->last= NULL;
|
|
|
|
duplicatelist (dst, src);
|
|
|
|
for (con = dst->first; con; con=con->next) {
|
|
con->data = MEM_dupallocN (con->data);
|
|
/* removed a whole lot of useless code here (ton) */
|
|
}
|
|
}
|
|
|
|
|
|
/* **************** Editor Functions **************** */
|
|
|
|
char constraint_has_target (bConstraint *con)
|
|
{
|
|
switch (con->type){
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
if (data->tar)
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
// Unknown types or CONSTRAINT_TYPE_NULL or no target
|
|
return 0;
|
|
}
|
|
|
|
Object *get_constraint_target(bConstraint *con, char **subtarget)
|
|
{
|
|
/*
|
|
* If the target for this constraint is target, return a pointer
|
|
* to the name for this constraints subtarget ... NULL otherwise
|
|
*/
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
*subtarget= NULL;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return (data->tar);
|
|
}
|
|
break;
|
|
default:
|
|
*subtarget= NULL;
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void set_constraint_target(bConstraint *con, Object *ob, char *subtarget)
|
|
{
|
|
/*
|
|
* Set the target for this constraint
|
|
*/
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
data->tar= ob;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
|
|
data->tar= ob;
|
|
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void unique_constraint_name (bConstraint *con, ListBase *list)
|
|
{
|
|
char tempname[64];
|
|
int number;
|
|
char *dot;
|
|
int exists = 0;
|
|
bConstraint *curcon;
|
|
|
|
/* See if we even need to do this */
|
|
for (curcon = list->first; curcon; curcon=curcon->next){
|
|
if (curcon!=con){
|
|
if (!strcmp(curcon->name, con->name)){
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!exists)
|
|
return;
|
|
|
|
/* Strip off the suffix */
|
|
dot=strchr(con->name, '.');
|
|
if (dot)
|
|
*dot=0;
|
|
|
|
for (number = 1; number <=999; number++){
|
|
sprintf (tempname, "%s.%03d", con->name, number);
|
|
|
|
exists = 0;
|
|
for (curcon=list->first; curcon; curcon=curcon->next){
|
|
if (con!=curcon){
|
|
if (!strcmp (curcon->name, tempname)){
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!exists){
|
|
strcpy (con->name, tempname);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void *new_constraint_data (short type)
|
|
{
|
|
void *result;
|
|
|
|
switch (type){
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data;
|
|
data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
|
|
|
|
data->weight= (float)1.0;
|
|
data->orientweight= (float)1.0;
|
|
data->iterations = 500;
|
|
data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_NULL:
|
|
{
|
|
result = NULL;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
|
|
|
|
|
|
data->reserved1 = TRACK_Y;
|
|
data->reserved2 = UP_Z;
|
|
|
|
result = data;
|
|
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data;
|
|
data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint");
|
|
|
|
|
|
data->minmaxflag = TRACK_Z;
|
|
data->offset = 0.0f;
|
|
data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
|
|
data->flag = 0;
|
|
|
|
result = data;
|
|
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint");
|
|
data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint");
|
|
data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocateLikeConstraint), "sizelikeConstraint");
|
|
|
|
data->flag |= SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data;
|
|
data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint");
|
|
data->local= 1;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
|
|
|
|
data->trackflag = TRACK_Y;
|
|
data->lockflag = LOCK_Z;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
|
|
|
|
data->trackflag = TRACK_Y;
|
|
data->upflag = UP_Z;
|
|
data->offset = 0;
|
|
data->followflag = 0;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
|
|
|
|
data->volmode = 0;
|
|
data->plane = 0;
|
|
data->orglength = 0.0;
|
|
data->bulge = 1.0;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIMIT:
|
|
{
|
|
bLocLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint");
|
|
|
|
data->flag = 0;
|
|
data->flag2 = 0;
|
|
data->xmin = 0.0f;
|
|
data->xmax = 0.0f;
|
|
data->ymin = 0.0f;
