This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/BLI_span.hh
Jacques Lucke 6c2e1f3398 BLI: cleanup StringRef and Span and improve parameter validation
Previously, methods like `Span.drop_front` would crash when more
elements would be dropped than are available. While this is most
efficient, it is not very practical in some use cases. Also other languages
silently clamp the index, so one can easily write wrong code accidentally.

Now, `Span.drop_front` and similar methods will only crash when n
is negative. Too large values will be clamped down to their maximum
possible value. While this is slightly less efficient, I did not have a case
where this actually mattered yet. If it does matter in the future, we can
add a separate `*_unchecked` method.

This should not change the behavior of existing code.
2021-02-20 22:05:50 +01:00

691 lines
19 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup bli
*
* An `blender::Span<T>` references an array that is owned by someone else. It is just a
* pointer and a size. Since the memory is not owned, Span should not be used to transfer
* ownership. The array cannot be modified through the Span. However, if T is a non-const
* pointer, the pointed-to elements can be modified.
*
* There is also `blender::MutableSpan<T>`. It is mostly the same as Span, but allows the
* array to be modified.
*
* A (Mutable)Span can refer to data owned by many different data structures including
* blender::Vector, blender::Array, blender::VectorSet, std::vector, std::array, std::string,
* std::initializer_list and c-style array.
*
* `blender::Span` is very similar to `std::span` (C++20). However, there are a few differences:
* - `blender::Span` is const by default. This is to avoid making things mutable when they don't
* have to be. To get a non-const span, you need to use `blender::MutableSpan`. Below is a list
* of const-behavior-equivalent pairs of data structures:
* - std::span<int> <==> blender::MutableSpan<int>
* - std::span<const int> <==> blender::Span<int>
* - std::span<int *> <==> blender::MutableSpan<int *>
* - std::span<const int *> <==> blender::MutableSpan<const int *>
* - std::span<int * const> <==> blender::Span<int *>
* - std::span<const int * const> <==> blender::Span<const int *>
* - `blender::Span` always has a dynamic extent, while `std::span` can have a size that is
* determined at compile time. I did not have a use case for that yet. If we need it, we can
* decide to add this functionality to `blender::Span` or introduce a new type like
* `blender::FixedSpan<T, N>`.
*
* `blender::Span<T>` should be your default choice when you have to pass a read-only array
* into a function. It is better than passing a `const Vector &`, because then the function only
* works for vectors and not for e.g. arrays. Using Span as function parameter makes it usable
* in more contexts, better expresses the intent and does not sacrifice performance. It is also
* better than passing a raw pointer and size separately, because it is more convenient and safe.
*
* `blender::MutableSpan<T>` can be used when a function is supposed to return an array, the
* size of which is known before the function is called. One advantage of this approach is that the
* caller is responsible for allocation and deallocation. Furthermore, the function can focus on
* its task, without having to worry about memory allocation. Alternatively, a function could
* return an Array or Vector.
*
* Note: When a function has a MutableSpan<T> output parameter and T is not a trivial type,
* then the function has to specify whether the referenced array is expected to be initialized or
* not.
*
* Since the arrays are only referenced, it is generally unsafe to store an Span. When you
* store one, you should know who owns the memory.
*
* Instances of Span and MutableSpan are small and should be passed by value.
*/
#include <algorithm>
#include <array>
#include <iostream>
#include <string>
#include <vector>
#include "BLI_index_range.hh"
#include "BLI_memory_utils.hh"
#include "BLI_utildefines.h"
namespace blender {
/**
* References an array of type T that is owned by someone else. The data in the array cannot be
* modified.
*/
template<typename T> class Span {
private:
const T *data_ = nullptr;
int64_t size_ = 0;
public:
/**
* Create a reference to an empty array.
*/
constexpr Span() = default;
constexpr Span(const T *start, int64_t size) : data_(start), size_(size)
{
BLI_assert(size >= 0);
}
template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<U, T>> * = nullptr>
constexpr Span(const U *start, int64_t size) : data_(static_cast<const T *>(start)), size_(size)
{
BLI_assert(size >= 0);
}
/**
* Reference an initializer_list. Note that the data in the initializer_list is only valid until
* the expression containing it is fully computed.
*
* Do:
* call_function_with_array({1, 2, 3, 4});
