This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/yafray/intern/export_File.cpp
Alfredo de Greef b64afb526a Removed some testcode from yafray_Render.cpp
Added the missing anti-aliasing pixel filter size and threshold parameters for manual AA control (disable 'Auto AA' button).
Added support for yafray raytraced depth-of-field.
Added extra panel for Camera in edit window to edit dof paramaters.
The actual focus point will be drawn as a cross when camera 'ShowLimits' is enabled, similar to the aqsis code in tuhopuu.

Note to users: raytraced DoF is very slow, for best results, the default AA parameters are not good enough, especially with higher aperture values (more blur).
So for best results, disable 'Auto AA' and set the AA parameters yourself.
It works best with multi-pass AA ('AA passes' > 1) and a reasonable 'AA samples' value, something in the range 8 - 25 or even higher.
Currently the post-process DoF is not available in yafray, alternatives are being worked on.
2004-07-13 19:22:41 +00:00

1381 lines
46 KiB
C++
Executable File

#include"export_File.h"
#include <math.h>
using namespace std;
static string command_path = "";
#ifdef WIN32
#include<windows.h>
#ifndef FILE_MAXDIR
#define FILE_MAXDIR 160
#endif
#ifndef FILE_MAXFILE
#define FILE_MAXFILE 80
#endif
static string find_path()
{
HKEY hkey;
DWORD dwType, dwSize;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,"Software\\YafRay Team\\YafRay",0,KEY_READ,&hkey)==ERROR_SUCCESS)
{
dwType = REG_EXPAND_SZ;
dwSize = MAX_PATH;
DWORD dwStat;
char *pInstallDir=new char[MAX_PATH];
dwStat=RegQueryValueEx(hkey, TEXT("InstallDir"),
NULL, NULL,(LPBYTE)pInstallDir, &dwSize);
if (dwStat == NO_ERROR)
{
string res=pInstallDir;
delete [] pInstallDir;
return res;
}
else
cout << "Couldn't READ \'InstallDir\' value. Is yafray correctly installed?\n";
delete [] pInstallDir;
RegCloseKey(hkey);
}
else
cout << "Couldn't FIND registry key for yafray, is it installed?\n";
return string("");
}
static int createDir(char* name)
{
if (BLI_exists(name))
return 2; //exists
if (CreateDirectory((LPCTSTR)(name), NULL)) {
cout << "Directory: " << name << " created\n";
return 1; // created
}
else {
cout << "Could not create directory: " << name << endl;
return 0; // fail
}
}
extern "C" { extern char bprogname[]; }
// add drive character if not in path string, using blender executable location as reference
static void addDrive(string &path)
{
int sp = path.find_first_of(":");
if (sp==-1) {
string blpath = bprogname;
sp = blpath.find_first_of(":");
if (sp!=-1) path = blpath.substr(0, sp+1) + path;
}
}
#else
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
static string unixYafrayPath()
{
static char *alternative[]=
{
"/usr/local/bin/",
"/usr/bin/",
"/bin/",
NULL
};
for(int i=0;alternative[i]!=NULL;++i)
{
string fp=string(alternative[i])+"yafray";
struct stat st;
if(stat(fp.c_str(),&st)<0) continue;
if(st.st_mode&S_IXOTH) return alternative[i];
}
return "";
}
#endif
bool yafrayFileRender_t::initExport()
{
xmlpath = "";
bool dir_failed = false;
// try the user setting setting first, export dir must be set and exist
if (strlen(U.yfexportdir)==0)
{
cout << "No export directory set in user defaults!\n";
dir_failed = true;
}
else
{
// check if it exists
if (!BLI_exists(U.yfexportdir)) {
cout << "YafRay temporary xml export directory:\n" << U.yfexportdir << "\ndoes not exist!\n";
#ifdef WIN32
// try to create it
cout << "Trying to create...\n";
if (createDir(U.yfexportdir)==0) dir_failed=true; else dir_failed=false;
#else
dir_failed = true;
#endif
}
xmlpath = U.yfexportdir;
#ifdef WIN32
// have to add drive char here too, in case win user still wants to set path him/herself
addDrive(xmlpath);
#endif
}
#ifdef WIN32
// for windows try to get the path to the yafray binary from the registry, only done once
if (command_path=="")
{
char path[FILE_MAXDIR+FILE_MAXFILE];
string yafray_path = find_path();
if (yafray_path=="")
{
// error already printed in find_path()
clearAll();
return false;
}
GetShortPathName((LPCTSTR)(yafray_path.c_str()), path, FILE_MAXDIR+FILE_MAXFILE);
command_path = string(path) + "\\";
cout << "Yafray found at : " << command_path << endl;
}
// if no export dir set, or could not create, try to create one in the yafray dir, unless it already exists
if (dir_failed)
{
string ybdir = command_path + "YBtest";
if (createDir(const_cast<char*>(ybdir.c_str()))==0) dir_failed=true; else dir_failed=false;
xmlpath = ybdir;
}
#else
if (command_path=="")
{
command_path = unixYafrayPath();
if (command_path.size()) cout << "Yafray found at : " << command_path << endl;
}
#endif
// for all
if (dir_failed) return false;
#ifdef WIN32
string DLM = "\\";
#else
string DLM = "/";
#endif
// remove trailing slash if needed
if (xmlpath.find_last_of(DLM)!=(xmlpath.length()-1)) xmlpath += DLM;
imgout = xmlpath + "YBtest.tga";
xmlpath += "YBtest.xml";
xmlfile.open(xmlpath.c_str());
if (xmlfile.fail())
{
cout << "Could not open file\n";
return false;
}
ostr << setiosflags(ios::showpoint | ios::fixed);
xmlfile << "<scene>\n\n";
return true;
}
bool yafrayFileRender_t::writeRender()
{
// finally export render block
ostr.str("");
ostr << "<render camera_name=\"MAINCAM\"\n";
ostr << "\traydepth=\"" << R.r.YF_raydepth << "\" gamma=\"" << R.r.YF_gamma << "\" exposure=\"" << R.r.YF_exposure << "\"\n";
if(R.r.YF_AA) {
ostr << "\tAA_passes=\"" << R.r.YF_AApasses << "\" AA_minsamples=\"" << R.r.YF_AAsamples << "\"\n";
ostr << "\tAA_pixelwidth=\"" << R.r.YF_AApixelsize << "\" AA_threshold=\"" << R.r.YF_AAthreshold << "\"\n";
}
else {
if ((R.r.GImethod!=0) && (R.r.GIquality>1) && (!R.r.GIcache))
ostr << "\tAA_passes=\"5\" AA_minsamples=\"5\"\n";
else if ((R.r.mode & R_OSA) && (R.r.osa)) {
int passes=(R.r.osa%4)==0 ? R.r.osa/4 : 1;
int minsamples=(R.r.osa%4)==0 ? 4 : R.r.osa;
ostr << "\tAA_passes=\"" << passes << "\" AA_minsamples=\"" << minsamples << "\"\n";
}
else ostr << "\tAA_passes=\"0\" AA_minsamples=\"1\"\n";
ostr << "\tAA_pixelwidth=\"1.5\" AA_threshold=\"0.05\" bias=\"" << R.r.YF_raybias << "\"\n";
}
if (hasworld) ostr << "\tbackground_name=\"world_background\"\n";
// alpha channel render when RGBA button enabled
if (R.r.planes==R_PLANES32) ostr << "\n\tsave_alpha=\"on\"";
ostr << " >\n";
ostr << "\t<outfile value=\"" << imgout << "\" />\n";
ostr << "</render>\n\n";
xmlfile << ostr.str();
return true;
}
bool yafrayFileRender_t::finishExport()
{
xmlfile << "</scene>\n";
xmlfile.close();
// file exported, now render
if (executeYafray(xmlpath))
displayImage();
else
{
cout << "Could not execute yafray. Is it in path?" << endl;
return false;
}
return true;
}
// displays the image rendered with xml export
// Now loads rendered image into blender renderbuf.