|
|
data->ymax = 0.0f;
|
|
data->zmin = 0.0f;
|
|
data->zmax = 0.0f;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIMIT:
|
|
{
|
|
bRotLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint");
|
|
|
|
data->flag = 0;
|
|
data->xmin = 0.0f;
|
|
data->xmax = 0.0f;
|
|
data->ymin = 0.0f;
|
|
data->ymax = 0.0f;
|
|
data->zmin = 0.0f;
|
|
data->zmax = 0.0f;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIMIT:
|
|
{
|
|
bSizeLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint");
|
|
|
|
data->flag = 0;
|
|
data->xmin = 0.0f;
|
|
data->xmax = 0.0f;
|
|
data->ymin = 0.0f;
|
|
data->ymax = 0.0f;
|
|
data->zmin = 0.0f;
|
|
data->zmax = 0.0f;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
default:
|
|
result = NULL;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bConstraintChannel *get_constraint_channel (ListBase *list, const char *name)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
for (chan = list->first; chan; chan=chan->next) {
|
|
if (!strcmp(name, chan->name)) {
|
|
return chan;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* finds or creates new constraint channel */
|
|
bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
chan= get_constraint_channel (list, name);
|
|
if(chan==NULL) {
|
|
chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan");
|
|
BLI_addtail(list, chan);
|
|
strcpy(chan->name, name);
|
|
}
|
|
|
|
return chan;
|
|
}
|
|
|
|
|
|
/* ***************** Evaluating ********************* */
|
|
|
|
/* does ipos only */
|
|
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime)
|
|
{
|
|
bConstraint *con;
|
|
bConstraintChannel *chan;
|
|
IpoCurve *icu=NULL;
|
|
|
|
for (con=conbase->first; con; con=con->next) {
|
|
chan = get_constraint_channel(chanbase, con->name);
|
|
if (chan && chan->ipo){
|
|
calc_ipo(chan->ipo, ctime);
|
|
for (icu=chan->ipo->curve.first; icu; icu=icu->next){
|
|
switch (icu->adrcode){
|
|
case CO_ENFORCE:
|
|
con->enforce = icu->curval;
|
|
if (con->enforce<0.0f) con->enforce= 0.0f;
|
|
else if (con->enforce>1.0f) con->enforce= 1.0f;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
|
|
{
|
|
float squat[4], dquat[4], fquat[4];
|
|
float ssize[3], dsize[3], fsize[4];
|
|
float sloc[3], dloc[3], floc[3];
|
|
float mat3[3][3], dstweight;
|
|
float qmat[3][3], smat[3][3];
|
|
int i;
|
|
|
|
dstweight = 1.0F-srcweight;
|
|
|
|
Mat3CpyMat4(mat3, dst);
|
|
Mat3ToQuat(mat3, dquat);
|
|
Mat3ToSize(mat3, dsize);
|
|
VECCOPY (dloc, dst[3]);
|
|
|
|
Mat3CpyMat4(mat3, src);
|
|
Mat3ToQuat(mat3, squat);
|
|
Mat3ToSize(mat3, ssize);
|
|
VECCOPY (sloc, src[3]);
|
|
|
|
/* Do the actual blend */
|
|
for (i=0; i<3; i++){
|
|
floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight);
|
|
fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight);
|
|
fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight);
|
|
}
|
|
|
|
/* Do one more iteration for the quaternions only and normalize the quaternion if needed */
|
|
fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight);
|
|
NormalQuat (fquat);
|
|
|
|
QuatToMat3(fquat, qmat);
|
|
SizeToMat3(fsize, smat);
|
|
|
|
Mat3MulMat3(mat3, qmat, smat);
|
|
Mat4CpyMat3(out, mat3);
|
|
VECCOPY (out[3], floc);
|
|
}
|
|
|
|
static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3])
|
|
{
|
|
|
|
/* Case OBJECT */
|
|
if (!strlen(substring)) {
|
|
Mat4CpyMat4 (mat, ob->obmat);
|
|
VECCOPY (size, ob->size); // whats this for, hack! (ton)
|
|
}
|
|
/* Case BONE */
|
|
else {
|
|
bPoseChannel *pchan;
|
|
float bsize[3]={1, 1, 1};
|
|
|
|
pchan = get_pose_channel(ob->pose, substring);
|
|
if (pchan){
|
|
/**
|
|
* Multiply the objectspace bonematrix by the skeletons's global
|
|
* transform to obtain the worldspace transformation of the target
|
|
*/
|
|
Mat4MulMat4 (mat, pchan->pose_mat, ob->obmat);
|
|
}
|
|
else
|
|
Mat4CpyMat4 (mat, ob->obmat);
|
|
|
|
VECCOPY(size, bsize); // whats this for, hack! (ton)
|
|
}
|
|
}
|
|
|
|
/* called during solve_constraints */
|
|
/* also for make_parent, to find correct inverse of "follow path" */
|
|
/* warning, ownerdata is void... is not Bone anymore, but PoseChannel or Object */
|
|
/* ctime is global time, uncorrected for local bsystem_time */
