This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh_mapping.c
Hans Goudey 2480b55f21 Mesh: Move hide flags to generic attributes
This commit moves the hide status of mesh vertices, edges, and faces
from the `ME_FLAG` to optional generic boolean attributes. Storing this
data as generic attributes can significantly simplify and improve code,
as described in T95965.

The attributes are called `.hide_vert`, `.hide_edge`, and `.hide_poly`,
using the attribute name semantics discussed in T97452. The `.` prefix
means they are "UI attributes", so they still contain original data
edited by users, but they aren't meant to be accessed procedurally by
the user in arbitrary situations. They are also be hidden in the
spreadsheet and the attribute list by default,

Until 4.0, the attributes are still written to and read from the mesh
in the old way, so neither forward nor backward compatibility are
affected. This means memory requirements will be increased by one byte
per element when the hide status is used. When the flags are removed
completely, requirements will decrease when hiding is unused.

Further notes:
 * Some code can be further simplified to skip some processing when the
   hide attributes don't exist.
 * The data is still stored in flags for `BMesh`, necessitating some
   complexity in the conversion to and from `Mesh`.
 * Access to the "hide" property of mesh elements in RNA is slower.
   The separate boolean arrays should be used where possible.

Ref T95965

Differential Revision: https://developer.blender.org/D14685
2022-08-11 12:59:06 -04:00

1160 lines
36 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*
* Functions for accessing mesh connectivity data.
* eg: polys connected to verts, UV's connected to verts.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "DNA_vec_types.h"
#include "BLI_bitmap.h"
#include "BLI_buffer.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_mesh_mapping.h"
#include "BLI_memarena.h"
#include "BLI_strict_flags.h"
/* -------------------------------------------------------------------- */
/** \name Mesh Connectivity Mapping
* \{ */
/* ngon version wip, based on BM_uv_vert_map_create */
UvVertMap *BKE_mesh_uv_vert_map_create(const MPoly *mpoly,
const bool *hide_poly,
const MLoop *mloop,
const MLoopUV *mloopuv,
uint totpoly,
uint totvert,
const float limit[2],
const bool selected,
const bool use_winding)
{
UvVertMap *vmap;
UvMapVert *buf;
const MPoly *mp;
uint a;
int i, totuv, nverts;
bool *winding = NULL;
BLI_buffer_declare_static(vec2f, tf_uv_buf, BLI_BUFFER_NOP, 32);
totuv = 0;
/* generate UvMapVert array */
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++) {
if (!selected || (!(hide_poly && hide_poly[a]) && (mp->flag & ME_FACE_SEL))) {
totuv += mp->totloop;
}
}
if (totuv == 0) {
return NULL;
}
vmap = (UvVertMap *)MEM_callocN(sizeof(*vmap), "UvVertMap");
buf = vmap->buf = (UvMapVert *)MEM_callocN(sizeof(*vmap->buf) * (size_t)totuv, "UvMapVert");
vmap->vert = (UvMapVert **)MEM_callocN(sizeof(*vmap->vert) * totvert, "UvMapVert*");
if (use_winding) {
winding = MEM_callocN(sizeof(*winding) * totpoly, "winding");
}
if (!vmap->vert || !vmap->buf) {
BKE_mesh_uv_vert_map_free(vmap);
return NULL;
}
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++) {
if (!selected || (!(hide_poly && hide_poly[a]) && (mp->flag & ME_FACE_SEL))) {
float(*tf_uv)[2] = NULL;
if (use_winding) {
tf_uv = (float(*)[2])BLI_buffer_reinit_data(&tf_uv_buf, vec2f, (size_t)mp->totloop);
}
nverts = mp->totloop;
for (i = 0; i < nverts; i++) {
buf->loop_of_poly_index = (unsigned short)i;
buf->poly_index = a;
buf->separate = 0;
buf->next = vmap->vert[mloop[mp->loopstart + i].v];
vmap->vert[mloop[mp->loopstart + i].v] = buf;
if (use_winding) {
copy_v2_v2(tf_uv[i], mloopuv[mpoly[a].loopstart + i].uv);
}
buf++;
}
if (use_winding) {
winding[a] = cross_poly_v2(tf_uv, (uint)nverts) > 0;
}
}
}
/* sort individual uvs for each vert */
for (a = 0; a < totvert; a++) {
UvMapVert *newvlist = NULL, *vlist = vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
const float *uv, *uv2;
