This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/collision.c

1047 lines
28 KiB
C

/* collision.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
/* types */
#include "DNA_curve_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_cloth_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
#include "DNA_modifier_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_edgehash.h"
#include "BLI_linklist.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_cloth.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "DNA_screen_types.h"
#include "BSE_headerbuttons.h"
#include "BIF_screen.h"
#include "BIF_space.h"
#include "mydevice.h"
#include "Bullet-C-Api.h"
#define DERANDOMIZE 1
enum TRIANGLE_MARK
{
TM_MV = 1,
TM_ME = 2,
TM_V1 = 4,
TM_V2 = 8,
TM_V3 = 16,
TM_E1 = 32,
TM_E2 = 64,
TM_E3 = 128
};
DO_INLINE int hasTriangleMark(unsigned char mark, unsigned char bit) { return mark & bit; }
DO_INLINE void setTriangleMark(unsigned char *mark, unsigned char bit) { mark[0] |= bit; }
DO_INLINE void clearTriangleMark(unsigned char *mark, unsigned char bit) { mark[0] &= ~bit; }
void generateTriangleMarks()
{
/*
unsigned int firstEdge = 0;
// 1. Initialization
memset(m_triangleMarks, 0, sizeof(unsigned char) * m_triangleCount);
// 2. The Marking Process
// 2.1 Randomly mark triangles for covering vertices.
for (unsigned int v = 0; v < m_vertexCount; ++v)
{
if (vertexCover(v) == 0)
{
// Randomly select an edge whose first triangle we're going to flag.
#ifndef DERANDOMIZE
firstEdge = (unsigned int)((float)(random() & 0x7FFFFFFF) /
(float)(0x80000000) *
(float)(m_vertices[v].getEdgeCount()));
#endif
for (unsigned int ofs = 0; ofs < m_vertices[v].getEdgeCount(); ++ofs)
{
unsigned int edgeIdx = (firstEdge + ofs) % m_vertices[v].getEdgeCount();
if (m_edges[m_vertices[v].getEdge(edgeIdx)].getTriangleCount())
setTriangleMark(m_triangleMarks[m_edges[m_vertices[v].getEdge(edgeIdx)].getTriangle(0)], TM_MV);
}
}
}
*/
/* If the Cloth is malformed (vertices without adjacent triangles) there might still be uncovered vertices. (Bad luck.) */
/*
// 2.2 Randomly mark triangles for covering edges.
for (unsigned int e = 0; e < m_edgeCount; ++e)
{
if (m_edges[e].getTriangleCount() && (edgeCover(e) == 0))
{
#ifndef DERANDOMIZE
setTriangleMark(m_triangleMarks[m_edges[e].getTriangle(static_cast<UINT32>((float)(random() & 0x7FFFFFFF) /
(float)(0x80000000) *
(float)(m_edges[e].getTriangleCount())))], TM_ME);
#else
setTriangleMark(m_triangleMarks[m_edges[e].getTriangle(0)], TM_ME);
#endif
}
}
// 3. The Unmarking Process
for (unsigned int t = 0; (t < m_triangleCount); ++t)
{
bool overCoveredVertices = true;
bool overCoveredEdges = true;
for (unsigned char i = 0; (i < 3) && (overCoveredVertices || overCoveredEdges); ++i)
{
if (vertexCover(m_triangles[t].getVertex(i)) == 1)
overCoveredVertices = false;
if (edgeCover(m_triangles[t].getEdge(i)) == 1)
overCoveredEdges = false;
assert(vertexCover(m_triangles[t].getVertex(i)) > 0);
assert(edgeCover(m_triangles[t].getEdge(i)) > 0);
}
if (overCoveredVertices)
clearTriangleMark(m_triangleMarks[t], TM_MV);