|
|
short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime)
|
|
{
|
|
short valid=0;
|
|
|
|
switch (con->type){
|
|
case CONSTRAINT_TYPE_NULL:
|
|
{
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
if (ownertype == TARGET_BONE) {
|
|
extern void chan_calc_mat(bPoseChannel *chan);
|
|
bActionConstraint *data = (bActionConstraint*)con->data;
|
|
bPose *pose;
|
|
bPoseChannel *pchan, *tchan;
|
|
float tempmat3[3][3];
|
|
float eul[3];
|
|
float s,t;
|
|
|
|
Mat4One(mat); // return mat
|
|
|
|
if (data->tar==NULL) return 0;
|
|
|
|
/* need proper check for bone... */
|
|
if(data->subtarget[0]) {
|
|
pchan = get_pose_channel(data->tar->pose, data->subtarget);
|
|
if (pchan) {
|
|
float arm_mat[3][3], pose_mat[3][3]; /* arm mat should be bone mat! bug... */
|
|
|
|
Mat3CpyMat4(arm_mat, pchan->bone->arm_mat);
|
|
Mat3CpyMat4(pose_mat, pchan->pose_mat);
|
|
|
|
/* new; true local rotation constraint */
|
|
if(data->local) {
|
|
float diff_mat[3][3], par_mat[3][3], ipar_mat[3][3];
|
|
/* we need the local rotation = current rotation - (parent rotation + restpos) */
|
|
|
|
if (pchan->parent) {
|
|
Mat3CpyMat4(par_mat, pchan->parent->pose_mat);
|
|
Mat3MulMat3(diff_mat, par_mat, arm_mat);
|
|
|
|
Mat3Inv(ipar_mat, diff_mat);
|
|
}
|
|
else {
|
|
Mat3Inv(ipar_mat, arm_mat);
|
|
}
|
|
|
|
Mat3MulMat3(tempmat3, ipar_mat, pose_mat);
|
|
}
|
|
else { /* we use the deform mat, for backwards compatibility */
|
|
float imat[3][3];
|
|
|
|
Mat3Inv(imat, arm_mat);
|
|
Mat3MulMat3(tempmat3, pose_mat, imat);
|
|
}
|
|
}
|
|
else Mat3One(tempmat3);
|
|
}
|
|
else {
|
|
float ans[4][4];
|
|
|
|
constraint_target_to_mat4(data->tar, data->subtarget, ans, size);
|
|
/* extract rotation, is in global world coordinates */
|
|
Mat3CpyMat4(tempmat3, ans);
|
|
}
|
|
|
|
Mat3ToEul(tempmat3, eul);
|
|
eul[0]*=(float)(180.0/M_PI);
|
|
eul[1]*=(float)(180.0/M_PI);
|
|
eul[2]*=(float)(180.0/M_PI);
|
|
|
|
/* Target defines the animation */
|
|
s = (eul[data->type]-data->min)/(data->max-data->min);
|
|
if (s<0)
|
|
s=0;
|
|
if (s>1)
|
|
s=1;
|
|
|
|
t = ( s * (data->end-data->start)) + data->start;
|
|
|
|
/* Get the appropriate information from the action, we make temp pose */
|
|
pose = MEM_callocN(sizeof(bPose), "pose");
|
|
|
|
pchan = ownerdata;
|
|
tchan= verify_pose_channel(pose, pchan->name);
|
|
extract_pose_from_action (pose, data->act, t);
|
|
|
|
chan_calc_mat(tchan);
|
|
|
|
Mat4CpyMat4(mat, tchan->chan_mat);
|
|
|
|
/* Clean up */
|
|
free_pose_channels(pose);
|
|
MEM_freeN(pose);
|
|
}
|
|
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
data = (bRotateLikeConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
data = (bSizeLikeConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
data = (bTrackToConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data;
|
|
data = (bKinematicConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else if (data->flag & CONSTRAINT_IK_AUTO) {
|
|
Object *ob= ownerdata;
|
|
|
|
if(ob==NULL)
|
|
Mat4One(mat);
|
|
else {
|
|
float vec[3];
|
|
/* move grabtarget into world space */
|
|
VECCOPY(vec, data->grabtarget);
|
|
Mat4MulVecfl(ob->obmat, vec);
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
VECCOPY(mat[3], vec);
|
|
}
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
data = (bLockTrackConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
data = (bFollowPathConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
Curve *cu;
|
|
float q[4], vec[4], dir[3], *quat, x1, totmat[4][4];
|
|
float curvetime;
|
|
|
|
Mat4One (totmat);
|
|
Mat4One (mat);
|
|
|
|
cu= data->tar->data;
|
|
|
|
/* note; when creating constraints that follow path, the curve gets the CU_PATH set now,
|
|
currently for paths to work it needs to go through the bevlist/displist system (ton) */
|
|
|
|
if(cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
|
|
makeDispListCurveTypes(data->tar, 0);
|
|
if(cu->path && cu->path->data) {
|
|
|
|
curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset;
|
|
|
|
if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
|
|
curvetime /= cu->pathlen;
|
|
CLAMP(curvetime, 0.0, 1.0);
|
|
}
|
|
|
|
if(where_on_path(data->tar, curvetime, vec, dir) ) {
|
|
|
|