float uvdiff[2];
while (vlist) {
v = vlist;
vlist = vlist->next;
v->next = newvlist;
newvlist = v;
uv = mloopuv[mpoly[v->poly_index].loopstart + v->loop_of_poly_index].uv;
lastv = NULL;
iterv = vlist;
while (iterv) {
next = iterv->next;
uv2 = mloopuv[mpoly[iterv->poly_index].loopstart + iterv->loop_of_poly_index].uv;
sub_v2_v2v2(uvdiff, uv2, uv);
if (fabsf(uv[0] - uv2[0]) < limit[0] && fabsf(uv[1] - uv2[1]) < limit[1] &&
(!use_winding || winding[iterv->poly_index] == winding[v->poly_index])) {
if (lastv) {
lastv->next = next;
}
else {
vlist = next;
}
iterv->next = newvlist;
newvlist = iterv;
}
else {
lastv = iterv;
}
iterv = next;
}
newvlist->separate = 1;
}
vmap->vert[a] = newvlist;
}
if (use_winding) {
MEM_freeN(winding);
}
BLI_buffer_free(&tf_uv_buf);
return vmap;
}
UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, uint v)
{
return vmap->vert[v];
}
void BKE_mesh_uv_vert_map_free(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) {
MEM_freeN(vmap->vert);
}
if (vmap->buf) {
MEM_freeN(vmap->buf);
}
MEM_freeN(vmap);
}
}
/**
* Generates a map where the key is the vertex and the value is a list
* of polys or loops that use that vertex as a corner. The lists are allocated
* from one memory pool.
*
* Wrapped by #BKE_mesh_vert_poly_map_create & BKE_mesh_vert_loop_map_create
*/
static void mesh_vert_poly_or_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop,
const bool do_loops)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, __func__);
int *indices, *index_iter;
int i, j;
indices = index_iter = MEM_mallocN(sizeof(int) * (size_t)totloop, __func__);
/* Count number of polys for each vertex */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++) {
map[mloop[p->loopstart + j].v].count++;
}
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = index_iter;
index_iter += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++) {
uint v = mloop[p->loopstart + j].v;
map[v].indices[map[v].count] = do_loops ? p->loopstart + j : i;
map[v].count++;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_poly_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop)
{
mesh_vert_poly_or_loop_map_create(r_map, r_mem, mpoly, mloop, totvert, totpoly, totloop, false);
}
void BKE_mesh_vert_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const MLoop *mloop,
int totvert,
int totpoly,
int totloop)
{
mesh_vert_poly_or_loop_map_create(r_map, r_mem, mpoly, mloop, totvert, totpoly, totloop, true);
}
void BKE_mesh_vert_looptri_map_create(MeshElemMap **r_map,
int **r_mem,
const MVert *UNUSED(mvert),
const int totvert,
const MLoopTri *mlooptri,
const int totlooptri,
const MLoop *mloop,
const int UNUSED(totloop))
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, __func__);
int *indices = MEM_mallocN(sizeof(int) * (size_t)totlooptri * 3, __func__);
int *index_step;
const MLoopTri *mlt;
int i;
/* count face users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
map[mloop[mlt->tri[j]].v].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totvert; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign looptri-edge users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
MeshElemMap *map_ele = &map[mloop[mlt->tri[j]].v];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_edge_map_create(
MeshElemMap **r_map, int **r_mem, const MEdge *medge, int totvert, int totedge)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, "vert-edge map");
int *indices = MEM_mallocN(sizeof(int[2]) * (size_t)totedge, "vert-edge map mem");
int *i_pt = indices;
int i;
/* Count number of edges for each vertex */
for (i = 0; i < totedge; i++) {
map[medge[i].v1].count++;
map[medge[i].v2].count++;
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = i_pt;
i_pt += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totedge; i++) {
const uint v[2] = {medge[i].v1, medge[i].v2};
map[v[0]].indices[map[v[0]].count] = i;
map[v[1]].indices[map[v[1]].count] = i;
map[v[0]].count++;
map[v[1]].count++;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_vert_edge_vert_map_create(