if (overCoveredEdges)
clearTriangleMark(m_triangleMarks[t], TM_ME);
}
// 4. The Bit Masking Process
vector<bool> vertexAssigned(m_vertexCount, false);
vector<bool> edgeAssigned(m_edgeCount, false);
for (unsigned int t = 0; (t < m_triangleCount); ++t)
{
for (unsigned char i = 0; i < 3; ++i)
{
if (!vertexAssigned[m_triangles[t].getVertex(i)])
{
vertexAssigned[m_triangles[t].getVertex(i)] = true;
setTriangleMark(m_triangleMarks[t], 1 << (2 + i));
}
if (!edgeAssigned[m_triangles[t].getEdge(i)])
{
edgeAssigned[m_triangles[t].getEdge(i)] = true;
setTriangleMark(m_triangleMarks[t], 1 << (5 + i));
}
}
}
*/
}
// w3 is not perfect
void bvh_compute_barycentric (float pv[3], float p1[3], float p2[3], float p3[3], double *w1, double *w2, double *w3)
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB (tempV1, p1, p3);
VECSUB (tempV2, p2, p3);
VECSUB (tempV4, pv, p3);
a = INPR (tempV1, tempV1);
b = INPR (tempV1, tempV2);
c = INPR (tempV2, tempV2);
e = INPR (tempV1, tempV4);
f = INPR (tempV2, tempV4);
d = (a * c - b * b);
if (ABS(d) < ALMOST_ZERO) {
*w1 = *w2 = *w3 = 1.0f / 3.0f;
return;
}
w1[0] = (e * c - b * f) / d;
w2[0] = (f - b * w1[0]) / c;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void interpolateOnTriangle(float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3)
{
to[0] = to[1] = to[2] = 0;
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
DO_INLINE void calculateFrictionImpulse(float to[3], float vrel[3], float normal[3], double normalVelocity,
double frictionConstant, double delta_V_n)
{
float vrel_t_pre[3];
float vrel_t[3];
VECSUBS(vrel_t_pre, vrel, normal, normalVelocity);
VECCOPY(to, vrel_t_pre);
VecMulf(to, MAX2(1.0f - frictionConstant * delta_V_n / INPR(vrel_t_pre,vrel_t_pre), 0.0f));
}
/*
int collision_static(ClothModifierData *clmd, ClothModifierData *coll_clmd, LinkNode **collision_list)
{
unsigned int i = 0, numfaces = 0;
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1, *cloth2;
MFace *face1, *face2;
double w1, w2, w3, u1, u2, u3, a1, a2, a3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
numfaces = clmd->clothObject->numfaces;
for(i = 0; i < numfaces; i++)
{
search = collision_list[i];
while(search)
{
collpair = search->link;
face1 = &(cloth1->mfaces[collpair->face1]);
face2 = &(cloth2->mfaces[collpair->face2]);
// compute barycentric coordinates for both collision points
if(!collpair->quadA)
{
bvh_compute_barycentric(collpair->p1,
cloth1->verts[face1->v1].txold,
cloth1->verts[face1->v2].txold,
cloth1->verts[face1->v3].txold,
&w1, &w2, &w3);
}
else
bvh_compute_barycentric(collpair->p1,
cloth1->verts[face1->v4].txold,
cloth1->verts[face1->v1].txold,
cloth1->verts[face1->v3].txold,
&w1, &w2, &w3);
if(!collpair->quadB)
bvh_compute_barycentric(collpair->p2,
cloth2->verts[face2->v1].txold,
cloth2->verts[face2->v2].txold,
cloth2->verts[face2->v3].txold,
&u1, &u2, &u3);
else
bvh_compute_barycentric(collpair->p2,
cloth2->verts[face2->v4].txold,
cloth2->verts[face2->v1].txold,
cloth2->verts[face2->v3].txold,
&u1, &u2, &u3);
// Calculate relative "velocity".
