This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/opensubdiv/internal/evaluator/evaluator_impl.cc
Brecht Van Lommel c7f788b877 Subdiv: remove unused GPU device choice, fix crash with libepoxy on init
openSubdiv_init() would detect available evaluators before any OpenGL context
exists, causing a crash with libepoxy. This test however is redundant as we
already check the requirements on the Blender side through the GPU API.

To simplify things, completely remove the device detection in the opensubdiv
module and reduce the evaluators to just CPU and GPU. The plan here is to move
to the GPU module abstraction over OpenGL/Metal/Vulkan and so all these
different backends no longer make sense.

This also removes the user preference for OpenSubdiv compute device, which was
not used for the new GPU subdivision implementation.

Ref D15291

Differential Revision: https://developer.blender.org/D15470
2022-07-18 13:59:08 +02:00

590 lines
22 KiB
C++

// Copyright 2018 Blender Foundation. All rights reserved.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// Author: Sergey Sharybin
#include "internal/evaluator/evaluator_impl.h"
#include <cassert>
#include <cstdio>
#ifdef _MSC_VER
# include <iso646.h>
#endif
#include <opensubdiv/far/patchMap.h>
#include <opensubdiv/far/patchTable.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/osd/mesh.h>
#include <opensubdiv/osd/types.h>
#include <opensubdiv/version.h>
#include "MEM_guardedalloc.h"
#include "internal/base/type.h"
#include "internal/evaluator/eval_output_cpu.h"
#include "internal/evaluator/eval_output_gpu.h"
#include "internal/evaluator/evaluator_cache_impl.h"
#include "internal/evaluator/patch_map.h"
#include "internal/topology/topology_refiner_impl.h"
#include "opensubdiv_evaluator_capi.h"
#include "opensubdiv_topology_refiner_capi.h"
using OpenSubdiv::Far::PatchTable;
using OpenSubdiv::Far::PatchTableFactory;
using OpenSubdiv::Far::StencilTable;
using OpenSubdiv::Far::StencilTableFactory;
using OpenSubdiv::Far::TopologyRefiner;
using OpenSubdiv::Osd::PatchArray;
using OpenSubdiv::Osd::PatchCoord;
namespace blender {
namespace opensubdiv {
namespace {
// Array implementation which stores small data on stack (or, rather, in the class itself).
template<typename T, int kNumMaxElementsOnStack> class StackOrHeapArray {
public:
StackOrHeapArray()
: num_elements_(0), heap_elements_(NULL), num_heap_elements_(0), effective_elements_(NULL)
{
}
explicit StackOrHeapArray(int size) : StackOrHeapArray()
{
resize(size);
}
~StackOrHeapArray()
{
delete[] heap_elements_;
}
int size() const
{
return num_elements_;
};
T *data()
{
return effective_elements_;
}
void resize(int num_elements)
{
const int old_num_elements = num_elements_;
num_elements_ = num_elements;
// Early output if allcoation size did not change, or allocation size is smaller.
// We never re-allocate, sacrificing some memory over performance.
if (old_num_elements >= num_elements) {
return;
}
// Simple case: no previously allocated buffer, can simply do one allocation.
if (effective_elements_ == NULL) {
effective_elements_ = allocate(num_elements);
return;
}
// Make new allocation, and copy elements if needed.
T *old_buffer = effective_elements_;
effective_elements_ = allocate(num_elements);
if (old_buffer != effective_elements_) {
memcpy(effective_elements_, old_buffer, sizeof(T) * min(old_num_elements, num_elements));
}
if (old_buffer != stack_elements_) {
delete[] old_buffer;
}
}
protected:
T *allocate(int num_elements)
{
if (num_elements < kNumMaxElementsOnStack) {
return stack_elements_;
}
heap_elements_ = new T[num_elements];
return heap_elements_;
}
// Number of elements in the buffer.
int num_elements_;
// Elements which are allocated on a stack (or, rather, in the same allocation as the buffer
// itself).
// Is used as long as buffer is smaller than kNumMaxElementsOnStack.
T stack_elements_[kNumMaxElementsOnStack];
// Heap storage for buffer larger than kNumMaxElementsOnStack.
T *heap_elements_;
int num_heap_elements_;
// Depending on the current buffer size points to rither stack_elements_ or heap_elements_.