MeshElemMap **r_map, int **r_mem, const MEdge *medge, int totvert, int totedge)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totvert, "vert-edge map");
int *indices = MEM_mallocN(sizeof(int[2]) * (size_t)totedge, "vert-edge map mem");
int *i_pt = indices;
int i;
/* Count number of edges for each vertex */
for (i = 0; i < totedge; i++) {
map[medge[i].v1].count++;
map[medge[i].v2].count++;
}
/* Assign indices mem */
for (i = 0; i < totvert; i++) {
map[i].indices = i_pt;
i_pt += map[i].count;
/* Reset 'count' for use as index in last loop */
map[i].count = 0;
}
/* Find the users */
for (i = 0; i < totedge; i++) {
const uint v[2] = {medge[i].v1, medge[i].v2};
map[v[0]].indices[map[v[0]].count] = (int)v[1];
map[v[1]].indices[map[v[1]].count] = (int)v[0];
map[v[0]].count++;
map[v[1]].count++;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_edge_loop_map_create(MeshElemMap **r_map,
int **r_mem,
const MEdge *UNUSED(medge),
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totedge, "edge-poly map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totloop * 2, "edge-poly map mem");
int *index_step;
const MPoly *mp;
int i;
/* count face users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
map[ml->e].count += 2;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totedge; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign loop-edge users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
MeshElemMap *map_ele;
const int max_loop = mp->loopstart + mp->totloop;
int j = mp->loopstart;
for (ml = &mloop[j]; j < max_loop; j++, ml++) {
map_ele = &map[ml->e];
map_ele->indices[map_ele->count++] = j;
map_ele->indices[map_ele->count++] = j + 1;
}
/* last edge/loop of poly, must point back to first loop! */
map_ele->indices[map_ele->count - 1] = mp->loopstart;
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_edge_poly_map_create(MeshElemMap **r_map,
int **r_mem,
const MEdge *UNUSED(medge),
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totedge, "edge-poly map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totloop, "edge-poly map mem");
int *index_step;
const MPoly *mp;
int i;
/* count face users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
map[ml->e].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totedge; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign poly-edge users */
for (i = 0, mp = mpoly; i < totpoly; mp++, i++) {
const MLoop *ml;
int j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
MeshElemMap *map_ele = &map[ml->e];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create(MeshElemMap **r_map,
int **r_mem,
const int totsource,
const int *final_origindex,
const int totfinal)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)totsource, "poly-tessface map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)totfinal, "poly-tessface map mem");
int *index_step;
int i;
/* count face users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
BLI_assert(final_origindex[i] < totsource);
map[final_origindex[i]].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totsource; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign poly-tessface users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
MeshElemMap *map_ele = &map[final_origindex[i]];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create_looptri(MeshElemMap **r_map,
int **r_mem,
const MPoly *mpoly,
const int mpoly_num,
const MLoopTri *looptri,
const int looptri_num)
{
MeshElemMap *map = MEM_callocN(sizeof(MeshElemMap) * (size_t)mpoly_num, "poly-tessface map");
int *indices = MEM_mallocN(sizeof(int) * (size_t)looptri_num, "poly-tessface map mem");
int *index_step;
int i;
/* create offsets */
index_step = indices;
for (i = 0; i < mpoly_num; i++) {
map[i].indices = index_step;
index_step += ME_POLY_TRI_TOT(&mpoly[i]);
}
/* assign poly-tessface users */
for (i = 0; i < looptri_num; i++) {
MeshElemMap *map_ele = &map[looptri[i].poly];
map_ele->indices[map_ele->count++] = i;
}
*r_map = map;
*r_mem = indices;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh loops/poly islands.