if(data->followflag){
|
|
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
|
|
|
|
Normalise(dir);
|
|
q[0]= (float)cos(0.5*vec[3]);
|
|
x1= (float)sin(0.5*vec[3]);
|
|
q[1]= -x1*dir[0];
|
|
q[2]= -x1*dir[1];
|
|
q[3]= -x1*dir[2];
|
|
QuatMul(quat, q, quat);
|
|
|
|
|
|
QuatToMat4(quat, totmat);
|
|
}
|
|
VECCOPY(totmat[3], vec);
|
|
|
|
Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
data = (bStretchToConstraint*)con->data;
|
|
|
|
if (data->tar){
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
|
|
valid = 1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Mat4One(mat);
|
|
break;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
|
|
/* only called during solve_constraints */
|
|
/* bone constraints create a fake object to work on, then ob is a workob */
|
|
/* if ownerdata is set, it's the posechannel */
|
|
void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4])
|
|
{
|
|
float M_oldmat[4][4];
|
|
float M_identity[4][4];
|
|
|
|
if (!constraint || !ob)
|
|
return;
|
|
|
|
Mat4One (M_identity);
|
|
|
|
switch (constraint->type){
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
float temp[4][4];
|
|
bActionConstraint *data;
|
|
|
|
data = constraint->data;
|
|
Mat4CpyMat4 (temp, ob->obmat);
|
|
|
|
Mat4MulMat4(ob->obmat, targetmat, temp);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->flag & LOCLIKE_X)
|
|
ob->obmat[3][0] = targetmat[3][0];
|
|
if (data->flag & LOCLIKE_Y)
|
|
ob->obmat[3][1] = targetmat[3][1];
|
|
if (data->flag & LOCLIKE_Z)
|
|
ob->obmat[3][2] = targetmat[3][2];
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
float tmat[3][3];
|
|
float size[3];
|
|
|
|
data = constraint->data;
|
|
|
|
/* old files stuff only... version patch is too much code! */
|
|
if(data->flag==0) data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
|
|
|
|
Mat4ToSize(ob->obmat, size);
|
|
|
|
Mat3CpyMat4 (tmat, targetmat);
|
|
Mat3Ortho(tmat);
|
|
|
|
if(data->flag != (ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z)) {
|
|
float obeul[3], eul[3], obmat[3][3];
|
|
|
|
Mat3ToEul(tmat, eul);
|
|
Mat3CpyMat4(obmat, ob->obmat);
|
|
Mat3ToEul(obmat, obeul);
|
|
if(!(data->flag & ROTLIKE_X)) eul[0]= obeul[0];
|
|
if(!(data->flag & ROTLIKE_Y)) eul[1]= obeul[1];
|
|
if(!(data->flag & ROTLIKE_Z)) eul[2]= obeul[2];
|
|
compatible_eul(eul, obeul);
|
|
EulToMat3(eul, tmat);
|
|
}
|
|
|
|
ob->obmat[0][0] = tmat[0][0]*size[0];
|
|
ob->obmat[0][1] = tmat[0][1]*size[1];
|
|
ob->obmat[0][2] = tmat[0][2]*size[2];
|
|
|
|
ob->obmat[1][0] = tmat[1][0]*size[0];
|
|
ob->obmat[1][1] = tmat[1][1]*size[1];
|
|
ob->obmat[1][2] = tmat[1][2]*size[2];
|
|
|
|
ob->obmat[2][0] = tmat[2][0]*size[0];
|
|
ob->obmat[2][1] = tmat[2][1]*size[1];
|
|
ob->obmat[2][2] = tmat[2][2]*size[2];
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
float obsize[3], size[3];
|
|
bSizeLikeConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4ToSize(targetmat, size);
|
|
Mat4ToSize(ob->obmat, obsize);
|
|
|
|
if (data->flag & SIZELIKE_X && obsize[0] != 0)
|
|
VecMulf(ob->obmat[0], size[0] / obsize[0]);
|
|
if (data->flag & SIZELIKE_Y && obsize[1] != 0)
|
|
VecMulf(ob->obmat[1], size[1] / obsize[1]);
|
|
if (data->flag & SIZELIKE_Z && obsize[2] != 0)
|
|
VecMulf(ob->obmat[2], size[2] / obsize[2]);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_NULL:
|
|
{
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
float val1, val2;
|
|
int index;
|
|
bMinMaxConstraint *data;
|
|
float obmat[4][4],imat[4][4],tarmat[4][4],tmat[4][4];
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4CpyMat4(obmat,ob->obmat);
|
|
Mat4CpyMat4(tarmat,targetmat);
|
|
|
|
if (data->flag&MINMAX_USEROT) {
|
|
/* take rotation of target into account by doing the transaction in target's localspace */
|
|
Mat4Invert(imat,tarmat);
|
|
Mat4MulMat4(tmat,obmat,imat);
|
|
Mat4CpyMat4(obmat,tmat);
|
|
Mat4One(tarmat);
|
|
}
|
|
|
|
switch (data->minmaxflag){
|
|
case TRACK_Z:
|
|
val1 = tarmat[3][2];
|
|
val2 = obmat[3][2]-data->offset;
|
|
index = 2;
|
|
break;
|
|
case TRACK_Y:
|
|
val1 = tarmat[3][1];
|
|
val2 = obmat[3][1]-data->offset;
|
|
index = 1;
|
|
break;
|
|
case TRACK_X:
|
|
val1 = tarmat[3][0];
|
|
val2 = obmat[3][0]-data->offset;
|