if(!collpair->quadA)
interpolateOnTriangle(v1, cloth1->verts[face1->v1].tv, cloth1->verts[face1->v2].tv, cloth1->verts[face1->v3].tv, w1, w2, w3);
else
interpolateOnTriangle(v1, cloth1->verts[face1->v4].tv, cloth1->verts[face1->v1].tv, cloth1->verts[face1->v3].tv, w1, w2, w3);
if(!collpair->quadB)
interpolateOnTriangle(v2, cloth2->verts[face2->v1].tv, cloth2->verts[face2->v2].tv, cloth2->verts[face2->v3].tv, u1, u2, u3);
else
interpolateOnTriangle(v2, cloth2->verts[face2->v4].tv, cloth2->verts[face2->v1].tv, cloth2->verts[face2->v3].tv, u1, u2, u3);
VECSUB(relativeVelocity, v1, v2);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR(relativeVelocity, collpair->normal);
// Calculate masses of points.
// If v_n_mag > 0 the edges are approaching each other.
if(magrelVel < -ALMOST_ZERO)
{
// Calculate Impulse magnitude to stop all motion in normal direction.
// const double I_mag = v_n_mag / (1/m1 + 1/m2);
float magnitude_i = magrelVel / 2.0f; // TODO implement masses
float tangential[3], magtangent, magnormal, collvel[3];
float vrel_t_pre[3];
float vrel_t[3];
double impulse;
float epsilon = clmd->coll_parms.epsilon;
float overlap = (epsilon + ALMOST_ZERO-collpair->distance);
// calculateFrictionImpulse(tangential, relativeVelocity, collpair->normal, magrelVel, clmd->coll_parms.friction*0.01, magrelVel);
// magtangent = INPR(tangential, tangential);
// Apply friction impulse.
if (magtangent < ALMOST_ZERO)
{
// printf("friction applied: %f\n", magtangent);
// TODO check original code
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v1].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v2].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v3].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v4].tv,tangential);
}
impulse = -magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
VECADDMUL(cloth1->verts[face1->v1].impulse, collpair->normal, impulse);
cloth1->verts[face1->v1].impulse_count++;
VECADDMUL(cloth1->verts[face1->v2].impulse, collpair->normal, impulse);
cloth1->verts[face1->v2].impulse_count++;
VECADDMUL(cloth1->verts[face1->v3].impulse, collpair->normal, impulse);
cloth1->verts[face1->v3].impulse_count++;
if(face1->v4)
{
VECADDMUL(cloth1->verts[face1->v4].impulse, collpair->normal, impulse);
cloth1->verts[face1->v4].impulse_count++;
}
if (overlap > ALMOST_ZERO) {
double I_mag = overlap * 0.1;
impulse = I_mag / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
VECADDMUL(cloth1->verts[face1->v1].impulse, collpair->normal, impulse);
cloth1->verts[face1->v1].impulse_count++;
VECADDMUL(cloth1->verts[face1->v2].impulse, collpair->normal, impulse);
cloth1->verts[face1->v2].impulse_count++;
VECADDMUL(cloth1->verts[face1->v3].impulse, collpair->normal, impulse);
cloth1->verts[face1->v3].impulse_count++;
if(face1->v4)
{
VECADDMUL(cloth1->verts[face1->v4].impulse, collpair->normal, impulse);
cloth1->verts[face1->v4].impulse_count++;
}
}
result = 1;
// printf("magnitude_i: %f\n", magnitude_i); // negative before collision in my case
// Apply the impulse and increase impulse counters.