* Used currently for UVs and 'smooth groups'.
* \{ */
/**
* Callback deciding whether the given poly/loop/edge define an island boundary or not.
*/
typedef bool (*MeshRemap_CheckIslandBoundary)(const struct MPoly *mpoly,
const struct MLoop *mloop,
const struct MEdge *medge,
const int edge_user_count,
const struct MPoly *mpoly_array,
const struct MeshElemMap *edge_poly_map,
void *user_data);
static void poly_edge_loop_islands_calc(const MEdge *medge,
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop,
MeshElemMap *edge_poly_map,
const bool use_bitflags,
MeshRemap_CheckIslandBoundary edge_boundary_check,
void *edge_boundary_check_data,
int **r_poly_groups,
int *r_totgroup,
BLI_bitmap **r_edge_borders,
int *r_totedgeborder)
{
int *poly_groups;
int *poly_stack;
BLI_bitmap *edge_borders = NULL;
int num_edgeborders = 0;
int poly_prev = 0;
const int temp_poly_group_id = 3; /* Placeholder value. */
/* Group we could not find any available bit, will be reset to 0 at end. */
const int poly_group_id_overflowed = 5;
int tot_group = 0;
bool group_id_overflow = false;
/* map vars */
int *edge_poly_mem = NULL;
if (totpoly == 0) {
*r_totgroup = 0;
*r_poly_groups = NULL;
if (r_edge_borders) {
*r_edge_borders = NULL;
*r_totedgeborder = 0;
}
return;
}
if (r_edge_borders) {
edge_borders = BLI_BITMAP_NEW(totedge, __func__);
*r_totedgeborder = 0;
}
if (!edge_poly_map) {
BKE_mesh_edge_poly_map_create(
&edge_poly_map, &edge_poly_mem, medge, totedge, mpoly, totpoly, mloop, totloop);
}
poly_groups = MEM_callocN(sizeof(int) * (size_t)totpoly, __func__);
poly_stack = MEM_mallocN(sizeof(int) * (size_t)totpoly, __func__);
while (true) {
int poly;
int bit_poly_group_mask = 0;
int poly_group_id;
int ps_curr_idx = 0, ps_end_idx = 0; /* stack indices */
for (poly = poly_prev; poly < totpoly; poly++) {
if (poly_groups[poly] == 0) {
break;
}
}
if (poly == totpoly) {
/* all done */
break;
}
poly_group_id = use_bitflags ? temp_poly_group_id : ++tot_group;
/* start searching from here next time */
poly_prev = poly + 1;
poly_groups[poly] = poly_group_id;
poly_stack[ps_end_idx++] = poly;
while (ps_curr_idx != ps_end_idx) {
const MPoly *mp;
const MLoop *ml;
int j;
poly = poly_stack[ps_curr_idx++];
BLI_assert(poly_groups[poly] == poly_group_id);
mp = &mpoly[poly];
for (ml = &mloop[mp->loopstart], j = mp->totloop; j--; ml++) {
/* loop over poly users */
const int me_idx = (int)ml->e;
const MEdge *me = &medge[me_idx];
const MeshElemMap *map_ele = &edge_poly_map[me_idx];
const int *p = map_ele->indices;
int i = map_ele->count;
if (!edge_boundary_check(mp, ml, me, i, mpoly, map_ele, edge_boundary_check_data)) {
for (; i--; p++) {
/* if we meet other non initialized its a bug */
BLI_assert(ELEM(poly_groups[*p], 0, poly_group_id));
if (poly_groups[*p] == 0) {
poly_groups[*p] = poly_group_id;
poly_stack[ps_end_idx++] = *p;
}
}
}
else {
if (edge_borders && !BLI_BITMAP_TEST(edge_borders, me_idx)) {
BLI_BITMAP_ENABLE(edge_borders, me_idx);
num_edgeborders++;
}
if (use_bitflags) {
/* Find contiguous smooth groups already assigned,
* these are the values we can't reuse! */
for (; i--; p++) {
int bit = poly_groups[*p];
if (!ELEM(bit, 0, poly_group_id, poly_group_id_overflowed) &&
!(bit_poly_group_mask & bit)) {
bit_poly_group_mask |= bit;
}
}
}
}
}
}
/* And now, we have all our poly from current group in poly_stack
* (from 0 to (ps_end_idx - 1)),
* as well as all smoothgroups bits we can't use in bit_poly_group_mask.
