This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/vector.c
Joseph Gilbert b89035906d Mathutils update
- also included is some fixes for preprocessor inclues and some clean up of the previous commit

-rewrite and bugfixes
  ----------------------------------
  Here's my changelog:
  -fixed Rand() so that it doesn't seed everytime and should generate better random numbers
  - changed a few error return types to something more appropriate
  - clean up of uninitialized variables & removal of unneccessary objects
  - NMesh returns wrapped vectors now
  - World returns wrapped matrices now
  - Object.getEuler() and Object.getBoundingBox() return Wrapped data when data is present
  - Object.getMatrix() returns wrapped data if it's worldspace, 'localspace' returns a new matrix
  - Vector, Euler, Mat, Quat, call all now internally wrap object without destroying internal datablocks
  - Removed memory allocation (unneeded) from all methods
  - Vector's resize methods are only applicable to new vectors not wrapped data.
  - Matrix(), Quat(), Euler(), Vector() now accepts ANY sequence list, including tuples, list, or a self object to copy - matrices accept multiple sequences
  - Fixed Slerp() so that it now works correctly values are clamped between 0 and 1
  - Euler.rotate does internal rotation now
  - Slice assignment now works better for all types
  - Vector * Vector and Quat * Quat are defined and return the DOT product
  - Mat * Vec and Vec * Mat are defined now
  - Moved #includes to .c file from headers. Also fixed prototypes in mathutils
  - Added new helper functions for incref'ing to genutils
  - Major cleanup of header files includes - include Mathutils.h for access to math types
  - matrix.toQuat() and .toEuler() now fixed take appropriate matrix sizes
  - Matrix() with no parameters now returns an identity matrix by default not a zero matrix
  - printf() now prints with 6 digits instead of 4
  - printf() now prints output with object descriptor
  - Matrices now support [x][y] assignment (e.g. matrix[x][y] = 5.4)
  - Matrix[index] = value now expectes a sequence not an integer. This will now set a ROW of the matrix through a sequence.  index cannot go above the row size of the matrix.
  - slice operations on matrices work with sequences now (rows of the matrix) example:  mymatrix[0:2] returns a list of 2 wrapped vectors with access to the matrix data.
  - slice assignment will no longer modify the data if the assignment operation fails
  - fixed error in matrix * scalar multiplication
  - euler.toMatrix(), toQuat() no longer causes "creep" from repeated use
  - Wrapped data will generate wrapped objects when toEuler(), toQuat(), toMatrix() is used
  - Quats can be created with angle/axis, axis/angle
  - 4x4 matrices can be multiplied by 3D vectors (by popular demand :))
  - vec *quat / quat * vec is now defined
  - vec.magnitude alias for vec.length
  - all self, internal methods return a pointer to self now so you can do print vector.internalmethod() or vector.internalmethod().nextmethod() (no more print matrix.inverse() returning 'none')
  - these methods have been deprecated (still functioning but suggested to use the corrected functionality):
    * CopyVec() - replaced by Vector() functionality
    * CopyMat() - replaced by Matrix() functionality
    * CopyQuat() - replace by Quaternion() functionality
    * CopyEuler() - replaced by Euler() functionality
    * RotateEuler() - replaced by Euler.rotate() funtionality
    * MatMultVec() - replaced by matrix * vector
    * VecMultMat() - replaced by vector * matrix
  -  New struct containers references to python object data or internally allocated blender data for wrapping
  * Explaination here:  math structs now function as a 'simple wrapper' or a 'py_object' - data that is created on the fly will now be a 'py_object' with its memory managed by python
  *    otherwise if the data is returned by blender's G.main then the math object is a 'simple wrapper' and data can be accessed directly from the struct just like other python objects.