void yafrayFileRender_t::displayImage()
{
// although it is possible to load the image using blender,
// maybe it is best to just do a read here, for now the yafray output is always a raw tga anyway
// rectot already freed in initrender
R.rectot = (unsigned int *)MEM_callocN(sizeof(int)*R.rectx*R.recty, "rectot");
FILE* fp = fopen(imgout.c_str(), "rb");
if (fp==NULL) {
cout << "YAF_displayImage(): Could not open image file\n";
return;
}
unsigned char header[18];
fread(&header, 1, 18, fp);
unsigned short width = (unsigned short)(header[12] + (header[13]<<8));
unsigned short height = (unsigned short)(header[14] + (header[15]<<8));
unsigned char byte_per_pix = (unsigned char)(header[16]>>3);
// read past any id (none in this case though)
unsigned int idlen = (unsigned int)header[0];
if (idlen) fseek(fp, idlen, SEEK_CUR);
// read data directly into buffer, picture is upside down
for (unsigned short y=0;y<height;y++) {
unsigned char* bpt = (unsigned char*)R.rectot + ((((height-1)-y)*width)<<2);
for (unsigned short x=0;x<width;x++) {
bpt[2] = (unsigned char)fgetc(fp);
bpt[1] = (unsigned char)fgetc(fp);
bpt[0] = (unsigned char)fgetc(fp);
if (byte_per_pix==4)
bpt[3] = (unsigned char)fgetc(fp);
else
bpt[3] = 255;
bpt += 4;
}
}
fclose(fp);
fp = NULL;
}
static void adjustPath(string &path)
{
// if relative, expand to full path
if ((path[0]=='/') && (path[1]=='/')) {
string basepath = G.sce;
// fwd slash valid for win32 as well
int ls = basepath.find_last_of("/");
#ifdef WIN32
if (ls==-1) ls = basepath.find_last_of("\\");
#endif
path = basepath.substr(0, ls) + path.substr(1, path.length());
}
#ifdef WIN32
// add drive char if not there
addDrive(path);
#endif
}
void yafrayFileRender_t::writeTextures()
{
for (map<string, pair<Material*, MTex*> >::const_iterator blendtex=used_textures.begin();
blendtex!=used_textures.end();++blendtex) {
//Material* matr = blendtex->second.first;
MTex* mtex = blendtex->second.second;
Tex* tex = mtex->tex;
switch (tex->type) {
case TEX_STUCCI:
// stucci is clouds as bump, but could be added to yafray to handle both wall in/out as well.
// noisedepth must be at least 1 in yafray
case TEX_CLOUDS: {
ostr.str("");
ostr << "<shader type=\"clouds\" name=\"" << blendtex->first << "\" >\n";
ostr << "\t<attributes>\n";
ostr << "\t\t<depth value=\"" << tex->noisedepth+1 << "\" />\n";
ostr << "\t</attributes>\n";
ostr << "</shader >\n\n";
xmlfile << ostr.str();
break;
}
case TEX_WOOD: {
ostr.str("");
ostr << "<shader type=\"wood\" name=\"" << blendtex->first << "\" >\n";
ostr << "\t\t<attributes>\n";
ostr << "\t\t<depth value=\"" << tex->noisedepth+1 << "\" />\n";
ostr << "\t\t<turbulence value=\"" << tex->turbul << "\" />\n";
ostr << "\t\t<ringscale_x value=\"" << mtex->size[0] << "\" />\n";
ostr << "\t\t<ringscale_y value=\"" << mtex->size[1] << "\" />\n";
string ts = "on";
if (tex->noisetype==TEX_NOISESOFT) ts = "off";
ostr << "\t\t<hard value=\"" << ts << "\" />\n";
ostr << "\t</attributes>\n";
ostr << "</shader>\n\n";
xmlfile << ostr.str();
break;
}
case TEX_MARBLE: {
ostr.str("");
ostr << "<shader type=\"marble\" name=\"" << blendtex->first << "\" >\n";
ostr << "\t<attributes>\n";
ostr << "\t\t<depth value=\"" << tex->noisedepth+1 << "\" />\n";
ostr << "\t\t<turbulence value=\"" << tex->turbul << "\" />\n";
string ts = "on";
if (tex->noisetype==TEX_NOISESOFT) ts = "off";
ostr << "\t\t<hard value=\"" << ts << "\" />\n";
ts = "1";
if (tex->stype==1) ts="5"; else if (tex->stype==2) ts="10";
ostr << "\t\t<sharpness value=\"" << ts << "\" />\n";
ostr << "\t</attributes>\n";
ostr << "</shader>\n\n";
xmlfile << ostr.str();
break;
}
case TEX_IMAGE: {
Image* ima = tex->ima;
if (ima) {
ostr.str("");
ostr << "<shader type=\"image\" name=\"" << blendtex->first << "\" >\n";
ostr << "\t<attributes>\n";
string texpath = ima->name;
adjustPath(texpath);
ostr << "\t\t<filename value=\"" << texpath << "\" />\n";
ostr << "\t</attributes>\n";
ostr << "</shader>\n\n";
xmlfile << ostr.str();
}
break;
}
default:
cout << "Unsupported texture type\n";
}
// colorbands
if (tex->flag & TEX_COLORBAND) {
ColorBand* cb = tex->coba;
if (cb) {
ostr.str("");
ostr << "<shader type=\"colorband\" name=\"" << blendtex->first + "_coba" << "\" >\n";
ostr << "\t<attributes>\n";
ostr << "\t\t<input value=\"" << blendtex->first << "\" />\n";
ostr << "\t</attributes>\n";
for (int i=0;i<cb->tot;i++) {
ostr << "\t<modulator value=\"" << cb->data[i].pos << "\" >\n";
ostr << "\t\t<color r=\"" << cb->data[i].r << "\"" <<
" g=\"" << cb->data[i].g << "\"" <<
" b=\"" << cb->data[i].b << "\"" <<
" a=\"" << cb->data[i].a << "\" />\n";
ostr << "\t</modulator>\n";
}
ostr << "</shader>\n\n";
xmlfile << ostr.str();
}
}
}
}
// write all materials & modulators
void yafrayFileRender_t::writeMaterialsAndModulators()
{
for (map<string, Material*>::const_iterator blendmat=used_materials.begin();
blendmat!=used_materials.end();++blendmat) {
Material* matr = blendmat->second;
// blendermappers
for (int m=0;m<8;m++) {
if (matr->septex & (1<<m)) continue;// all active channels
// ignore null mtex
MTex* mtex = matr->mtex[m];
if (mtex==NULL) continue;
// ignore null tex
Tex* tex = mtex->tex;
if (tex==NULL) continue;
//map<string, pair<Material*, MTex*> >::const_iterator mtexL = used_textures.find(string(tex->id.name+2));
// now included the full name
map<string, pair<Material*, MTex*> >::const_iterator mtexL = used_textures.find(string(tex->id.name));
if (mtexL!=used_textures.end()) {
ostr.str("");
ostr << "<shader type=\"blendermapper\" name=\"" << blendmat->first + "_map" << m <<"\"";
if ((mtex->texco & TEXCO_OBJECT) || (mtex->texco & TEXCO_REFL))
{
// For object & reflection mapping, add the object matrix to the modulator,
// as in LF script, use camera matrix if no object specified.