*/
if (use_bitflags) {
int i, *p, gid_bit = 0;
poly_group_id = 1;
/* Find first bit available! */
for (; (poly_group_id & bit_poly_group_mask) && (gid_bit < 32); gid_bit++) {
poly_group_id <<= 1; /* will 'overflow' on last possible iteration. */
}
if (UNLIKELY(gid_bit > 31)) {
/* All bits used in contiguous smooth groups, we can't do much!
* NOTE: this is *very* unlikely - theoretically, four groups are enough,
* I don't think we can reach this goal with such a simple algorithm,
* but I don't think either we'll never need all 32 groups!
*/
printf(
"Warning, could not find an available id for current smooth group, faces will me "
"marked "
"as out of any smooth group...\n");
/* Can't use 0, will have to set them to this value later. */
poly_group_id = poly_group_id_overflowed;
group_id_overflow = true;
}
if (gid_bit > tot_group) {
tot_group = gid_bit;
}
/* And assign the final smooth group id to that poly group! */
for (i = ps_end_idx, p = poly_stack; i--; p++) {
poly_groups[*p] = poly_group_id;
}
}
}
if (use_bitflags) {
/* used bits are zero-based. */
tot_group++;
}
if (UNLIKELY(group_id_overflow)) {
int i = totpoly, *gid = poly_groups;
for (; i--; gid++) {
if (*gid == poly_group_id_overflowed) {
*gid = 0;
}
}
/* Using 0 as group id adds one more group! */
tot_group++;
}
if (edge_poly_mem) {
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
}
MEM_freeN(poly_stack);
*r_totgroup = tot_group;
*r_poly_groups = poly_groups;
if (r_edge_borders) {
*r_edge_borders = edge_borders;
*r_totedgeborder = num_edgeborders;
}
}
static bool poly_is_island_boundary_smooth_cb(const MPoly *mp,
const MLoop *UNUSED(ml),
const MEdge *me,
const int edge_user_count,
const MPoly *mpoly_array,
const MeshElemMap *edge_poly_map,
void *UNUSED(user_data))
{
/* Edge is sharp if one of its polys is flat, or edge itself is sharp,
* or edge is not used by exactly two polygons. */
if ((mp->flag & ME_SMOOTH) && !(me->flag & ME_SHARP) && (edge_user_count == 2)) {
/* In that case, edge appears to be smooth, but we need to check its other poly too. */
const MPoly *mp_other = (mp == &mpoly_array[edge_poly_map->indices[0]]) ?