2005-07-14 03:34:56 +00:00

679 lines
22 KiB
C

/*
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "BKE_utildefines.h"
#include "Mathutils.h"
#include "gen_utils.h"
#include "BLI_blenlib.h"
//-------------------------DOC STRINGS ---------------------------
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
char Vector_Normalize_doc[] = "() - normalize the vector";
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Vector_methods[] = {
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//----------------------------Vector.zero() ----------------------
//set the vector data to 0,0,0
PyObject *Vector_Zero(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = 0.0f;
}
return (PyObject*)self;
}
//----------------------------Vector.normalize() -----------------
//normalize the vector data to a unit vector
PyObject *Vector_Normalize(VectorObject * self)
{
int x;
float norm = 0.0f;
for(x = 0; x < self->size; x++) {
norm += self->vec[x] * self->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < self->size; x++) {
self->vec[x] /= norm;
}
return (PyObject*)self;
}
//----------------------------Vector.negate() --------------------
//set the vector to it's negative -x, -y, -z
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
return (PyObject*)self;
}
//----------------------------Vector.resize2D() ------------------
//resize the vector to x,y
PyObject *Vector_Resize2D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize2d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; //force
self->size = 2;
return (PyObject*)self;
}
//----------------------------Vector.resize3D() ------------------
//resize the vector to x,y,z
PyObject *Vector_Resize3D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize3d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; //force
if(self->size == 2){
self->data.py_data[2] = 0.0f;
}
self->size = 3;
return (PyObject*)self;
}
//----------------------------Vector.resize4D() ------------------
//resize the vector to x,y,z,w
PyObject *Vector_Resize4D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize4d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; //force
if(self->size == 2){
self->data.py_data[2] = 0.0f;
self->data.py_data[3] = 0.0f;
}else if(self->size == 3){
self->data.py_data[3] = 0.0f;
}
self->size = 4;
return (PyObject*)self;
}
//----------------------------dealloc()(internal) ----------------
//free the py_object
static void Vector_dealloc(VectorObject * self)
{
//only free py_data
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
//----------------------------getattr()(internal) ----------------
//object.attribute access (get)
static PyObject *Vector_getattr(VectorObject * self, char *name)
{
int x;
double dot = 0.0f;
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->vec[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->vec[1]);
}else if(STREQ(name, "z")){
if(self->size > 2){
return PyFloat_FromDouble(self->vec[2]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"vector.z: illegal attribute access\n");
}
}else if(STREQ(name, "w")){
if(self->size > 3){
return PyFloat_FromDouble(self->vec[3]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"vector.w: illegal attribute access\n");
}
}else if(STREQ2(name, "length", "magnitude")) {
for(x = 0; x < self->size; x++){
dot += (self->vec[x] * self->vec[x]);
}
return PyFloat_FromDouble(sqrt(dot));
}
return Py_FindMethod(Vector_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
//object.attribute access (set)
static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
{
PyObject *f = NULL;
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"vector.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->vec[0] = PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->vec[1] = PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
if(self->size > 2){
self->vec[2] = PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.z = x: illegal attribute access\n");
}
}else if(STREQ(name, "w")){
if(self->size > 3){
self->vec[3] = PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.w = x: illegal attribute access\n");
}
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
//----------------------------print object (internal)-------------
//print the object to screen
static PyObject *Vector_repr(VectorObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < self->size; i++){
if(i < (self->size - 1)){
sprintf(buffer, "%.6f, ", self->vec[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->vec[i]);
strcat(str,buffer);
}
}
strcat(str, "](vector)");
return EXPP_incr_ret(PyString_FromString(str));
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Vector_len(VectorObject * self)
{
return self->size;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Vector_item(VectorObject * self, int i)
{
if(i < 0 || i >= self->size)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"vector[attribute]: array index out of range\n");
return Py_BuildValue("f", self->vec[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= self->size){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"vector[attribute] = x: array assignment index out of range\n");
}
self->vec[i] = PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->vec[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Vector_ass_slice(VectorObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float vec[4];
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
PyObject *v, *f;
v = PySequence_GetItem(seq, i);
if (v == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"vector[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
Py_DECREF(v);
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[begin:end] = []: sequence argument not a number\n");
}
vec[i] = PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,v);
}
//parsed well - now set in vector
for(y = 0; y < size; y++){
self->vec[begin + y] = vec[y];
}
return 0;