|
index = 0;
|
|
break;
|
|
case TRACK_nZ:
|
|
val2 = tarmat[3][2];
|
|
val1 = obmat[3][2]-data->offset;
|
|
index = 2;
|
|
break;
|
|
case TRACK_nY:
|
|
val2 = tarmat[3][1];
|
|
val1 = obmat[3][1]-data->offset;
|
|
index = 1;
|
|
break;
|
|
case TRACK_nX:
|
|
val2 = tarmat[3][0];
|
|
val1 = obmat[3][0]-data->offset;
|
|
index = 0;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (val1 > val2) {
|
|
obmat[3][index] = tarmat[3][index] + data->offset;
|
|
if (data->flag&MINMAX_STICKY) {
|
|
if (data->flag&MINMAX_STUCK) {
|
|
VECCOPY(obmat[3], data->cache);
|
|
} else {
|
|
VECCOPY(data->cache, obmat[3]);
|
|
data->flag|=MINMAX_STUCK;
|
|
}
|
|
}
|
|
if (data->flag&MINMAX_USEROT) {
|
|
/* get out of localspace */
|
|
Mat4MulMat4(tmat,obmat,targetmat);
|
|
Mat4CpyMat4(ob->obmat,tmat);
|
|
} else {
|
|
VECCOPY(ob->obmat[3],obmat[3]);
|
|
}
|
|
|
|
} else {
|
|
data->flag&=~MINMAX_STUCK;
|
|
}
|
|
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
float size[3];
|
|
float *quat;
|
|
float vec[3];
|
|
float totmat[3][3];
|
|
float tmat[4][4];
|
|
|
|
data=(bTrackToConstraint*)constraint->data;
|
|
|
|
if (data->tar){
|
|
|
|
/* Get size property, since ob->size is only the object's own relative size, not its global one */
|
|
Mat4ToSize (ob->obmat, size);
|
|
|
|
Mat4CpyMat4 (M_oldmat, ob->obmat);
|
|
|
|
// Clear the object's rotation
|
|
ob->obmat[0][0]=size[0];
|
|
ob->obmat[0][1]=0;
|
|
ob->obmat[0][2]=0;
|
|
ob->obmat[1][0]=0;
|
|
ob->obmat[1][1]=size[1];
|
|
ob->obmat[1][2]=0;
|
|
ob->obmat[2][0]=0;
|
|
ob->obmat[2][1]=0;
|
|
ob->obmat[2][2]=size[2];
|
|
|
|
|
|
VecSubf(vec, ob->obmat[3], targetmat[3]);
|
|
quat= vectoquat(vec, (short)data->reserved1, (short)data->reserved2);
|
|
QuatToMat3(quat, totmat);
|
|
|
|
Mat4CpyMat4(tmat, ob->obmat);
|
|
|
|
Mat4MulMat34(ob->obmat, totmat, tmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
/* removed */
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
float vec[3],vec2[3];
|
|
float totmat[3][3];
|
|
float tmpmat[3][3];
|
|
float invmat[3][3];
|
|
float tmat[4][4];
|
|
float mdet;
|
|
|
|
|
|
data=(bLockTrackConstraint*)constraint->data;
|
|
|
|
if (data->tar){
|
|
|
|
Mat4CpyMat4 (M_oldmat, ob->obmat);
|
|
|
|
/* Vector object -> target */
|
|
VecSubf(vec, targetmat[3], ob->obmat[3]);
|
|
switch (data->lockflag){
|
|
case LOCK_X: /* LOCK X */
|
|
{
|
|
switch (data->trackflag){
|
|
case TRACK_Y: /* LOCK X TRACK Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[0]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalise(totmat[1]);
|
|
|
|
/* the x axis is fixed*/
|
|
totmat[0][0] = ob->obmat[0][0];
|
|
totmat[0][1] = ob->obmat[0][1];
|
|
totmat[0][2] = ob->obmat[0][2];
|
|
Normalise(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_Z: /* LOCK X TRACK Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[0]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalise(totmat[2]);
|
|
|
|
/* the x axis is fixed*/
|
|
totmat[0][0] = ob->obmat[0][0];
|
|
totmat[0][1] = ob->obmat[0][1];
|
|
totmat[0][2] = ob->obmat[0][2];
|
|
Normalise(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_nY: /* LOCK X TRACK -Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[0]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalise(totmat[1]);
|
|
VecMulf(totmat[1],-1);
|
|
|
|
/* the x axis is fixed*/
|
|
totmat[0][0] = ob->obmat[0][0];
|
|
totmat[0][1] = ob->obmat[0][1];
|
|
totmat[0][2] = ob->obmat[0][2];
|
|
Normalise(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_nZ: /* LOCK X TRACK -Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[0]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalise(totmat[2]);
|
|
VecMulf(totmat[2],-1);
|
|
|
|
/* the x axis is fixed*/
|
|
totmat[0][0] = ob->obmat[0][0];
|
|
totmat[0][1] = ob->obmat[0][1];
|
|
totmat[0][2] = ob->obmat[0][2];
|
|
Normalise(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case LOCK_Y: /* LOCK Y */
|
|
{
|
|
switch (data->trackflag){
|
|
case TRACK_X: /* LOCK Y TRACK X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[1]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalise(totmat[0]);
|
|
|
|
/* the y axis is fixed*/
|
|
totmat[1][0] = ob->obmat[1][0];
|
|
totmat[1][1] = ob->obmat[1][1];