/
// calculateFrictionImpulse(tangential, collvel, collpair->normal, magtangent, clmd->coll_parms.friction*0.01, magtangent);
VECSUBS(vrel_t_pre, collvel, collpair->normal, magnormal);
// VecMulf(vrel_t_pre, clmd->coll_parms.friction*0.01f/INPR(vrel_t_pre,vrel_t_pre));
magtangent = Normalize(vrel_t_pre);
VecMulf(vrel_t_pre, MIN2(clmd->coll_parms.friction*0.01f*magnormal,magtangent));
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v1].tv,vrel_t_pre);
}
search = search->next;
}
}
return result;
}
*/
// return distance between two triangles using bullet engine
double implicit_tri_check_coherence (ClothModifierData *clmd, ClothModifierData *coll_clmd, unsigned int tri_index1, unsigned int tri_index2, float pa[3], float pb[3], float normal[3], int quadA, int quadB)
{
MFace *face1=NULL, *face2=NULL;
float a[3][3];
float b[3][3];
double distance=0, tempdistance=0;
Cloth *cloth1=NULL, *cloth2=NULL;
float tpa[3], tpb[3], tnormal[3];
unsigned int indexA=0, indexB=0, indexC=0, indexD=0, indexE=0, indexF=0;
int i = 0;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
face1 = &(cloth1->mfaces[tri_index1]);
face2 = &(cloth2->mfaces[tri_index2]);
// face a1 + face b1
VECCOPY(a[0], cloth1->verts[face1->v1].txold);
VECCOPY(a[1], cloth1->verts[face1->v2].txold);
VECCOPY(a[2], cloth1->verts[face1->v3].txold);
VECCOPY(b[0], cloth2->verts[face2->v1].txold);
VECCOPY(b[1], cloth2->verts[face2->v2].txold);
VECCOPY(b[2], cloth2->verts[face2->v3].txold);
distance = plNearestPoints(a,b,pa,pb,normal);
quadA = quadB = 0;
for(i = 0; i < 3; i++)
{
if(i == 0)
{
if(face1->v4)
{
indexA = face1->v4;
indexB = face1->v1;
indexC = face1->v3;
indexD = face2->v1;
indexE = face2->v2;
indexF = face2->v3;
}
else
i+=2;
}
if(i == 1)
{
if((face1->v4)&&(face2->v4))
{
indexA = face1->v4;
indexB = face1->v1;
indexC = face1->v3;
indexD = face2->v4;
indexE = face2->v1;
indexF = face2->v3;
}
else
i++;
}
if(i == 2)
{
if(face2->v4)
{
indexA = face1->v1;
indexB = face1->v2;
indexC = face1->v3;
indexD = face2->v4;
indexE = face2->v1;
indexF = face2->v3;
}
else
i++;
}
if(i<3)
{
// face a2 + face b1
VECCOPY(a[0], cloth1->verts[indexA].txold);
VECCOPY(a[1], cloth1->verts[indexB].txold);
VECCOPY(a[2], cloth1->verts[indexC].txold);
VECCOPY(b[0], cloth2->verts[indexD].txold);
VECCOPY(b[1], cloth2->verts[indexE].txold);
VECCOPY(b[2], cloth2->verts[indexF].txold);
tempdistance = plNearestPoints(a,b,tpa,tpb,tnormal);
if(tempdistance < distance)
{
VECCOPY(pa, tpa);
VECCOPY(pb, tpb);
VECCOPY(normal, tnormal);
distance = tempdistance;
if(i == 0)
{
quadA = 1; quadB = 0;
}
else if(i == 1)
{
quadA = quadB = 1;
}
else if(i == 2)
{
quadA = 0; quadB = 1;
}
}
}
}
return distance;
}
// calculate plane normal
void calcPlaneNormal(float normal[3], float p11[3], float p12[3], float p13[3])
{
float temp1[3], temp2[3];
float tnormal[3];
VECSUB(temp1, p12,p11);
VECSUB(temp2, p13,p11);
Crossf(normal, temp1, temp2);
Normalize(normal);
// VECCOPY(normal, tnormal);
}
float distance_triangle_point( float p11[3], float p12[3], float p13[3], float p21[3], float normal[3])