&mpoly_array[edge_poly_map->indices[1]] :
&mpoly_array[edge_poly_map->indices[0]];
return (mp_other->flag & ME_SMOOTH) == 0;
}
return true;
}
int *BKE_mesh_calc_smoothgroups(const MEdge *medge,
const int totedge,
const MPoly *mpoly,
const int totpoly,
const MLoop *mloop,
const int totloop,
int *r_totgroup,
const bool use_bitflags)
{
int *poly_groups = NULL;
poly_edge_loop_islands_calc(medge,
totedge,
mpoly,
totpoly,
mloop,
totloop,
NULL,
use_bitflags,
poly_is_island_boundary_smooth_cb,
NULL,
&poly_groups,
r_totgroup,
NULL,
NULL);
return poly_groups;
}
#define MISLAND_DEFAULT_BUFSIZE 64
void BKE_mesh_loop_islands_init(MeshIslandStore *island_store,
const short item_type,
const int items_num,
const short island_type,
const short innercut_type)
{
MemArena *mem = island_store->mem;
if (mem == NULL) {
mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
island_store->mem = mem;
}
/* else memarena should be cleared */
BLI_assert(
ELEM(item_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
BLI_assert(ELEM(
island_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
island_store->item_type = item_type;
island_store->items_to_islands_num = items_num;
island_store->items_to_islands = BLI_memarena_alloc(
mem, sizeof(*island_store->items_to_islands) * (size_t)items_num);
island_store->island_type = island_type;
island_store->islands_num_alloc = MISLAND_DEFAULT_BUFSIZE;
island_store->islands = BLI_memarena_alloc(
mem, sizeof(*island_store->islands) * island_store->islands_num_alloc);
island_store->innercut_type = innercut_type;
island_store->innercuts = BLI_memarena_alloc(
mem, sizeof(*island_store->innercuts) * island_store->islands_num_alloc);
}
void BKE_mesh_loop_islands_clear(MeshIslandStore *island_store)
{
island_store->item_type = MISLAND_TYPE_NONE;
island_store->items_to_islands_num = 0;
island_store->items_to_islands = NULL;
island_store->island_type = MISLAND_TYPE_NONE;
island_store->islands_num = 0;
island_store->islands = NULL;
island_store->innercut_type = MISLAND_TYPE_NONE;
island_store->innercuts = NULL;
if (island_store->mem) {
BLI_memarena_clear(island_store->mem);
}
island_store->islands_num_alloc = 0;
}
void BKE_mesh_loop_islands_free(MeshIslandStore *island_store)
{
if (island_store->mem) {
BLI_memarena_free(island_store->mem);
island_store->mem = NULL;
}
}
void BKE_mesh_loop_islands_add(MeshIslandStore *island_store,
const int item_num,
const int *items_indices,
const int num_island_items,
int *island_item_indices,
const int num_innercut_items,
int *innercut_item_indices)
{
MemArena *mem = island_store->mem;
MeshElemMap *isld, *innrcut;
const int curr_island_idx = island_store->islands_num++;
const size_t curr_num_islands = (size_t)island_store->islands_num;
int i = item_num;
while (i--) {
island_store->items_to_islands[items_indices[i]] = curr_island_idx;
}
if (UNLIKELY(curr_num_islands > island_store->islands_num_alloc)) {
MeshElemMap **islds, **innrcuts;
island_store->islands_num_alloc *= 2;
islds = BLI_memarena_alloc(mem, sizeof(*islds) * island_store->islands_num_alloc);
memcpy(islds, island_store->islands, sizeof(*islds) * (curr_num_islands - 1));
island_store->islands = islds;
innrcuts = BLI_memarena_alloc(mem, sizeof(*innrcuts) * island_store->islands_num_alloc);
memcpy(innrcuts, island_store->innercuts, sizeof(*innrcuts) * (curr_num_islands - 1));
island_store->innercuts = innrcuts;
}
island_store->islands[curr_island_idx] = isld = BLI_memarena_alloc(mem, sizeof(*isld));
isld->count = num_island_items;
isld->indices = BLI_memarena_alloc(mem, sizeof(*isld->indices) * (size_t)num_island_items);
memcpy(isld->indices, island_item_indices, sizeof(*isld->indices) * (size_t)num_island_items);
island_store->innercuts[curr_island_idx] = innrcut = BLI_memarena_alloc(mem, sizeof(*innrcut));
innrcut->count = num_innercut_items;
innrcut->indices = BLI_memarena_alloc(mem,
sizeof(*innrcut->indices) * (size_t)num_innercut_items);
memcpy(innrcut->indices,
innercut_item_indices,
sizeof(*innrcut->indices) * (size_t)num_innercut_items);
}
/* TODO: I'm not sure edge seam flag is enough to define UV islands?