// In this case this means the inverse of that matrix
float texmat[4][4], itexmat[4][4];
if ((mtex->texco & TEXCO_OBJECT) && (mtex->object))
MTC_Mat4CpyMat4(texmat, mtex->object->obmat);
else // also for refl. map
MTC_Mat4CpyMat4(texmat, maincam_obj->obmat);
MTC_Mat4Invert(itexmat, texmat);
ostr << "\n m00=\"" << itexmat[0][0] << "\" m01=\"" << itexmat[1][0]
<< "\" m02=\"" << itexmat[2][0] << "\" m03=\"" << itexmat[3][0] << "\"\n\t";
ostr << " m10=\"" << itexmat[0][1] << "\" m11=\"" << itexmat[1][1]
<< "\" m12=\"" << itexmat[2][1] << "\" m13=\"" << itexmat[3][1] << "\"\n\t";
ostr << " m20=\"" << itexmat[0][2] << "\" m21=\"" << itexmat[1][2]
<< "\" m22=\"" << itexmat[2][2] << "\" m23=\"" << itexmat[3][2] << "\"\n\t";
ostr << " m30=\"" << itexmat[0][3] << "\" m31=\"" << itexmat[1][3]
<< "\" m32=\"" << itexmat[2][3] << "\" m33=\"" << itexmat[3][3] << "\">\n";
}
else ostr << ">\n";
ostr << "\t<attributes>\n";
if ((tex->flag & TEX_COLORBAND) & (tex->coba!=NULL))
ostr << "\t\t<input value=\"" << mtexL->first + "_coba" << "\" />\n";
else
ostr << "\t\t<input value=\"" << mtexL->first << "\" />\n";
// size, if the texturetype is clouds/marble/wood, also take noisesize into account
float sc = 1;
if ((tex->type==TEX_CLOUDS) || (tex->type==TEX_MARBLE) || (tex->type==TEX_WOOD)) {
sc = tex->noisesize;
if (sc!=0) sc = 1.f/sc;
}
// texture size
ostr << "\t\t<sizex value=\"" << mtex->size[0]*sc << "\" />\n";
ostr << "\t\t<sizey value=\"" << mtex->size[1]*sc << "\" />\n";
ostr << "\t\t<sizez value=\"" << mtex->size[2]*sc << "\" />\n";
// texture offset
ostr << "\t\t<ofsx value=\"" << mtex->ofs[0] << "\" />\n";
ostr << "\t\t<ofsy value=\"" << mtex->ofs[1] << "\" />\n";
ostr << "\t\t<ofsz value=\"" << mtex->ofs[2] << "\" />\n";
// texture coordinates, have to disable 'sticky' in Blender
if ((mtex->texco & TEXCO_UV) || (matr->mode & MA_FACETEXTURE))
ostr << "\t\t<texco value=\"uv\" />\n";
else if ((mtex->texco & TEXCO_GLOB) || (mtex->texco & TEXCO_OBJECT))
// object mode is also set as global, but the object matrix was specified above with <modulator..>
ostr << "\t\t<texco value=\"global\" />\n";
else if (mtex->texco & TEXCO_ORCO)
ostr << "\t\t<texco value=\"orco\" />\n";
else if (mtex->texco & TEXCO_WINDOW)
ostr << "\t\t<texco value=\"window\" />\n";
else if (mtex->texco & TEXCO_NORM)
ostr << "\t\t<texco value=\"normal\" />\n";
else if (mtex->texco & TEXCO_REFL)
ostr << "\t\t<texco value=\"reflect\" />\n";
// texture mapping parameters only relevant to image type
if (tex->type==TEX_IMAGE) {
if (mtex->mapping==MTEX_FLAT)
ostr << "\t\t<mapping value=\"flat\" />\n";
else if (mtex->mapping==MTEX_CUBE)
ostr << "\t\t<mapping value=\"cube\" />\n";
else if (mtex->mapping==MTEX_TUBE)
ostr << "\t\t<mapping value=\"tube\" />\n";
else if (mtex->mapping==MTEX_SPHERE)
ostr << "\t\t<mapping value=\"sphere\" />\n";
// texture projection axes
string proj = "nxyz"; // 'n' for 'none'
ostr << "\t\t<proj_x value=\"" << proj[mtex->projx] << "\" />\n";
ostr << "\t\t<proj_y value=\"" << proj[mtex->projy] << "\" />\n";
ostr << "\t\t<proj_z value=\"" << proj[mtex->projz] << "\" />\n";
// repeat
ostr << "\t\t<xrepeat value=\"" << tex->xrepeat << "\" />\n";
ostr << "\t\t<yrepeat value=\"" << tex->yrepeat << "\" />\n";
// clipping
if (tex->extend==TEX_EXTEND)
ostr << "\t\t<clipping value=\"extend\" />\n";
else if (tex->extend==TEX_CLIP)
ostr << "\t\t<clipping value=\"clip\" />\n";
else if (tex->extend==TEX_CLIPCUBE)
ostr << "\t\t<clipping value=\"clipcube\" />\n";
else
ostr << "\t\t<clipping value=\"repeat\" />\n";
// crop min/max
ostr << "\t\t<cropmin_x value=\"" << tex->cropxmin << "\" />\n";
ostr << "\t\t<cropmin_y value=\"" << tex->cropymin << "\" />\n";
ostr << "\t\t<cropmax_x value=\"" << tex->cropxmax << "\" />\n";
ostr << "\t\t<cropmax_y value=\"" << tex->cropymax << "\" />\n";
// rot90 flag
string ts = "off";
if (tex->imaflag & TEX_IMAROT) ts = "on";
ostr << "\t\t<rot90 value=\"" << ts << "\" />\n";
}
ostr << "\t</attributes>\n";
ostr << "</shader>\n\n";
xmlfile << ostr.str();
}
}
// blendershaders + modulators
ostr.str("");
ostr << "<shader type=\"blendershader\" name=\"" << blendmat->first << "\" >\n";
ostr << "\t<attributes>\n";
float diff=matr->alpha;
ostr << "\t\t<color r=\"" << matr->r*diff << "\" g=\"" << matr->g*diff << "\" b=\"" << matr->b*diff << "\" />\n";
ostr << "\t\t<specular_color r=\"" << matr->specr << "\" g=\"" << matr->specg << "\" b=\"" << matr->specb<< "\" />\n";
ostr << "\t\t<mirror_color r=\"" << matr->mirr << "\" g=\"" << matr->mirg << "\" b=\"" << matr->mirb << "\" />\n";
ostr << "\t\t<diffuse_reflect value=\"" << matr->ref << "\" />\n";
ostr << "\t\t<specular_amount value=\"" << matr->spec << "\" />\n";
ostr << "\t\t<hard value=\"" << matr->har << "\" />\n";
ostr << "\t\t<alpha value=\"" << matr->alpha << "\" />\n";
ostr << "\t\t<emit value=\"" << (matr->emit * R.r.GIpower) << "\" />\n";
// reflection/refraction
if ( (matr->mode & MA_RAYMIRROR) || (matr->mode & MA_RAYTRANSP) )
ostr << "\t\t<IOR value=\"" << matr->ang << "\" />\n";
if (matr->mode & MA_RAYMIRROR) {
float rf = matr->ray_mirror;
// blender uses mir color for reflection as well
ostr << "\t\t<reflected r=\"" << matr->mirr << "\" g=\"" << matr->mirg << "\" b=\"" << matr->mirb << "\" />\n";