{
float temp[3];
float magnitude = 0;
VECSUB(temp, p21, p13);
magnitude = INPR(temp, normal);
if(magnitude < 0)
{
magnitude *= -1.0f;
// VecMulf(normal, -1.0f);
}
return magnitude;
}
float nearest_point_triangle_triangle(float p11[3], float p12[3], float p13[3], float p21[3], float p22[3], float p23[3], float normal[3])
{
float distance = 0, tdistance = 0, tnormal[3];
// first triangle 1-2-3 versus second triangle 1-2-3
calcPlaneNormal(normal, p11, p12, p13);
distance = distance_triangle_point(p11, p12, p13, p21, normal);
tdistance = distance_triangle_point(p11, p12, p13, p22, normal);
if(tdistance < distance)
{
distance = tdistance;
}
tdistance = distance_triangle_point(p11, p12, p13, p23, normal);
if(tdistance < distance)
{
distance = tdistance;
}
// second triangle 1-2-3 versus first triangle 1-2-3
calcPlaneNormal(tnormal, p21, p22, p23);
tdistance = distance_triangle_point(p21, p22, p23, p11, tnormal);
if(tdistance < distance)
{
distance = tdistance;
VECCOPY(normal, tnormal);
}
tdistance = distance_triangle_point(p21, p22, p23, p12, tnormal);
if(tdistance < distance)
{
distance = tdistance;
VECCOPY(normal, tnormal);
}
tdistance = distance_triangle_point(p21, p22, p23, p13, tnormal);
if(tdistance < distance)
{
distance = tdistance;
VECCOPY(normal, tnormal);
}
if (distance < 0) {
VecMulf(normal, -1.0f);
distance = -distance;
}
return distance;
}
int collision_static2(ClothModifierData *clmd, ClothModifierData *coll_clmd, LinkNode **collision_list)
{
unsigned int i = 0, numfaces = 0;
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1, *cloth2;
MFace *face1, *face2;
double w1, w2, w3, u1, u2, u3, a1, a2, a3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
numfaces = clmd->clothObject->numfaces;
for(i = 0; i < numfaces; i++)
{
search = collision_list[i];
while(search)
{
collpair = search->link;
face1 = &(cloth1->mfaces[collpair->face1]);
face2 = &(cloth2->mfaces[collpair->face2]);
// compute barycentric coordinates for both collision points
bvh_compute_barycentric(collpair->p1,
cloth1->verts[collpair->Aindex1].txold,
cloth1->verts[collpair->Aindex2].txold,
cloth1->verts[collpair->Aindex3].txold,
&w1, &w2, &w3);
bvh_compute_barycentric(collpair->p2,
cloth2->verts[collpair->Bindex1].txold,
cloth2->verts[collpair->Bindex1].txold,
cloth2->verts[collpair->Bindex3].txold,
&u1, &u2, &u3);
// Calculate relative "velocity".
interpolateOnTriangle(v1, cloth1->verts[collpair->Aindex1].tv, cloth1->verts[collpair->Aindex2].tv, cloth1->verts[collpair->Aindex3].tv, w1, w2, w3);
interpolateOnTriangle(v2, cloth2->verts[collpair->Bindex1].tv, cloth2->verts[collpair->Bindex2].tv, cloth2->verts[collpair->Bindex3].tv, u1, u2, u3);
VECSUB(relativeVelocity, v1, v2);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR(relativeVelocity, collpair->normal);
// Calculate masses of points.
// If v_n_mag > 0 the edges are approaching each other.
if(magrelVel < -ALMOST_ZERO)
{
// Calculate Impulse magnitude to stop all motion in normal direction.