|
|
totmat[1][2] = ob->obmat[1][2];
|
|
Normalise(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_Z: /* LOCK Y TRACK Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[1]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalise(totmat[2]);
|
|
|
|
/* the y axis is fixed*/
|
|
totmat[1][0] = ob->obmat[1][0];
|
|
totmat[1][1] = ob->obmat[1][1];
|
|
totmat[1][2] = ob->obmat[1][2];
|
|
Normalise(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
case TRACK_nX: /* LOCK Y TRACK -X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[1]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalise(totmat[0]);
|
|
VecMulf(totmat[0],-1);
|
|
|
|
/* the y axis is fixed*/
|
|
totmat[1][0] = ob->obmat[1][0];
|
|
totmat[1][1] = ob->obmat[1][1];
|
|
totmat[1][2] = ob->obmat[1][2];
|
|
Normalise(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_nZ: /* LOCK Y TRACK -Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[1]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalise(totmat[2]);
|
|
VecMulf(totmat[2],-1);
|
|
|
|
/* the y axis is fixed*/
|
|
totmat[1][0] = ob->obmat[1][0];
|
|
totmat[1][1] = ob->obmat[1][1];
|
|
totmat[1][2] = ob->obmat[1][2];
|
|
Normalise(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case LOCK_Z: /* LOCK Z */
|
|
{
|
|
switch (data->trackflag){
|
|
case TRACK_X: /* LOCK Z TRACK X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[2]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalise(totmat[0]);
|
|
|
|
/* the z axis is fixed*/
|
|
totmat[2][0] = ob->obmat[2][0];
|
|
totmat[2][1] = ob->obmat[2][1];
|
|
totmat[2][2] = ob->obmat[2][2];
|
|
Normalise(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_Y: /* LOCK Z TRACK Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[2]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalise(totmat[1]);
|
|
|
|
/* the z axis is fixed*/
|
|
totmat[2][0] = ob->obmat[2][0];
|
|
totmat[2][1] = ob->obmat[2][1];
|
|
totmat[2][2] = ob->obmat[2][2];
|
|
Normalise(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
case TRACK_nX: /* LOCK Z TRACK -X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[2]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalise(totmat[0]);
|
|
VecMulf(totmat[0],-1);
|
|
|
|
/* the z axis is fixed*/
|
|
totmat[2][0] = ob->obmat[2][0];
|
|
totmat[2][1] = ob->obmat[2][1];
|
|
totmat[2][2] = ob->obmat[2][2];
|
|
Normalise(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_nY: /* LOCK Z TRACK -Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ob->obmat[2]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalise(totmat[1]);
|
|
VecMulf(totmat[1],-1);
|
|
|
|
/* the z axis is fixed*/
|
|
totmat[2][0] = ob->obmat[2][0];
|
|
totmat[2][1] = ob->obmat[2][1];
|
|
totmat[2][2] = ob->obmat[2][2];
|
|
Normalise(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto
|
|
a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
/* Block to keep matrix heading */
|
|
tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2];
|
|
tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2];
|
|
tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2];
|
|
Normalise(tmpmat[0]);
|
|
Normalise(tmpmat[1]);
|
|
Normalise(tmpmat[2]);
|
|
Mat3Inv(invmat,tmpmat);
|
|
Mat3MulMat3(tmpmat,totmat,invmat);
|
|
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
|
|
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
|
|
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
|
|
|
|
Mat4CpyMat4(tmat, ob->obmat);
|
|
|
|
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
|
|
totmat[1][0],totmat[1][1],totmat[1][2],
|
|
totmat[2][0],totmat[2][1],totmat[2][2]);
|
|
if (mdet==0)
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
|
|
/* apply out transformaton to the object */
|
|
Mat4MulMat34(ob->obmat, totmat, tmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
float obmat[4][4];
|
|
|
|
data=(bFollowPathConstraint*)constraint->data;
|
|
|
|
if (data->tar) {
|
|
// weird, this is needed? doesnt work for workob (ton)
|
|
object_to_mat4(ob, obmat);
|
|
|
|
Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
|
|
float totmat[3][3];
|
|
float tmat[4][4];
|
|
float dist;
|
|
data=(bStretchToConstraint*)constraint->data;
|
|