ostr << "\t\t<min_refle value=\""<< rf << "\" />\n";
if (matr->ray_depth>maxraydepth) maxraydepth = matr->ray_depth;
}
if (matr->mode & MA_RAYTRANSP)
{
float tr=1.0-matr->alpha;
ostr << "\t\t<transmitted r=\"" << matr->r * tr << "\" g=\"" << matr->g * tr << "\" b=\"" << matr->b * tr << "\" />\n";
// tir on by default
ostr << "\t\t<tir value=\"on\" />\n";
if (matr->ray_depth_tra>maxraydepth) maxraydepth = matr->ray_depth_tra;
}
string Mmode = "";
if (matr->mode & MA_TRACEBLE) Mmode += "traceable";
if (matr->mode & MA_SHADOW) Mmode += " shadow";
if (matr->mode & MA_SHLESS) Mmode += " shadeless";
if (matr->mode & MA_VERTEXCOL) Mmode += " vcol_light";
if (matr->mode & MA_VERTEXCOLP) Mmode += " vcol_paint";
if (matr->mode & MA_ZTRA) Mmode += " ztransp";
if (matr->mode & MA_ONLYSHADOW) Mmode += " onlyshadow";
if (Mmode!="") ostr << "\t\t<matmodes value=\"" << Mmode << "\" />\n";
ostr << "\t</attributes>\n";
xmlfile << ostr.str();
// modulators
for (int m2=0;m2<8;m2++) {
if (matr->septex & (1<<m2)) continue;// all active channels
// ignore null mtex
MTex* mtex = matr->mtex[m2];
if (mtex==NULL) continue;
// ignore null tex
Tex* tex = mtex->tex;
if (tex==NULL) continue;
//map<string, pair<Material*, MTex*> >::const_iterator mtexL = used_textures.find(string(tex->id.name+2));
map<string, pair<Material*, MTex*> >::const_iterator mtexL = used_textures.find(string(tex->id.name));
if (mtexL!=used_textures.end()) {
ostr.str("");
ostr << "\t<modulator>\n";
ostr << "\t\t<input value=\"" << blendmat->first + "_map" << m2 << "\" />\n";
// blendtype
string ts = "mix";
if (mtex->blendtype==MTEX_MUL) ts="mul";
else if (mtex->blendtype==MTEX_ADD) ts="add";
else if (mtex->blendtype==MTEX_SUB) ts="sub";
ostr << "\t\t<mode value=\"" << ts << "\" />\n";
// texture color (for use with MUL and/or no_rgb etc..)
ostr << "\t\t<texcol r=\"" << mtex->r << "\" g=\"" << mtex->g << "\" b=\"" << mtex->b << "\" />\n";
// texture contrast, brightness & color adjustment
ostr << "\t\t<filtercolor r=\"" << tex->rfac << "\" g=\"" << tex->gfac << "\" b=\"" << tex->bfac << "\" />\n";
ostr << "\t\t<contrast value=\"" << tex->contrast << "\" />\n";
ostr << "\t\t<brightness value=\"" << tex->bright << "\" />\n";
// all texture flags now are switches, having the value 1 or -1 (negative option)
// the negative option only used for the intensity modulation options.
// material (diffuse) color, amount controlled by colfac (see below)
if (mtex->mapto & MAP_COL)
ostr << "\t\t<color value=\"1\" />\n";
// bumpmapping
if ((mtex->mapto & MAP_NORM) || (mtex->maptoneg & MAP_NORM)) {
// for yafray, bump factor is negated (unless negative option of 'Nor', is not affected by 'Neg')
// scaled down quite a bit for yafray when image type, otherwise used directly
float nf = -mtex->norfac;
if (mtex->maptoneg & MAP_NORM) nf *= -1.f;
if (tex->type==TEX_IMAGE) nf *= 2e-3f;
ostr << "\t\t<normal value=\"" << nf << "\" />\n";
}
// all blender texture modulation as switches, either 1 or -1 (negative state of button)
// Csp, specular color modulation
if (mtex->mapto & MAP_COLSPEC)
ostr << "\t\t<colspec value=\"1\" />\n";
// CMir, mirror color modulation
if (mtex->mapto & MAP_COLMIR)
ostr << "\t\t<colmir value=\"1\" />\n";
// Ref, diffuse reflection amount modulation
if ((mtex->mapto & MAP_REF) || (mtex->maptoneg & MAP_REF)) {
int t = 1;
if (mtex->maptoneg & MAP_REF) t = -1;
ostr << "\t\t<difref value=\"" << t << "\" />\n";
}
// Spec, specular amount mod
if ((mtex->mapto & MAP_SPEC) || (mtex->maptoneg & MAP_SPEC)) {
int t = 1;
if (mtex->maptoneg & MAP_SPEC) t = -1;
ostr << "\t\t<specular value=\"" << t << "\" />\n";
}
// hardness modulation
if ((mtex->mapto & MAP_HAR) || (mtex->maptoneg & MAP_HAR)) {
int t = 1;
if (mtex->maptoneg & MAP_HAR) t = -1;
ostr << "\t\t<hard value=\"" << t << "\" />\n";
}
// alpha modulation
if ((mtex->mapto & MAP_ALPHA) || (mtex->maptoneg & MAP_ALPHA)) {
int t = 1;
if (mtex->maptoneg & MAP_ALPHA) t = -1;
ostr << "\t\t<alpha value=\"" << t << "\" />\n";
}
// emit modulation
if ((mtex->mapto & MAP_EMIT) || (mtex->maptoneg & MAP_EMIT)) {
int t = 1;
if (mtex->maptoneg & MAP_EMIT) t = -1;
ostr << "\t\t<emit value=\"" << t << "\" />\n";
}
// texture flag, combination of strings
if (mtex->texflag & (MTEX_RGBTOINT | MTEX_STENCIL | MTEX_NEGATIVE)) {
ts = "";
if (mtex->texflag & MTEX_RGBTOINT) ts += "no_rgb ";
if (mtex->texflag & MTEX_STENCIL) ts += "stencil ";
if (mtex->texflag & MTEX_NEGATIVE) ts += "negative";
ostr << "\t\t<texflag value=\"" << ts << "\" />\n";
}
// colfac, controls amount of color modulation
ostr << "\t\t<colfac value=\"" << mtex->colfac << "\" />\n";
// def_var
ostr << "\t\t<def_var value=\"" << mtex->def_var << "\" />\n";
//varfac
ostr << "\t\t<varfac value=\"" << mtex->varfac << "\" />\n";
if ((tex->imaflag & (TEX_CALCALPHA | TEX_USEALPHA)) || (tex->flag & TEX_NEGALPHA)) {
ts = "";
if (tex->imaflag & TEX_CALCALPHA) ts += "calc_alpha ";
if (tex->imaflag & TEX_USEALPHA) ts += "use_alpha ";
if (tex->flag & TEX_NEGALPHA) ts += "neg_alpha";
ostr << "\t\t<alpha_flag value=\"" << ts << "\" />\n";
}
ostr << "\t</modulator>\n";
xmlfile << ostr.str();
}
}
xmlfile << "</shader>\n\n";
}
}
void yafrayFileRender_t::writeObject(Object* obj, const vector<VlakRen*> &VLR_list, const float obmat[4][4])