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] + vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector subtraction: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector subtraction: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] - vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4], scalar, newVec[3];
double dot = 0.0f;
VectorObject *vec1 = NULL, *vec2 = NULL;
PyObject *f = NULL, *retObj = NULL;
MatrixObject *mat = NULL;
QuaternionObject *quat = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object){
if (PyFloat_Check(vec1->coerced_object) ||
PyInt_Check(vec1->coerced_object)){ // FLOAT/INT * VECTOR
f = PyNumber_Float(vec1->coerced_object);
if(f == NULL) { // parsed item not a number
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
scalar = PyFloat_AS_DOUBLE(f);
size = vec2->size;
for(x = 0; x < size; x++) {
vec[x] = vec2->vec[x] * scalar;
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
}else{
if(vec2->coerced_object){
if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX
mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object);
retObj = row_vector_multiplication(vec1, mat);
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat);
return retObj;
}else if (PyFloat_Check(vec2->coerced_object) ||
PyInt_Check(vec2->coerced_object)){ // VECTOR * FLOAT/INT
f = PyNumber_Float(vec2->coerced_object);
if(f == NULL) { // parsed item not a number
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
scalar = PyFloat_AS_DOUBLE(f);
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] * scalar;
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC
quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
if(vec1->size != 3){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
}
newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[0]*vec1->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec1->vec[1] +
quat->quat[1]*quat->quat[1]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[1]*vec1->vec[2] -
quat->quat[3]*quat->quat[3]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[0];
newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] +
quat->quat[2]*quat->quat[2]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[3]*vec1->vec[0] -
quat->quat[3]*quat->quat[3]*vec1->vec[1] +
quat->quat[0]*quat->quat[0]*vec1->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec1->vec[2] -
quat->quat[1]*quat->quat[1]*vec1->vec[1];
newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[3]*vec1->vec[1] +
quat->quat[3]*quat->quat[3]*vec1->vec[2] -
2*quat->quat[0]*quat->quat[2]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[1]*vec1->vec[1] -
quat->quat[1]*quat->quat[1]*vec1->vec[2] +
quat->quat[0]*quat->quat[0]*vec1->vec[2];
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
return newVectorObject(newVec,3,Py_NEW);
}
}else{ //VECTOR * VECTOR
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector multiplication: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
//dot product
for(x = 0; x < size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return PyFloat_FromDouble(dot);
}
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
//------------------------obj / obj------------------------------
//division
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] / vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type VectorObject for numeric protocols
/*Coercion() is called whenever a math operation has 2 operands that
it doesn't understand how to evaluate. 2+Matrix for example. We want to
evaluate some of these operations like: (vector * 2), however, for math
to proceed, the unknown operand must be cast to a type that python math will
understand. (e.g. in the case above case, 2 must be cast to a vector and
then call vector.multiply(vector, scalar_cast_as_vector)*/
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
{
PyObject *coerced = NULL;
if(!VectorObject_Check(*v2)) {
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) {
coerced = EXPP_incr_ret(*v2);
*v2 = newVectorObject(NULL,3,Py_NEW);
((VectorObject*)*v2)->coerced_object = coerced;
}else{
return EXPP_ReturnIntError(PyExc_TypeError,
"vector.coerce(): unknown operand - can't coerce for numeric protocols\n");
}
}
EXPP_incr2(*v1, *v2);
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Vector_SeqMethods = {
(inquiry) Vector_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Vector_item, /* sq_item */
(intintargfunc) Vector_slice, /* sq_slice */
(intobjargproc) Vector_ass_item, /* sq_ass_item */
(intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Vector_NumMethods = {
(binaryfunc) Vector_add, /* __add__ */
(binaryfunc) Vector_sub, /* __sub__ */
(binaryfunc) Vector_mul, /* __mul__ */
(binaryfunc) Vector_div, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) 0, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Vector_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject vector_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size */
"vector", /*tp_name */
sizeof(VectorObject), /*tp_basicsize */
0, /*tp_itemsize */
(destructor) Vector_dealloc, /*tp_dealloc */
(printfunc) 0, /*tp_print */
(getattrfunc) Vector_getattr, /*tp_getattr */
(setattrfunc) Vector_setattr, /*tp_setattr */
0, /*tp_compare */
(reprfunc) Vector_repr, /*tp_repr */
&Vector_NumMethods, /*tp_as_number */
&Vector_SeqMethods, /*tp_as_sequence */
};
//------------------------newVectorObject (internal)-------------
//creates a new vector object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newVectorObject(float *vec, int size, int type)
{
VectorObject *self;
int x;
vector_Type.ob_type = &PyType_Type;
self = PyObject_NEW(VectorObject, &vector_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = vec;
self->vec = self->data.blend_data;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->vec = self->data.py_data;
if(!vec) { //new empty
for(x = 0; x < size; x++){
self->vec[x] = 0.0f;
}
if(size == 4) /* do the homogenous thing */
self->vec[3] = 1.0f;
}else{
for(x = 0; x < size; x++){
self->vec[x] = vec[x];
}
}
}else{ //bad type
return NULL;
}
return (PyObject *) EXPP_incr_ret((PyObject *)self);
}