Mat4ToSize (ob->obmat, size);
|
|
|
|
|
|
if (data->tar){
|
|
|
|
/* store X orientation before destroying obmat */
|
|
xx[0] = ob->obmat[0][0];
|
|
xx[1] = ob->obmat[0][1];
|
|
xx[2] = ob->obmat[0][2];
|
|
Normalise(xx);
|
|
|
|
/* store Z orientation before destroying obmat */
|
|
zz[0] = ob->obmat[2][0];
|
|
zz[1] = ob->obmat[2][1];
|
|
zz[2] = ob->obmat[2][2];
|
|
Normalise(zz);
|
|
|
|
VecSubf(vec, ob->obmat[3], targetmat[3]);
|
|
vec[0] /= size[0];
|
|
vec[1] /= size[1];
|
|
vec[2] /= size[2];
|
|
|
|
dist = Normalise(vec);
|
|
//dist = VecLenf( ob->obmat[3], targetmat[3]);
|
|
|
|
if (data->orglength == 0) data->orglength = dist;
|
|
if (data->bulge ==0) data->bulge = 1.0;
|
|
|
|
scale[1] = dist/data->orglength;
|
|
switch (data->volmode){
|
|
/* volume preserving scaling */
|
|
case VOLUME_XZ :
|
|
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
|
|
scale[2] = scale[0];
|
|
break;
|
|
case VOLUME_X:
|
|
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
|
|
scale[2] = 1.0;
|
|
break;
|
|
case VOLUME_Z:
|
|
scale[0] = 1.0;
|
|
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
|
|
break;
|
|
/* don't care for volume */
|
|
case NO_VOLUME:
|
|
scale[0] = 1.0;
|
|
scale[2] = 1.0;
|
|
break;
|
|
default: /* should not happen, but in case*/
|
|
return;
|
|
} /* switch (data->volmode) */
|
|
|
|
/* Clear the object's rotation and scale */
|
|
ob->obmat[0][0]=size[0]*scale[0];
|
|
ob->obmat[0][1]=0;
|
|
ob->obmat[0][2]=0;
|
|
ob->obmat[1][0]=0;
|
|
ob->obmat[1][1]=size[1]*scale[1];
|
|
ob->obmat[1][2]=0;
|
|
ob->obmat[2][0]=0;
|
|
ob->obmat[2][1]=0;
|
|
ob->obmat[2][2]=size[2]*scale[2];
|
|
|
|
VecSubf(vec, ob->obmat[3], targetmat[3]);
|
|
Normalise(vec);
|
|
/* new Y aligns object target connection*/
|
|
totmat[1][0] = -vec[0];
|
|
totmat[1][1] = -vec[1];
|
|
totmat[1][2] = -vec[2];
|
|
switch (data->plane){
|
|
case PLANE_X:
|
|
/* build new Z vector */
|
|
/* othogonal to "new Y" "old X! plane */
|
|
Crossf(orth, vec, xx);
|
|
Normalise(orth);
|
|
|
|
/* new Z*/
|
|
totmat[2][0] = orth[0];
|
|
totmat[2][1] = orth[1];
|
|
totmat[2][2] = orth[2];
|
|
|
|
/* we decided to keep X plane*/
|
|
Crossf(xx,orth, vec);
|
|
Normalise(xx);
|
|
totmat[0][0] = xx[0];
|
|
totmat[0][1] = xx[1];
|
|
totmat[0][2] = xx[2];
|
|
break;
|
|
case PLANE_Z:
|
|
/* build new X vector */
|
|
/* othogonal to "new Y" "old Z! plane */
|
|
Crossf(orth, vec, zz);
|
|
Normalise(orth);
|
|
|
|
/* new X*/
|
|
totmat[0][0] = -orth[0];
|
|
totmat[0][1] = -orth[1];
|
|
totmat[0][2] = -orth[2];
|
|
|
|
/* we decided to keep Z */
|
|
Crossf(zz,orth, vec);
|
|
Normalise(zz);
|
|
totmat[2][0] = zz[0];
|
|
totmat[2][1] = zz[1];
|
|
totmat[2][2] = zz[2];
|
|
break;
|
|
} /* switch (data->plane) */
|
|
|
|
|
|
Mat4CpyMat4(tmat, ob->obmat);
|
|
|
|
Mat4MulMat34(ob->obmat, totmat, tmat);
|
|
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIMIT:
|
|
{
|
|
bLocLimitConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
/* limit location relative to origin or parent */
|
|
if (data->flag2 & LIMIT_NOPARENT) {
|
|
/* limiting relative to parent */
|
|
float parmat[4][4]; /* matrix of parent */
|
|
float objLoc[3], parLoc[3]; /* location of object, and location of parent */
|
|
float relLoc[3]; /* objLoc - parLoc*/
|
|
|
|
/* get matrix of parent */
|
|
Mat4CpyMat4(parmat, ob->parent->obmat);
|
|
|
|
/* get locations as vectors */
|
|
objLoc[0] = ob->obmat[3][0];
|
|
objLoc[1] = ob->obmat[3][1];
|
|
objLoc[2] = ob->obmat[3][2];
|
|
|
|
parLoc[0] = parmat[3][0];
|
|
parLoc[1] = parmat[3][1];
|
|
parLoc[2] = parmat[3][2];
|
|
|
|
/* get relative location of obj from parent */
|
|
VecSubf(relLoc, objLoc, parLoc);
|
|
|
|
/* limiting location */
|
|
if (data->flag & LIMIT_XMIN) {
|
|
if(relLoc[0] < data->xmin)
|
|
ob->obmat[3][0] = (parLoc[0]+data->xmin);
|
|
}
|
|
if (data->flag & LIMIT_XMAX) {
|
|
if (relLoc[0] > data->xmax)
|
|
ob->obmat[3][0] = (parLoc[0]+data->xmax);
|
|
}
|
|
if (data->flag & LIMIT_YMIN) {
|
|
if(relLoc[1] < data->ymin)
|
|
ob->obmat[3][1] = (parLoc[1]+data->ymin);
|
|
}
|
|
if (data->flag & LIMIT_YMAX) {
|
|
if (relLoc[1] > data->ymax)
|
|
ob->obmat[3][1] = (parLoc[1]+data->ymax);
|
|
}
|
|
if (data->flag & LIMIT_ZMIN) {
|
|