{
ostr.str("");
// transform first (not necessarily actual obj->obmat, can be duplivert see below)
ostr << "<transform m00=\"" << obmat[0][0] << "\" m01=\"" << obmat[1][0]
<< "\" m02=\"" << obmat[2][0] << "\" m03=\"" << obmat[3][0] << "\"\n";
ostr << " m10=\"" << obmat[0][1] << "\" m11=\"" << obmat[1][1]
<< "\" m12=\"" << obmat[2][1] << "\" m13=\"" << obmat[3][1] << "\"\n";
ostr << " m20=\"" << obmat[0][2] << "\" m21=\"" << obmat[1][2]
<< "\" m22=\"" << obmat[2][2] << "\" m23=\"" << obmat[3][2] << "\"\n";
ostr << " m30=\"" << obmat[0][3] << "\" m31=\"" << obmat[1][3]
<< "\" m32=\"" << obmat[2][3] << "\" m33=\"" << obmat[3][3] << "\">\n";
xmlfile << ostr.str();
ostr.str("");
ostr << "<object name=\"" << obj->id.name+2 << "\"";
// yafray still needs default shader name in object def.,
// since we write a shader with every face, simply use the material of the first face
// if this is an empty string, assume default mat
char* matname = VLR_list[0]->mat->id.name;
bool shadow=VLR_list[0]->mat->mode & MA_TRACEBLE;
ostr <<" shadow=\""<< (shadow ? "on" : "off" )<<"\" ";
if (VLR_list[0]->mat->mode & MA_RAYTRANSP)
ostr << "caus_IOR=\"" << VLR_list[0]->mat->ang << "\" ";
if (strlen(matname)==0) matname = "blender_default";
//else matname+=2; //skip MA id
ostr << " shader_name=\"" << matname << "\" >\n";
ostr << "\t<attributes>\n";
if (VLR_list[0]->mat->mode & MA_RAYTRANSP)
{
float tr=1.0-VLR_list[0]->mat->alpha;
ostr << "\t\t<caus_tcolor r=\"" << VLR_list[0]->mat->r * tr
<< "\" g=\"" << VLR_list[0]->mat->g * tr
<< "\" b=\"" << VLR_list[0]->mat->b * tr << "\" />\n";
}
ostr << "\t</attributes>\n";
xmlfile << ostr.str();
// if any face in the Blender mesh uses an orco texture, every face has orco coords,
// so only need to check the first facevtx.orco in the list if they need to be exported
bool EXPORT_ORCO = (VLR_list[0]->v1->orco!=NULL);
string has_orco = "off";
if (EXPORT_ORCO) has_orco = "on";
// smooth shading if enabled
bool no_auto = true; //in case non-mesh, or mesh has no autosmooth
if (obj->type==OB_MESH) {
Mesh* mesh = (Mesh*)obj->data;
if (mesh->flag & ME_AUTOSMOOTH) {
no_auto = false;
ostr.str("");
ostr << "\t<mesh autosmooth=\"" << mesh->smoothresh << "\" has_orco=\"" << has_orco << "\" >\n";
xmlfile << ostr.str();
}
}
// this for non-mesh as well
if (no_auto) {
// If AutoSmooth not used, since yafray currently cannot specify if a face is smooth
// or flat shaded, the smooth flag of the first face is used to determine
// the shading for the whole mesh
if (VLR_list[0]->flag & ME_SMOOTH)
xmlfile << "\t<mesh autosmooth=\"90\" has_orco=\"" << has_orco << "\" >\n";
else
xmlfile << "\t<mesh autosmooth=\"0.1\" has_orco=\"" << has_orco << "\" >\n"; //0 shows artefacts
}
// now all vertices
map<VertRen*, int> vert_idx; // for removing duplicate verts and creating an index list
int vidx = 0; // vertex index counter
// vertices, transformed back to world
xmlfile << "\t\t<points>\n";
for (vector<VlakRen*>::const_iterator fci=VLR_list.begin();
fci!=VLR_list.end();++fci)
{
VlakRen* vlr = *fci;
VertRen* ver;
float* orco;
float tvec[3];
ostr.str("");
if (vert_idx.find(vlr->v1)==vert_idx.end()) {
vert_idx[vlr->v1] = vidx++;
ver = vlr->v1;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(obj->imat, tvec);
ostr << "\t\t\t<p x=\"" << tvec[0]
<< "\" y=\"" << tvec[1]
<< "\" z=\"" << tvec[2] << "\" />\n";
if (EXPORT_ORCO) {
orco = ver->orco;
ostr << "\t\t\t<p x=\"" << orco[0]
<< "\" y=\"" << orco[1]
<< "\" z=\"" << orco[2] << "\" />\n";
}
}
if (vert_idx.find(vlr->v2)==vert_idx.end()) {
vert_idx[vlr->v2] = vidx++;
ver = vlr->v2;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(obj->imat, tvec);
ostr << "\t\t\t<p x=\"" << tvec[0]
<< "\" y=\"" << tvec[1]
<< "\" z=\"" << tvec[2] << "\" />\n";
if (EXPORT_ORCO) {
orco = ver->orco;
ostr << "\t\t\t<p x=\"" << orco[0]
<< "\" y=\"" << orco[1]
<< "\" z=\"" << orco[2] << "\" />\n";
}
}
if (vert_idx.find(vlr->v3)==vert_idx.end()) {
vert_idx[vlr->v3] = vidx++;
ver = vlr->v3;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(obj->imat, tvec);
ostr << "\t\t\t<p x=\"" << tvec[0]
<< "\" y=\"" << tvec[1]
<< "\" z=\"" << tvec[2] << "\" />\n";
if (EXPORT_ORCO) {
orco = ver->orco;
ostr << "\t\t\t<p x=\"" << orco[0]
<< "\" y=\"" << orco[1]
<< "\" z=\"" << orco[2] << "\" />\n";
}
}
if ((vlr->v4) && (vert_idx.find(vlr->v4)==vert_idx.end())) {
vert_idx[vlr->v4] = vidx++;
ver = vlr->v4;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(obj->imat, tvec);
ostr << "\t\t\t<p x=\"" << tvec[0]
<< "\" y=\"" << tvec[1]
<< "\" z=\"" << tvec[2] << "\" />\n";
if (EXPORT_ORCO) {
orco = ver->orco;
ostr << "\t\t\t<p x=\"" << orco[0]
<< "\" y=\"" << orco[1]
<< "\" z=\"" << orco[2] << "\" />\n";
}
}
xmlfile << ostr.str();
}
xmlfile << "\t\t</points>\n";
// all faces using the index list created above
xmlfile << "\t\t<faces>\n";
for (vector<VlakRen*>::const_iterator fci2=VLR_list.begin();
fci2!=VLR_list.end();++fci2)
{
VlakRen* vlr = *fci2;
Material* fmat = vlr->mat;
bool EXPORT_VCOL = ((fmat->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))!=0);
char* fmatname = fmat->id.name;
if (strlen(fmatname)==0) fmatname = "blender_default";
//else fmatname+=2; //skip MA id
TFace* uvc = vlr->tface; // possible uvcoords (v upside down)
int idx1, idx2, idx3;