* Maybe we should also consider UV-maps values
* themselves (i.e. different UV-edges for a same mesh-edge => boundary edge too?).
* Would make things much more complex though,
* and each UVMap would then need its own mesh mapping, not sure we want that at all!
*/
typedef struct MeshCheckIslandBoundaryUv {
const MLoop *loops;
const MLoopUV *luvs;
const MeshElemMap *edge_loop_map;
} MeshCheckIslandBoundaryUv;
static bool mesh_check_island_boundary_uv(const MPoly *UNUSED(mp),
const MLoop *ml,
const MEdge *me,
const int UNUSED(edge_user_count),
const MPoly *UNUSED(mpoly_array),
const MeshElemMap *UNUSED(edge_poly_map),
void *user_data)
{
if (user_data) {
const MeshCheckIslandBoundaryUv *data = user_data;
const MLoop *loops = data->loops;
const MLoopUV *luvs = data->luvs;
const MeshElemMap *edge_to_loops = &data->edge_loop_map[ml->e];
BLI_assert(edge_to_loops->count >= 2 && (edge_to_loops->count % 2) == 0);
const uint v1 = loops[edge_to_loops->indices[0]].v;
const uint v2 = loops[edge_to_loops->indices[1]].v;
const float *uvco_v1 = luvs[edge_to_loops->indices[0]].uv;
const float *uvco_v2 = luvs[edge_to_loops->indices[1]].uv;
for (int i = 2; i < edge_to_loops->count; i += 2) {
if (loops[edge_to_loops->indices[i]].v == v1) {
if (!equals_v2v2(uvco_v1, luvs[edge_to_loops->indices[i]].uv) ||
!equals_v2v2(uvco_v2, luvs[edge_to_loops->indices[i + 1]].uv)) {
return true;
}
}
else {
BLI_assert(loops[edge_to_loops->indices[i]].v == v2);
UNUSED_VARS_NDEBUG(v2);
if (!equals_v2v2(uvco_v2, luvs[edge_to_loops->indices[i]].uv) ||
!equals_v2v2(uvco_v1, luvs[edge_to_loops->indices[i + 1]].uv)) {
return true;
}
}
}
return false;
}
/* Edge is UV boundary if tagged as seam. */
return (me->flag & ME_SEAM) != 0;
}
static bool mesh_calc_islands_loop_poly_uv(MVert *UNUSED(verts),
const int UNUSED(totvert),
MEdge *edges,
const int totedge,
MPoly *polys,
const int totpoly,
MLoop *loops,
const int totloop,
const MLoopUV *luvs,
MeshIslandStore *r_island_store)
{
int *poly_groups = NULL;
int num_poly_groups;
/* map vars */
MeshElemMap *edge_poly_map;
int *edge_poly_mem;
MeshElemMap *edge_loop_map;
int *edge_loop_mem;
MeshCheckIslandBoundaryUv edge_boundary_check_data;
int *poly_indices;
int *loop_indices;
int num_pidx, num_lidx;
/* Those are used to detect 'inner cuts', i.e. edges that are borders,
* and yet have two or more polys of a same group using them
* (typical case: seam used to unwrap properly a cylinder). */
BLI_bitmap *edge_borders = NULL;
int num_edge_borders = 0;
char *edge_border_count = NULL;
int *edge_innercut_indices = NULL;
int num_einnercuts = 0;
int grp_idx, p_idx, pl_idx, l_idx;
BKE_mesh_loop_islands_clear(r_island_store);
BKE_mesh_loop_islands_init(
r_island_store, MISLAND_TYPE_LOOP, totloop, MISLAND_TYPE_POLY, MISLAND_TYPE_EDGE);
BKE_mesh_edge_poly_map_create(
&edge_poly_map, &edge_poly_mem, edges, totedge, polys, totpoly, loops, totloop);
if (luvs) {
BKE_mesh_edge_loop_map_create(
&edge_loop_map, &edge_loop_mem, edges, totedge, polys, totpoly, loops, totloop);