if(relLoc[2] < data->zmin)
|
|
ob->obmat[3][2] = (parLoc[2]+data->zmin);
|
|
}
|
|
if (data->flag & LIMIT_ZMAX) {
|
|
if (relLoc[2] > data->zmax)
|
|
ob->obmat[3][2] = (parLoc[2]+data->zmax);
|
|
}
|
|
} else {
|
|
/* limiting relative to origin */
|
|
if (data->flag & LIMIT_XMIN) {
|
|
if(ob->obmat[3][0] < data->xmin)
|
|
ob->obmat[3][0] = data->xmin;
|
|
}
|
|
if (data->flag & LIMIT_XMAX) {
|
|
if (ob->obmat[3][0] > data->xmax)
|
|
ob->obmat[3][0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YMIN) {
|
|
if(ob->obmat[3][1] < data->ymin)
|
|
ob->obmat[3][1] = data->ymin;
|
|
}
|
|
if (data->flag & LIMIT_YMAX) {
|
|
if (ob->obmat[3][1] > data->ymax)
|
|
ob->obmat[3][1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZMIN) {
|
|
if(ob->obmat[3][2] < data->zmin)
|
|
ob->obmat[3][2] = data->zmin;
|
|
}
|
|
if (data->flag & LIMIT_ZMAX) {
|
|
if (ob->obmat[3][2] > data->zmax)
|
|
ob->obmat[3][2] = data->zmax;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIMIT:
|
|
{
|
|
bRotLimitConstraint *data;
|
|
float tmat[3][3];
|
|
float eul[3];
|
|
float size[3];
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4ToSize(ob->obmat, size);
|
|
|
|
Mat3CpyMat4(tmat, ob->obmat);
|
|
Mat3Ortho(tmat);
|
|
Mat3ToEul(tmat, eul);
|
|
|
|
/* eulers: radians to degrees! */
|
|
eul[0] = (eul[0] / M_PI * 180);
|
|
eul[1] = (eul[1] / M_PI * 180);
|
|
eul[2] = (eul[2] / M_PI * 180);
|
|
|
|
/* limiting of euler values... */
|
|
if (data->flag & LIMIT_XROT) {
|
|
if (eul[0] < data->xmin)
|
|
eul[0] = data->xmin;
|
|
|
|
if (eul[0] > data->xmax)
|
|
eul[0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YROT) {
|
|
if (eul[1] < data->ymin)
|
|
eul[1] = data->ymin;
|
|
|
|
if (eul[1] > data->ymax)
|
|
eul[1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZROT) {
|
|
if (eul[2] < data->zmin)
|
|
eul[2] = data->zmin;
|
|
|
|
if (eul[2] > data->zmax)
|
|
eul[2] = data->zmax;
|
|
}
|
|
|
|
/* eulers: degrees to radians ! */
|
|
eul[0] = (eul[0] / 180 * M_PI);
|
|
eul[1] = (eul[1] / 180 * M_PI);
|
|
eul[2] = (eul[2] / 180 * M_PI);
|
|
|
|
EulToMat3(eul, tmat);
|
|
|
|
ob->obmat[0][0] = tmat[0][0]*size[0];
|
|
ob->obmat[0][1] = tmat[0][1]*size[1];
|
|
ob->obmat[0][2] = tmat[0][2]*size[2];
|
|
|
|
ob->obmat[1][0] = tmat[1][0]*size[0];
|
|
ob->obmat[1][1] = tmat[1][1]*size[1];
|
|
ob->obmat[1][2] = tmat[1][2]*size[2];
|
|
|
|
ob->obmat[2][0] = tmat[2][0]*size[0];
|
|
ob->obmat[2][1] = tmat[2][1]*size[1];
|
|
ob->obmat[2][2] = tmat[2][2]*size[2];
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIMIT:
|
|
{
|
|
bSizeLimitConstraint *data;
|
|
float obsize[3], size[3];
|
|
int clearNegScale=0;
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4ToSize(ob->obmat, size);
|
|
Mat4ToSize(ob->obmat, obsize);
|
|
|
|
if (data->flag & LIMIT_XMIN) {
|
|
if (ob->transflag & OB_NEG_SCALE) {
|
|
size[0] *= -1;
|
|
|
|
if (size[0] < data->xmin) {
|
|
size[0] = data->xmin;
|
|
clearNegScale += 1;
|
|
}
|
|
} else {
|
|
if (size[0] < data->xmin)
|
|
size[0] = data->xmin;
|
|
}
|
|
}
|
|
if (data->flag & LIMIT_XMAX) {
|
|
if (size[0] > data->xmax)
|
|
size[0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YMIN) {
|
|
if (ob->transflag & OB_NEG_SCALE) {
|
|
size[1] *= -1;
|
|
|
|
if (size[1] < data->ymin) {
|
|
size[1] = data->ymin;
|
|
clearNegScale += 1;
|
|
}
|
|
} else {
|
|
if (size[1] < data->ymin)
|
|
size[1] = data->ymin;
|
|
}
|
|
}
|
|
if (data->flag & LIMIT_YMAX) {
|
|
if (size[1] > data->ymax)
|
|
size[1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZMIN) {
|
|
if (ob->transflag & OB_NEG_SCALE) {
|
|
size[2] *= -1;
|
|
|
|
if (size[2] < data->zmin) {
|
|
size[2] = data->zmin;
|
|
clearNegScale += 1;
|
|
}
|
|
} else {
|
|
if (size[2] < data->zmin)
|
|
size[2] = data->zmin;
|
|
}
|
|
}
|
|
if (data->flag & LIMIT_ZMAX) {
|
|
if (size[2] > data->zmax)
|
|
size[2] = data->zmax;
|
|
}
|
|
|
|
if (clearNegScale != 0) {
|
|
ob->transflag &= ~OB_NEG_SCALE; /* is this how we remove that flag? */
|
|
}
|
|
|
|
VecMulf(ob->obmat[0], size[0]/obsize[0]);
|
|
VecMulf(ob->obmat[1], size[1]/obsize[1]);
|
|
VecMulf(ob->obmat[2], size[2]/obsize[2]);
|
|
}
|
|
break;
|
|
default:
|
|
printf ("Error: Unknown constraint type\n");
|
|
break;
|
|
}
|
|
}
|