idx1 = vert_idx.find(vlr->v1)->second;
idx2 = vert_idx.find(vlr->v2)->second;
idx3 = vert_idx.find(vlr->v3)->second;
// make sure the indices point to the vertices when orco coords exported
if (EXPORT_ORCO) { idx1*=2; idx2*=2; idx3*=2; }
ostr.str("");
ostr << "\t\t\t<f a=\"" << idx1 << "\" b=\"" << idx2 << "\" c=\"" << idx3 << "\"";
if (uvc) {
// use correct uv coords for this triangle
if (vlr->flag & R_FACE_SPLIT) {
ostr << " u_a=\"" << uvc->uv[0][0] << "\" v_a=\"" << 1-uvc->uv[0][1] << "\""
<< " u_b=\"" << uvc->uv[2][0] << "\" v_b=\"" << 1-uvc->uv[2][1] << "\""
<< " u_c=\"" << uvc->uv[3][0] << "\" v_c=\"" << 1-uvc->uv[3][1] << "\"";
}
else {
ostr << " u_a=\"" << uvc->uv[0][0] << "\" v_a=\"" << 1-uvc->uv[0][1] << "\""
<< " u_b=\"" << uvc->uv[1][0] << "\" v_b=\"" << 1-uvc->uv[1][1] << "\""
<< " u_c=\"" << uvc->uv[2][0] << "\" v_c=\"" << 1-uvc->uv[2][1] << "\"";
}
}
// since Blender seems to need vcols when uvs are used, for yafray only export when the material actually uses vcols
if ((EXPORT_VCOL) && (vlr->vcol)) {
// vertex colors
float vr, vg, vb;
vr = ((vlr->vcol[0] >> 24) & 255)/255.0;
vg = ((vlr->vcol[0] >> 16) & 255)/255.0;
vb = ((vlr->vcol[0] >> 8) & 255)/255.0;
ostr << " vcol_a_r=\"" << vr << "\" vcol_a_g=\"" << vg << "\" vcol_a_b=\"" << vb << "\"";
vr = ((vlr->vcol[1] >> 24) & 255)/255.0;
vg = ((vlr->vcol[1] >> 16) & 255)/255.0;
vb = ((vlr->vcol[1] >> 8) & 255)/255.0;
ostr << " vcol_b_r=\"" << vr << "\" vcol_b_g=\"" << vg << "\" vcol_b_b=\"" << vb << "\"";
vr = ((vlr->vcol[2] >> 24) & 255)/255.0;
vg = ((vlr->vcol[2] >> 16) & 255)/255.0;
vb = ((vlr->vcol[2] >> 8) & 255)/255.0;
ostr << " vcol_c_r=\"" << vr << "\" vcol_c_g=\"" << vg << "\" vcol_c_b=\"" << vb << "\"";
}
ostr << " shader_name=\"" << fmatname << "\" />\n";
if (vlr->v4) {
idx1 = vert_idx.find(vlr->v3)->second;
idx2 = vert_idx.find(vlr->v4)->second;
idx3 = vert_idx.find(vlr->v1)->second;
// make sure the indices point to the vertices when orco coords exported
if (EXPORT_ORCO) { idx1*=2; idx2*=2; idx3*=2; }
ostr << "\t\t\t<f a=\"" << idx1 << "\" b=\"" << idx2 << "\" c=\"" << idx3 << "\"";
if (uvc) {
ostr << " u_a=\"" << uvc->uv[2][0] << "\" v_a=\"" << 1-uvc->uv[2][1] << "\""
<< " u_b=\"" << uvc->uv[3][0] << "\" v_b=\"" << 1-uvc->uv[3][1] << "\""
<< " u_c=\"" << uvc->uv[0][0] << "\" v_c=\"" << 1-uvc->uv[0][1] << "\"";
}
if ((EXPORT_VCOL) && (vlr->vcol)) {
// vertex colors
float vr, vg, vb;
vr = ((vlr->vcol[2] >> 24) & 255)/255.0;
vg = ((vlr->vcol[2] >> 16) & 255)/255.0;
vb = ((vlr->vcol[2] >> 8) & 255)/255.0;
ostr << " vcol_a_r=\"" << vr << "\" vcol_a_g=\"" << vg << "\" vcol_a_b=\"" << vb << "\"";
vr = ((vlr->vcol[3] >> 24) & 255)/255.0;
vg = ((vlr->vcol[3] >> 16) & 255)/255.0;
vb = ((vlr->vcol[3] >> 8) & 255)/255.0;
ostr << " vcol_b_r=\"" << vr << "\" vcol_b_g=\"" << vg << "\" vcol_b_b=\"" << vb << "\"";
vr = ((vlr->vcol[0] >> 24) & 255)/255.0;
vg = ((vlr->vcol[0] >> 16) & 255)/255.0;
vb = ((vlr->vcol[0] >> 8) & 255)/255.0;
ostr << " vcol_c_r=\"" << vr << "\" vcol_c_g=\"" << vg << "\" vcol_c_b=\"" << vb << "\"";
}
ostr << " shader_name=\"" << fmatname << "\" />\n";
}
xmlfile << ostr.str();
}
xmlfile << "\t\t</faces>\n\t</mesh>\n</object>\n</transform>\n\n";
}
// write all objects
void yafrayFileRender_t::writeAllObjects()
{
// first all objects except dupliverts (and main instance object for dups)
for (map<Object*, vector<VlakRen*> >::const_iterator obi=all_objects.begin();
obi!=all_objects.end(); ++obi)
{
// skip main duplivert object if in dupliMtx_list, written later
Object* obj = obi->first;
if (dupliMtx_list.find(string(obj->id.name))!=dupliMtx_list.end()) continue;
writeObject(obj, obi->second, obj->obmat);
}
// Now all duplivert objects (if any) as instances of main object
// The original object has been included in the VlakRen renderlist above (see convertBlenderScene.c)
// but is written here which all other duplis are instances of.
float obmat[4][4], cmat[4][4], imat[4][4], nmat[4][4];
for (map<string, vector<float> >::const_iterator dupMtx=dupliMtx_list.begin();
dupMtx!=dupliMtx_list.end();++dupMtx) {
// original inverse matrix, not actual matrix of object, but first duplivert.
for (int i=0;i<4;i++)
for (int j=0;j<4;j++)
obmat[i][j] = dupMtx->second[(i<<2)+j];
MTC_Mat4Invert(imat, obmat);
// first object written as normal (but with transform of first duplivert)
Object* obj = dup_srcob[dupMtx->first];
writeObject(obj, all_objects[obj], obmat);
// all others instances of first
for (unsigned int curmtx=16;curmtx<dupMtx->second.size();curmtx+=16) { // number of 4x4 matrices
// new mtx
for (int i=0;i<4;i++)
for (int j=0;j<4;j++)
nmat[i][j] = dupMtx->second[curmtx+(i<<2)+j];
MTC_Mat4MulMat4(cmat, imat, nmat); // transform with respect to original = inverse_original * new
ostr.str("");
// yafray matrix = transpose of Blender
ostr << "<transform m00=\"" << cmat[0][0] << "\" m01=\"" << cmat[1][0]
<< "\" m02=\"" << cmat[2][0] << "\" m03=\"" << cmat[3][0] << "\"\n";
ostr << " m10=\"" << cmat[0][1] << "\" m11=\"" << cmat[1][1]
<< "\" m12=\"" << cmat[2][1] << "\" m13=\"" << cmat[3][1] << "\"\n";
ostr << " m20=\"" << cmat[0][2] << "\" m21=\"" << cmat[1][2]
<< "\" m22=\"" << cmat[2][2] << "\" m23=\"" << cmat[3][2] << "\"\n";
ostr << " m30=\"" << cmat[0][3] << "\" m31=\"" << cmat[1][3]