T *effective_elements_;
};
// 32 is a number of inner vertices along the patch size at subdivision level 6.
typedef StackOrHeapArray<PatchCoord, 32 * 32> StackOrHeapPatchCoordArray;
void convertPatchCoordsToArray(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
const PatchMap *patch_map,
StackOrHeapPatchCoordArray *array)
{
array->resize(num_patch_coords);
for (int i = 0; i < num_patch_coords; ++i) {
const PatchTable::PatchHandle *handle = patch_map->FindPatch(
patch_coords[i].ptex_face, patch_coords[i].u, patch_coords[i].v);
(array->data())[i] = PatchCoord(*handle, patch_coords[i].u, patch_coords[i].v);
}
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Evaluator wrapper for anonymous API.
EvalOutputAPI::EvalOutputAPI(EvalOutput *implementation, PatchMap *patch_map)
: patch_map_(patch_map), implementation_(implementation)
{
}
EvalOutputAPI::~EvalOutputAPI()
{
delete implementation_;
}
void EvalOutputAPI::setSettings(const OpenSubdiv_EvaluatorSettings *settings)
{
implementation_->updateSettings(settings);
}
void EvalOutputAPI::setCoarsePositions(const float *positions,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateData(positions, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setVaryingData(const float *varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateVaryingData(varying_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setVertexData(const float *vertex_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateVertexData(vertex_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setFaceVaryingData(const int face_varying_channel,
const float *face_varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateFaceVaryingData(
face_varying_channel, face_varying_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setCoarsePositionsFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void EvalOutputAPI::setVaryingDataFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateVaryingData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void EvalOutputAPI::setFaceVaryingDataFromBuffer(const int face_varying_channel,
const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateFaceVaryingData(face_varying_channel,
reinterpret_cast<const float *>(current_buffer),
current_vertex_index,
1);
current_buffer += stride;
}
}
void EvalOutputAPI::refine()
{
implementation_->refine();
}
void EvalOutputAPI::evaluateLimit(const int ptex_face_index,
float face_u,
float face_v,
float P[3],
float dPdu[3],
float dPdv[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(&patch_coord, 1, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(&patch_coord, 1, P);
}
}
void EvalOutputAPI::evaluateVarying(const int ptex_face_index,
float face_u,
float face_v,
float varying[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesVarying(&patch_coord, 1, varying);
}
void EvalOutputAPI::evaluateVertexData(const int ptex_face_index,
float face_u,
float face_v,
float vertex_data[])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesVertexData(&patch_coord, 1, vertex_data);
}
void EvalOutputAPI::evaluateFaceVarying(const int face_varying_channel,
const int ptex_face_index,
float face_u,
float face_v,
float face_varying[2])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesFaceVarying(face_varying_channel, &patch_coord, 1, face_varying);
}
void EvalOutputAPI::evaluatePatchesLimit(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
float *P,
float *dPdu,
float *dPdv)
{
StackOrHeapPatchCoordArray patch_coords_array;
convertPatchCoordsToArray(patch_coords, num_patch_coords, patch_map_, &patch_coords_array);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(
patch_coords_array.data(), num_patch_coords, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(patch_coords_array.data(), num_patch_coords, P);
}
}
void EvalOutputAPI::getPatchMap(OpenSubdiv_Buffer *patch_map_handles,
OpenSubdiv_Buffer *patch_map_quadtree,
int *min_patch_face,
int *max_patch_face,
int *max_depth,
int *patches_are_triangular)
{
*min_patch_face = patch_map_->getMinPatchFace();
*max_patch_face = patch_map_->getMaxPatchFace();
*max_depth = patch_map_->getMaxDepth();
*patches_are_triangular = patch_map_->getPatchesAreTriangular();