edge_boundary_check_data.loops = loops;
edge_boundary_check_data.luvs = luvs;
edge_boundary_check_data.edge_loop_map = edge_loop_map;
}
poly_edge_loop_islands_calc(edges,
totedge,
polys,
totpoly,
loops,
totloop,
edge_poly_map,
false,
mesh_check_island_boundary_uv,
luvs ? &edge_boundary_check_data : NULL,
&poly_groups,
&num_poly_groups,
&edge_borders,
&num_edge_borders);
if (!num_poly_groups) {
/* Should never happen... */
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
if (edge_borders) {
MEM_freeN(edge_borders);
}
return false;
}
if (num_edge_borders) {
edge_border_count = MEM_mallocN(sizeof(*edge_border_count) * (size_t)totedge, __func__);
edge_innercut_indices = MEM_mallocN(sizeof(*edge_innercut_indices) * (size_t)num_edge_borders,
__func__);
}
poly_indices = MEM_mallocN(sizeof(*poly_indices) * (size_t)totpoly, __func__);
loop_indices = MEM_mallocN(sizeof(*loop_indices) * (size_t)totloop, __func__);
/* NOTE: here we ignore '0' invalid group - this should *never* happen in this case anyway? */
for (grp_idx = 1; grp_idx <= num_poly_groups; grp_idx++) {
num_pidx = num_lidx = 0;
if (num_edge_borders) {
num_einnercuts = 0;
memset(edge_border_count, 0, sizeof(*edge_border_count) * (size_t)totedge);
}
for (p_idx = 0; p_idx < totpoly; p_idx++) {
MPoly *mp;
if (poly_groups[p_idx] != grp_idx) {
continue;
}
mp = &polys[p_idx];
poly_indices[num_pidx++] = p_idx;
for (l_idx = mp->loopstart, pl_idx = 0; pl_idx < mp->totloop; l_idx++, pl_idx++) {
MLoop *ml = &loops[l_idx];
loop_indices[num_lidx++] = l_idx;
if (num_edge_borders && BLI_BITMAP_TEST(edge_borders, ml->e) &&
(edge_border_count[ml->e] < 2)) {
edge_border_count[ml->e]++;
if (edge_border_count[ml->e] == 2) {
edge_innercut_indices[num_einnercuts++] = (int)ml->e;
}
}
}
}
BKE_mesh_loop_islands_add(r_island_store,
num_lidx,
loop_indices,
num_pidx,
poly_indices,
num_einnercuts,
edge_innercut_indices);
}
MEM_freeN(edge_poly_map);
MEM_freeN(edge_poly_mem);
if (luvs) {
MEM_freeN(edge_loop_map);
MEM_freeN(edge_loop_mem);
}
MEM_freeN(poly_indices);
MEM_freeN(loop_indices);
MEM_freeN(poly_groups);
if (edge_borders) {
MEM_freeN(edge_borders);
}
if (num_edge_borders) {
MEM_freeN(edge_border_count);
MEM_freeN(edge_innercut_indices);
}
return true;
}
bool BKE_mesh_calc_islands_loop_poly_edgeseam(MVert *verts,
const int totvert,
MEdge *edges,
const int totedge,
MPoly *polys,
const int totpoly,
MLoop *loops,
const int totloop,
MeshIslandStore *r_island_store)
{
return mesh_calc_islands_loop_poly_uv(
verts, totvert, edges, totedge, polys, totpoly, loops, totloop, NULL, r_island_store);
}
bool BKE_mesh_calc_islands_loop_poly_uvmap(MVert *verts,
const int totvert,
MEdge *edges,
const int totedge,
MPoly *polys,
const int totpoly,
MLoop *loops,
const int totloop,
const MLoopUV *luvs,
MeshIslandStore *r_island_store)
{
BLI_assert(luvs != NULL);
return mesh_calc_islands_loop_poly_uv(
verts, totvert, edges, totedge, polys, totpoly, loops, totloop, luvs, r_island_store);
}
/** \} */