<< "\" m32=\"" << cmat[2][3] << "\" m33=\"" << cmat[3][3] << "\">\n";
xmlfile << ostr.str();
// new name from original
ostr.str("");
ostr << "<object name=\"" << obj->id.name+2 << "_dup" << (curmtx>>4) << "\" original=\"" << obj->id.name+2 << "\" >\n";
xmlfile << ostr.str();
xmlfile << "\t<attributes>\n\t</attributes>\n\t<null/>\n</object>\n</transform>\n\n";
}
}
}
void yafrayFileRender_t::writeAreaLamp(LampRen* lamp, int num, float iview[4][4])
{
if (lamp->area_shape!=LA_AREA_SQUARE) return;
float *a=lamp->area[0], *b=lamp->area[1], *c=lamp->area[2], *d=lamp->area[3];
float power=lamp->energy;
ostr.str("");
string md = "off";
if (R.r.GIphotons) {md = "on";power*=R.r.GIpower;}
ostr << "<light type=\"arealight\" name=\"LAMP" << num+1 << "\" dummy=\""<< md << "\" power=\"" << power << "\" ";
if (!R.r.GIphotons) {
int psm=0, sm = lamp->ray_totsamp;
if (sm>=64) psm = sm/4;
ostr << "samples=\"" << sm << "\" psamples=\"" << psm << "\" ";
}
ostr << ">\n";
// transform area lamp coords back to world
float lpco[4][3];
MTC_cp3Float(a, lpco[0]);
MTC_Mat4MulVecfl(iview, lpco[0]);
MTC_cp3Float(b, lpco[1]);
MTC_Mat4MulVecfl(iview, lpco[1]);
MTC_cp3Float(c, lpco[2]);
MTC_Mat4MulVecfl(iview, lpco[2]);
MTC_cp3Float(d, lpco[3]);
MTC_Mat4MulVecfl(iview, lpco[3]);
ostr << "\t<a x=\""<< lpco[0][0] <<"\" y=\""<< lpco[0][1] <<"\" z=\"" << lpco[0][2] <<"\" />\n";
ostr << "\t<b x=\""<< lpco[1][0] <<"\" y=\""<< lpco[1][1] <<"\" z=\"" << lpco[1][2] <<"\" />\n";
ostr << "\t<c x=\""<< lpco[2][0] <<"\" y=\""<< lpco[2][1] <<"\" z=\"" << lpco[2][2] <<"\" />\n";
ostr << "\t<d x=\""<< lpco[3][0] <<"\" y=\""<< lpco[3][1] <<"\" z=\"" << lpco[3][2] <<"\" />\n";
ostr << "\t<color r=\"" << lamp->r << "\" g=\"" << lamp->g << "\" b=\"" << lamp->b << "\" />\n";
ostr << "</light>\n\n";
xmlfile << ostr.str();
}
void yafrayFileRender_t::writeLamps()
{
// inver viewmatrix needed for back2world transform
float iview[4][4];
// R.viewinv != inv.R.viewmat because of possible ortho mode (see convertBlenderScene.c)
// have to invert it here
MTC_Mat4Invert(iview, R.viewmat);
// all lamps
for (int i=0;i<R.totlamp;i++)
{
ostr.str("");
LampRen* lamp = R.la[i];
if (lamp->type==LA_AREA) { writeAreaLamp(lamp, i, iview); continue; }
// TODO: add decay setting in yafray
ostr << "<light type=\"";
if (lamp->type==LA_LOCAL)
ostr << "pointlight";
else if (lamp->type==LA_SPOT)
ostr << "spotlight";
else if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI)) // for now, hemi same as sun
ostr << "sunlight";
else {
// possibly unknown type, ignore
cout << "Unknown Blender lamp type: " << lamp->type << endl;
continue;
}
ostr << "\" name=\"LAMP" << i+1; //no name available here, create one
// color already premultiplied by energy, so only need distance here
float pwr;
if (lamp->mode & LA_SPHERE) {
// best approx. as used in LFexport script (LF d.f.m. 4pi?)
pwr = lamp->dist*(lamp->dist+1)*(0.25/M_PI);
//decay = 2;
}
else {
if ((lamp->type==LA_LOCAL) || (lamp->type==LA_SPOT)) {
pwr = lamp->dist;
//decay = 1;
}
else pwr = 1; // sun/hemi distance irrelevant
}
ostr << "\" power=\"" << pwr;
string lpmode="off";
// shadows only when Blender has shadow button enabled, only spots use LA_SHAD flag
if (R.r.mode & R_SHADOW)
if (((lamp->type==LA_SPOT) && (lamp->mode & LA_SHAD)) || (lamp->mode & LA_SHAD_RAY)) lpmode="on";
ostr << "\" cast_shadows=\"" << lpmode << "\"";
// spot specific stuff
if (lamp->type==LA_SPOT) {
// conversion already changed spotsize to cosine of half angle
float ld = 1-lamp->spotsi; //convert back to blender slider setting
if (ld!=0) ld = 1.f/ld;
ostr << " size=\"" << acos(lamp->spotsi)*180.0/M_PI << "\""
<< " blend=\"" << lamp->spotbl*ld << "\""
<< " beam_falloff=\"2\""; // no Blender equivalent (yet)
}
ostr << " >\n";
// transform lamp co & vec back to world
float lpco[3], lpvec[4];
MTC_cp3Float(lamp->co, lpco);
MTC_Mat4MulVecfl(iview, lpco);
MTC_cp3Float(lamp->vec, lpvec);
lpvec[3] = 0; // vec, not point
MTC_Mat4MulVec4fl(iview, lpvec);
// position, (==-blendir for sun/hemi)
if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI))
ostr << "\t<from x=\"" << -lpvec[0] << "\" y=\"" << -lpvec[1] << "\" z=\"" << -lpvec[2] << "\" />\n";
else
ostr << "\t<from x=\"" << lpco[0] << "\" y=\"" << lpco[1] << "\" z=\"" << lpco[2] << "\" />\n";
// 'to' for spot, already calculated by Blender
if (lamp->type==LA_SPOT)
ostr << "\t<to x=\"" << lpco[0] + lpvec[0]
<< "\" y=\"" << lpco[1] + lpvec[1]
<< "\" z=\"" << lpco[2] + lpvec[2] << "\" />\n";
// color
// rgb in LampRen is premultiplied by energy, power is compensated for that above
ostr << "\t<color r=\"" << lamp->r << "\" g=\"" << lamp->g << "\" b=\"" << lamp->b << "\" />\n";
ostr << "</light>\n\n";
xmlfile << ostr.str();
}
}
// write main camera
void yafrayFileRender_t::writeCamera()
{
// here Global used again
ostr.str("");
ostr << "<camera name=\"MAINCAM\" ";
if (R.r.mode & R_ORTHO)
ostr << "type=\"ortho\"";
else
ostr << "type=\"perspective\"";
// render resolution including the percentage buttons (aleady calculated in initrender for R renderdata)
int xres = R.r.xsch;
int yres = R.r.ysch;
ostr << " resx=\"" << xres << "\" resy=\"" << yres;
// aspectratio can be set in Blender as well using aspX & aspY, need an extra param. for yafray cam.