const std::vector<PatchTable::PatchHandle> &handles = patch_map_->getHandles();
PatchTable::PatchHandle *buffer_handles = static_cast<PatchTable::PatchHandle *>(
patch_map_handles->alloc(patch_map_handles, handles.size()));
memcpy(buffer_handles, &handles[0], sizeof(PatchTable::PatchHandle) * handles.size());
const std::vector<PatchMap::QuadNode> &quadtree = patch_map_->nodes();
PatchMap::QuadNode *buffer_nodes = static_cast<PatchMap::QuadNode *>(
patch_map_quadtree->alloc(patch_map_quadtree, quadtree.size()));
memcpy(buffer_nodes, &quadtree[0], sizeof(PatchMap::QuadNode) * quadtree.size());
}
void EvalOutputAPI::fillPatchArraysBuffer(OpenSubdiv_Buffer *patch_arrays_buffer)
{
implementation_->fillPatchArraysBuffer(patch_arrays_buffer);
}
void EvalOutputAPI::wrapPatchIndexBuffer(OpenSubdiv_Buffer *patch_index_buffer)
{
implementation_->wrapPatchIndexBuffer(patch_index_buffer);
}
void EvalOutputAPI::wrapPatchParamBuffer(OpenSubdiv_Buffer *patch_param_buffer)
{
implementation_->wrapPatchParamBuffer(patch_param_buffer);
}
void EvalOutputAPI::wrapSrcBuffer(OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapSrcBuffer(src_buffer);
}
void EvalOutputAPI::wrapSrcVertexDataBuffer(OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapSrcVertexDataBuffer(src_buffer);
}
void EvalOutputAPI::fillFVarPatchArraysBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_arrays_buffer)
{
implementation_->fillFVarPatchArraysBuffer(face_varying_channel, patch_arrays_buffer);
}
void EvalOutputAPI::wrapFVarPatchIndexBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_index_buffer)
{
implementation_->wrapFVarPatchIndexBuffer(face_varying_channel, patch_index_buffer);
}
void EvalOutputAPI::wrapFVarPatchParamBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_param_buffer)
{
implementation_->wrapFVarPatchParamBuffer(face_varying_channel, patch_param_buffer);
}
void EvalOutputAPI::wrapFVarSrcBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapFVarSrcBuffer(face_varying_channel, src_buffer);
}
bool EvalOutputAPI::hasVertexData() const
{
return implementation_->hasVertexData();
}
} // namespace opensubdiv
} // namespace blender
OpenSubdiv_EvaluatorImpl::OpenSubdiv_EvaluatorImpl()
: eval_output(NULL), patch_map(NULL), patch_table(NULL)
{
}
OpenSubdiv_EvaluatorImpl::~OpenSubdiv_EvaluatorImpl()
{
delete eval_output;
delete patch_map;
delete patch_table;
}
OpenSubdiv_EvaluatorImpl *openSubdiv_createEvaluatorInternal(
OpenSubdiv_TopologyRefiner *topology_refiner,
eOpenSubdivEvaluator evaluator_type,
OpenSubdiv_EvaluatorCacheImpl *evaluator_cache_descr)
{
using blender::opensubdiv::vector;
TopologyRefiner *refiner = topology_refiner->impl->topology_refiner;
if (refiner == NULL) {
// Happens on bad topology.
return NULL;
}
// TODO(sergey): Base this on actual topology.
const bool has_varying_data = false;
const int num_face_varying_channels = refiner->GetNumFVarChannels();
const bool has_face_varying_data = (num_face_varying_channels != 0);
const int level = topology_refiner->getSubdivisionLevel(topology_refiner);
const bool is_adaptive = topology_refiner->getIsAdaptive(topology_refiner);
// Common settings for stencils and patches.
const bool stencil_generate_intermediate_levels = is_adaptive;
const bool stencil_generate_offsets = true;
const bool use_inf_sharp_patch = true;
// Refine the topology with given settings.
// TODO(sergey): What if topology is already refined?
if (is_adaptive) {
TopologyRefiner::AdaptiveOptions options(level);
options.considerFVarChannels = has_face_varying_data;
options.useInfSharpPatch = use_inf_sharp_patch;
refiner->RefineAdaptive(options);
}
else {
TopologyRefiner::UniformOptions options(level);
refiner->RefineUniform(options);
}
// Generate stencil table to update the bi-cubic patches control vertices
// after they have been re-posed (both for vertex & varying interpolation).
//
// Vertex stencils.
StencilTableFactory::Options vertex_stencil_options;
vertex_stencil_options.generateOffsets = stencil_generate_offsets;
vertex_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
const StencilTable *vertex_stencils = StencilTableFactory::Create(*refiner,
vertex_stencil_options);
// Varying stencils.