// const double I_mag = v_n_mag / (1/m1 + 1/m2);
float magnitude_i = magrelVel / 2.0f; // TODO implement masses
float tangential[3], magtangent, magnormal, collvel[3];
float vrel_t_pre[3];
float vrel_t[3];
double impulse;
float epsilon = clmd->coll_parms.epsilon;
float overlap = (epsilon + ALMOST_ZERO-collpair->distance);
/*
impulse = -magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
VECADDMUL(cloth1->verts[face1->v1].impulse, collpair->normal, impulse);
cloth1->verts[face1->v1].impulse_count++;
VECADDMUL(cloth1->verts[face1->v2].impulse, collpair->normal, impulse);
cloth1->verts[face1->v2].impulse_count++;
VECADDMUL(cloth1->verts[face1->v3].impulse, collpair->normal, impulse);
cloth1->verts[face1->v3].impulse_count++;
*/
/*
if (overlap > ALMOST_ZERO) {
double I_mag = overlap * 0.1;
impulse = I_mag / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
VECADDMUL(cloth1->verts[face1->v1].impulse, collpair->normal, impulse);
cloth1->verts[face1->v1].impulse_count++;
VECADDMUL(cloth1->verts[face1->v2].impulse, collpair->normal, impulse);
cloth1->verts[face1->v2].impulse_count++;
VECADDMUL(cloth1->verts[face1->v3].impulse, collpair->normal, impulse);
cloth1->verts[face1->v3].impulse_count++;
if(face1->v4)
{
VECADDMUL(cloth1->verts[face1->v4].impulse, collpair->normal, impulse);
cloth1->verts[face1->v4].impulse_count++;
}
}
*/
result = 1;
}
search = search->next;
}
}
return result;
}
void bvh_collision_response(ClothModifierData *clmd, ClothModifierData *coll_clmd, Tree * tree1, Tree * tree2)
{
CollPair *collpair = NULL;
LinkNode **linknode;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon, tdistance=0;
MFace *face1, *face2;
ClothVertex *verts1, *verts2;
Cloth *cloth1=NULL, *cloth2=NULL;
int i = 0;
linknode = clmd->coll_parms.temp;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
// calc SIPcode (?)
for(i = 0; i < 4; i++)
{
collpair = (CollPair *)MEM_callocN(sizeof(CollPair), "cloth coll pair");
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
verts1 = cloth1->verts;
verts2 = cloth2->verts;
if(i == 0)
{
collpair->Aindex1 = face1->v1;
collpair->Aindex2 = face1->v2;
collpair->Aindex3 = face1->v3;
collpair->Aindex4 = face1->v4;
collpair->Bindex1 = face2->v1;
collpair->Bindex2 = face2->v2;
collpair->Bindex3 = face2->v3;
collpair->Bindex4 = face2->v4;
}
if(i == 1)
{
if(face2->v4)
{
collpair->Aindex1 = face1->v1;
collpair->Aindex2 = face1->v2;
collpair->Aindex3 = face1->v3;
collpair->Aindex4 = face1->v4;
collpair->Bindex1 = face2->v4;
collpair->Bindex2 = face2->v3;
collpair->Bindex3 = face2->v1;
collpair->Bindex4 = face2->v1;
}
else
i++;
}
if(i == 2)
{
if(face1->v4)
{
collpair->Aindex1 = face1->v4;
collpair->Aindex2 = face1->v3;
collpair->Aindex3 = face1->v1;
collpair->Aindex4 = face1->v2;
collpair->Bindex1 = face2->v1;
collpair->Bindex2 = face2->v2;
collpair->Bindex3 = face2->v3;
collpair->Bindex4 = face2->v4;
}
else
i++;
}
if(i == 3)
{
if((face2->v4) && (face1->v4))
{
collpair->Aindex1 = face1->v4;
collpair->Aindex2 = face1->v3;
collpair->Aindex3 = face1->v1;
collpair->Aindex4 = face1->v2;
collpair->Bindex1 = face2->v4;
collpair->Bindex2 = face2->v3;
collpair->Bindex3 = face2->v1;
collpair->Bindex4 = face2->v2;
}
else
i++;
}
if(i < 4)
{
distance = nearest_point_triangle_triangle(verts1[collpair->Aindex1].txold, verts1[collpair->Aindex2].txold, verts1[collpair->Aindex3].txold, verts2[collpair->Bindex1].txold, verts2[collpair->Bindex2].txold, verts2[collpair->Bindex3].txold, collpair->normal);
// calc distance + normal
// distance = implicit_tri_check_coherence(clmd, coll_clmd, tree1->tri_index, tree2->tri_index, collpair->p1, collpair->p2, collpair->vector, collpair->quadA, collpair->quadB);