float aspect = 1;
if (R.r.xsch < R.r.ysch) aspect = float(R.r.xsch)/float(R.r.ysch);
ostr << "\" focal=\"" << mainCamLens/(aspect*32.0) << "\"";
// dof params, only valid for real camera
if (maincam_obj->type==OB_CAMERA) {
Camera* cam = (Camera*)maincam_obj->data;
ostr << "\n\tdof_distance=\"" << cam->YF_dofdist << "\"";
ostr << " aperture=\"" << cam->YF_aperture << "\"";
string st = "on";
if (cam->flag & CAM_YF_NO_QMC) st = "off";
ostr << " use_qmc=\"" << st << "\"";
}
ostr << " >\n";
xmlfile << ostr.str();
ostr.str("");
ostr << "\t<from x=\"" << maincam_obj->obmat[3][0] << "\""
<< " y=\"" << maincam_obj->obmat[3][1] << "\""
<< " z=\"" << maincam_obj->obmat[3][2] << "\" />\n";
float fdist = -R.viewmat[3][2];
if (R.r.mode & R_ORTHO) fdist *= 0.01f;
ostr << "\t<to x=\"" << maincam_obj->obmat[3][0] - fdist * R.viewmat[0][2]
<< "\" y=\"" << maincam_obj->obmat[3][1] - fdist * R.viewmat[1][2]
<< "\" z=\"" << maincam_obj->obmat[3][2] - fdist * R.viewmat[2][2] << "\" />\n";
ostr << "\t<up x=\"" << maincam_obj->obmat[3][0] + R.viewmat[0][1]
<< "\" y=\"" << maincam_obj->obmat[3][1] + R.viewmat[1][1]
<< "\" z=\"" << maincam_obj->obmat[3][2] + R.viewmat[2][1] << "\" />\n";
xmlfile << ostr.str();
xmlfile << "</camera>\n\n";
}
void yafrayFileRender_t::writeHemilight()
{
ostr.str("");
ostr << "<light type=\"hemilight\" name=\"hemi_LT\" power=\"1.0\" ";
switch (R.r.GIquality)
{
case 1 :
case 2 : ostr << " samples=\"16\" >\n"; break;
case 3 : ostr << " samples=\"36\" >\n"; break;
case 4 : ostr << " samples=\"64\" >\n"; break;
case 5 : ostr << " samples=\"128\" >\n"; break;
default: ostr << " samples=\"25\" >\n";
}
ostr << "</light>\n\n";
xmlfile << ostr.str();
}
void yafrayFileRender_t::writePathlight()
{
ostr.str("");
if(R.r.GIphotons)
{
ostr << "<light type=\"globalphotonlight\" name=\"gpm\" photons=\""<<R.r.GIphotoncount<<"\""<<endl;
ostr << "\tradius=\"" <<R.r.GIphotonradius << "\" depth=\""<< ((R.r.GIdepth>2) ? (R.r.GIdepth-1) : 1)
<< "\" caus_depth=\""<<R.r.GIcausdepth<< "\" search=\""<< R.r.GImixphotons<<"\" >"<<endl;
ostr << "</light>"<<endl;
}
ostr << "<light type=\"pathlight\" name=\"path_LT\" power=\"1.0\" ";
ostr << " depth=\"" <<((R.r.GIphotons) ? 1 : R.r.GIdepth)<< "\" caus_depth=\"" << R.r.GIcausdepth <<"\"\n";
if(R.r.GIdirect && R.r.GIphotons) ostr << "direct=\"on\"" << endl;
if (R.r.GIcache && ! (R.r.GIdirect && R.r.GIphotons))
{
switch (R.r.GIquality)
{
case 1 : ostr << " samples=\"128\" \n"; break;
case 2 : ostr << " samples=\"256\" \n"; break;
case 3 : ostr << " samples=\"512\" \n"; break;
case 4 : ostr << " samples=\"1024\" \n"; break;
case 5 : ostr << " samples=\"2048\" \n"; break;
default: ostr << " samples=\"512\" \n";
}
float aspect = 1;
if (R.r.xsch < R.r.ysch) aspect = float(R.r.xsch)/float(R.r.ysch);
float sbase = 2.0*atan(0.5/(mainCamLens/(aspect*32.0)))/float(R.r.xsch);
ostr << " cache=\"on\" use_QMC=\"on\" threshold=\"" <<R.r.GIrefinement<<"\""<<endl;
ostr << " cache_size=\"" << sbase*R.r.GIpixelspersample << "\" shadow_threshold=\"" <<
1.0 - R.r.GIshadowquality << "\" grid=\"82\" search=\"35\" gradient=\"" <<
((R.r.GIgradient)? "on" : "off") << "\" >\n";
}
else
{
switch (R.r.GIquality)
{
case 1 : ostr << " samples=\"16\" >\n"; break;
case 2 : ostr << " samples=\"36\" >\n"; break;
case 3 : ostr << " samples=\"64\" >\n"; break;
case 4 : ostr << " samples=\"128\" >\n"; break;
case 5 : ostr << " samples=\"256\" >\n"; break;
default: ostr << " samples=\"25\" >\n";
}
}
ostr << "</light>\n\n";
xmlfile << ostr.str();
}
bool yafrayFileRender_t::writeWorld()
{
World *world = G.scene->world;
if (R.r.GIquality!=0) {
if (R.r.GImethod==1) {
if (world==NULL) cout << "WARNING: need world background for skydome!\n";
writeHemilight();
}
else if (R.r.GImethod==2) writePathlight();
}
if (world==NULL) return false;
for (int i=0;i<6;i++) {
MTex* wtex = world->mtex[i];
if (!wtex) continue;
Image* wimg = wtex->tex->ima;
if ((wtex->tex->type==TEX_IMAGE) && (wimg!=NULL)) {
string wt_path = wimg->name;
adjustPath(wt_path);
if (BLI_testextensie(wimg->name, ".hdr")) {
ostr.str("");
ostr << "<background type=\"HDRI\" name=\"world_background\" ";
// since exposure adjust is an integer, using the texbri slider isn't actually very useful here (result either -1/0/1)
// GIpower could be used, but is only active for GI
ostr << "exposure_adjust=\"" << int(world->mtex[i]->tex->bright-1) << "\" mapping=\"probe\" >\n";
ostr << "\t<filename value=\"" << wt_path << "\" />\n";
ostr << "</background>\n\n";
xmlfile << ostr.str();
return true;
}
else if (BLI_testextensie(wimg->name, ".jpg") || BLI_testextensie(wimg->name, ".jpeg") || BLI_testextensie(wimg->name, ".tga")) {
ostr.str("");
ostr << "<background type=\"image\" name=\"world_background\" >\n";
/*
// not yet in yafray, always assumes spheremap for now, not the same as in Blender,
// which for some reason is scaled by 2 in Blender???
if (wtex->texco & TEXCO_ANGMAP)
ostr << " mapping=\"probe\" >\n";
else
ostr << " mapping=\"sphere\" >\n";
*/
ostr << "\t<filename value=\"" << wt_path << "\" />\n";
ostr << "</background>\n\n";
xmlfile << ostr.str();
return true;
}
}
}
ostr.str("");
ostr << "<background type=\"constant\" name=\"world_background\" >\n";
// if no GI used, the GIpower parameter is not always initialized, so in that case ignore it
// (have to change method to init yafray vars in Blender)
float bg_mult;
if (R.r.GImethod==0) bg_mult=1; else bg_mult=R.r.GIpower;
ostr << "\t<color r=\"" << (world->horr * bg_mult) <<
"\" g=\"" << (world->horg * bg_mult) <<
"\" b=\"" << (world->horb * bg_mult) << "\" />\n";
ostr << "</background>\n\n";
xmlfile << ostr.str();
return true;
}
bool yafrayFileRender_t::executeYafray(const string &xmlpath)
{
char yfr[8];
sprintf(yfr, "%d ", R.r.YF_numprocs);
string command = command_path + "yafray -c " + yfr + "\"" + xmlpath + "\"";
#ifndef WIN32
sigset_t yaf,old;
sigemptyset(&yaf);
sigaddset(&yaf, SIGVTALRM);
sigprocmask(SIG_BLOCK, &yaf, &old);
int ret=system(command.c_str());
sigprocmask(SIG_SETMASK, &old, NULL);
if (WIFEXITED(ret))
{
if (WEXITSTATUS(ret)) cout<<"Executed -"<<command<<"-"<<endl;
switch (WEXITSTATUS(ret))
{
case 0: cout << "Yafray completed successfully\n"; return true;
case 127: cout << "Yafray not found\n"; return false;
case 126: cout << "Yafray: permission denied\n"; return false;
default: cout << "Yafray exited with errors\n"; return false;
}
}
else if (WIFSIGNALED(ret))
cout << "Yafray crashed\n";
else
cout << "Unknown error\n";
return false;
#else
int ret=system(command.c_str());
return ret==0;
#endif
}