//
// TODO(sergey): Seems currently varying stencils are always required in
// OpenSubdiv itself.
const StencilTable *varying_stencils = NULL;
if (has_varying_data) {
StencilTableFactory::Options varying_stencil_options;
varying_stencil_options.generateOffsets = stencil_generate_offsets;
varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_VARYING;
varying_stencils = StencilTableFactory::Create(*refiner, varying_stencil_options);
}
// Face warying stencil.
vector<const StencilTable *> all_face_varying_stencils;
all_face_varying_stencils.reserve(num_face_varying_channels);
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel) {
StencilTableFactory::Options face_varying_stencil_options;
face_varying_stencil_options.generateOffsets = stencil_generate_offsets;
face_varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
face_varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_FACE_VARYING;
face_varying_stencil_options.fvarChannel = face_varying_channel;
all_face_varying_stencils.push_back(
StencilTableFactory::Create(*refiner, face_varying_stencil_options));
}
// Generate bi-cubic patch table for the limit surface.
PatchTableFactory::Options patch_options(level);
patch_options.SetEndCapType(PatchTableFactory::Options::ENDCAP_GREGORY_BASIS);
patch_options.useInfSharpPatch = use_inf_sharp_patch;
patch_options.generateFVarTables = has_face_varying_data;
patch_options.generateFVarLegacyLinearPatches = false;
const PatchTable *patch_table = PatchTableFactory::Create(*refiner, patch_options);
// Append local points stencils.
// Point stencils.
const StencilTable *local_point_stencil_table = patch_table->GetLocalPointStencilTable();
if (local_point_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, vertex_stencils, local_point_stencil_table);
delete vertex_stencils;
vertex_stencils = table;
}
// Varying stencils.
if (has_varying_data) {
const StencilTable *local_point_varying_stencil_table =
patch_table->GetLocalPointVaryingStencilTable();
if (local_point_varying_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, varying_stencils, local_point_varying_stencil_table);
delete varying_stencils;
varying_stencils = table;
}
}
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTableFaceVarying(
*refiner,
all_face_varying_stencils[face_varying_channel],
patch_table->GetLocalPointFaceVaryingStencilTable(face_varying_channel),
face_varying_channel);
if (table != NULL) {
delete all_face_varying_stencils[face_varying_channel];
all_face_varying_stencils[face_varying_channel] = table;
}
}
// Create OpenSubdiv's CPU side evaluator.
blender::opensubdiv::EvalOutputAPI::EvalOutput *eval_output = nullptr;
const bool use_gpu_evaluator = evaluator_type == OPENSUBDIV_EVALUATOR_GPU;
if (use_gpu_evaluator) {
blender::opensubdiv::GpuEvalOutput::EvaluatorCache *evaluator_cache = nullptr;
if (evaluator_cache_descr) {
evaluator_cache = static_cast<blender::opensubdiv::GpuEvalOutput::EvaluatorCache *>(
evaluator_cache_descr->eval_cache);
}
eval_output = new blender::opensubdiv::GpuEvalOutput(vertex_stencils,
varying_stencils,
all_face_varying_stencils,
2,
patch_table,
evaluator_cache);
}
else {
eval_output = new blender::opensubdiv::CpuEvalOutput(
vertex_stencils, varying_stencils, all_face_varying_stencils, 2, patch_table);
}
blender::opensubdiv::PatchMap *patch_map = new blender::opensubdiv::PatchMap(*patch_table);
// Wrap everything we need into an object which we control from our side.
OpenSubdiv_EvaluatorImpl *evaluator_descr;
evaluator_descr = new OpenSubdiv_EvaluatorImpl();
evaluator_descr->eval_output = new blender::opensubdiv::EvalOutputAPI(eval_output, patch_map);
evaluator_descr->patch_map = patch_map;
evaluator_descr->patch_table = patch_table;
// TODO(sergey): Look into whether we've got duplicated stencils arrays.
delete vertex_stencils;
delete varying_stencils;
for (const StencilTable *table : all_face_varying_stencils) {
delete table;
}
return evaluator_descr;
}
void openSubdiv_deleteEvaluatorInternal(OpenSubdiv_EvaluatorImpl *evaluator)
{
delete evaluator;
}