if (distance <= (epsilon + ALMOST_ZERO)) // max overlap = 1.0
{
printf("dist: %f, tdist: %f\n", (float)distance, tdistance);
collpair->face1 = tree1->tri_index;
collpair->face2 = tree2->tri_index;
collpair->distance = distance;
BLI_linklist_append(&linknode[tree1->tri_index], collpair);
}
else
{
MEM_freeN(collpair);
}
}
}
}
// move collision objects forward in time and update static bounding boxes
void cloth_update_collision_objects(float step)
{
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Object *coll_ob=NULL;
unsigned int i=0;
// search all objects for collision object
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
Cloth *coll_cloth = coll_clmd->clothObject;
BVH *coll_bvh = coll_clmd->clothObject->tree;
unsigned int coll_numverts = coll_cloth->numverts;
// update position of collision object
for(i = 0; i < coll_numverts; i++)
{
VECCOPY(coll_cloth->verts[i].txold, coll_cloth->verts[i].tx);
VECADDS(coll_cloth->verts[i].tx, coll_cloth->verts[i].xold, coll_cloth->verts[i].v, step);
// no dt here because of float rounding errors
VECSUB(coll_cloth->verts[i].tv, coll_cloth->verts[i].tx, coll_cloth->verts[i].txold);
}
// update BVH of collision object
bvh_update_static(coll_clmd, coll_bvh);
}
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
}
#define CLOTH_MAX_THRESHOLD 5
// cloth - object collisions
int cloth_bvh_objcollision(ClothModifierData * clmd, float step, CM_COLLISION_RESPONSE collision_response, float dt)
{
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVH *cloth_bvh=NULL;
unsigned int i=0, numfaces = 0, numverts = 0;
unsigned int result = 0, ic = 0, rounds = 0;
ClothVertex *verts = NULL;
float tnull[3] = {0,0,0};
if ((clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ) || !(((Cloth *)clmd->clothObject)->tree))
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = (BVH *) cloth->tree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvh_update_static(clmd, cloth_bvh);
// update collision objects
cloth_update_collision_objects(step);
do
{
result = 0;
ic = 0;
// handle all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
LinkNode **collision_list = MEM_callocN (sizeof(LinkNode *)*(numfaces), "collision_list");
BVH *coll_bvh = coll_clmd->clothObject->tree;
if(collision_list)
{
memset(collision_list, 0, sizeof(LinkNode *)*numfaces);
clmd->coll_parms.temp = collision_list;
bvh_traverse(clmd, coll_clmd, cloth_bvh->root, coll_bvh->root, step, collision_response);
result += collision_static2(clmd, coll_clmd, collision_list);
// calculate velocities
// free temporary list
for(i = 0; i < numfaces; i++)
{
LinkNode *search = collision_list[i];
while(search)
{
LinkNode *next= search->next;
CollPair *collpair = search->link;
if(collpair)
MEM_freeN(collpair);
search = next;
}
BLI_linklist_free(collision_list[i],NULL);
}
if(collision_list)
MEM_freeN(collision_list);
clmd->coll_parms.temp = NULL;
}
}
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
// now apply impulses parallel
for(i = 0; i < numverts; i++)
{
if(verts[i].impulse_count)
{
VECADDMUL(verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count);
VECCOPY(verts[i].impulse, tnull);
verts[i].impulse_count = 0;
ic++;
}
}
printf("ic: %d\n", ic);
rounds++;
}
while(result && (CLOTH_MAX_THRESHOLD>rounds));
printf("\n");
////////////////////////////////////////////////////////////
// update positions + velocities
////////////////////////////////////////////////////////////
// TODO
////////////////////////////////////////////////////////////
// moving collisions
////////////////////////////////////////////////////////////
// TODO
// bvh_update_moving(clmd, clmd->clothObject->tree);
return MIN2(result, 1);
}