*
* Don't:
* Span<int> span = {1, 2, 3, 4};
* call_function_with_array(span);
*/
constexpr Span(const std::initializer_list<T> &list)
: Span(list.begin(), static_cast<int64_t>(list.size()))
{
}
constexpr Span(const std::vector<T> &vector)
: Span(vector.data(), static_cast<int64_t>(vector.size()))
{
}
template<std::size_t N> constexpr Span(const std::array<T, N> &array) : Span(array.data(), N)
{
}
/**
* Support implicit conversions like the ones below:
* Span<T *> -> Span<const T *>
*/
template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<U, T>> * = nullptr>
constexpr Span(Span<U> array) : data_(static_cast<const T *>(array.data())), size_(array.size())
{
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative.
*/
constexpr Span slice(int64_t start, int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
return Span(data_ + start, new_size);
}
constexpr Span slice(IndexRange range) const
{
return this->slice(range.start(), range.size());
}
/**
* Returns a new Span with n elements removed from the beginning. This invokes undefined
* behavior when n is negative.
*/
constexpr Span drop_front(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return Span(data_ + n, new_size);
}
/**
* Returns a new Span with n elements removed from the beginning. This invokes undefined
* behavior when n is negative.
*/
constexpr Span drop_back(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return Span(data_, new_size);
}
/**
* Returns a new Span that only contains the first n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr Span take_front(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return Span(data_, new_size);
}
/**
* Returns a new Span that only contains the last n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr Span take_back(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return Span(data_ + size_ - new_size, new_size);
}
/**
* Returns the pointer to the beginning of the referenced array. This may be nullptr when the
* size is zero.
*/
constexpr const T *data() const
{
return data_;
}
constexpr const T *begin() const
{
return data_;
}
constexpr const T *end() const
{
return data_ + size_;
}
constexpr std::reverse_iterator<const T *> rbegin() const
{
return std::reverse_iterator<const T *>(this->end());
}
constexpr std::reverse_iterator<const T *> rend() const
{
return std::reverse_iterator<const T *>(this->begin());
}
/**
* Access an element in the array. This invokes undefined behavior when the index is out of
* bounds.
*/
constexpr const T &operator[](int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
/**
* Returns the number of elements in the referenced array.
*/
constexpr int64_t size() const
{
return size_;
}
/**
* Returns true if the size is zero.
*/
constexpr bool is_empty() const
{
return size_ == 0;
}
/**
* Returns the number of bytes referenced by this Span.
*/
constexpr int64_t size_in_bytes() const
{
return sizeof(T) * size_;
}
/**
* Does a linear search to see of the value is in the array.
* Returns true if it is, otherwise false.
*/
constexpr bool contains(const T &value) const
{
for (const T &element : *this) {
if (element == value) {
return true;
}
}
return false;
}
/**
* Does a constant time check to see if the pointer points to a value in the referenced array.
* Return true if it is, otherwise false.
*/
constexpr bool contains_ptr(const T *ptr) const
{
return (this->begin() <= ptr) && (ptr < this->end());
}
/**
* Does a linear search to count how often the value is in the array.
* Returns the number of occurrences.
*/
constexpr int64_t count(const T &value) const
{
int64_t counter = 0;
for (const T &element : *this) {
if (element == value) {
counter++;
}
}
return counter;
}
/**
* Return a reference to the first element in the array. This invokes undefined behavior when the
* array is empty.
*/
constexpr const T &first() const
{
BLI_assert(size_ > 0);
return data_[0];
}
/**
* Returns a reference to the last element in the array. This invokes undefined behavior when the
* array is empty.
*/
constexpr const T &last() const
{
BLI_assert(size_ > 0);
return data_[size_ - 1];
}
/**
* Returns the element at the given index. If the index is out of range, return the fallback
* value.
*/
constexpr T get(int64_t index, const T &fallback) const
{
if (index < size_ && index >= 0) {
return data_[index];
}
return fallback;
}
/**
* Check if the array contains duplicates. Does a linear search for every element. So the total
* running time is O(n^2). Only use this for small arrays.
*/
constexpr bool has_duplicates__linear_search() const
{
/* The size should really be smaller than that. If it is not, the calling code should be
* changed. */
BLI_assert(size_ < 1000);
for (int64_t i = 0; i < size_; i++) {
const T &value = data_[i];
for (int64_t j = i + 1; j < size_; j++) {
if (value == data_[j]) {
return true;
}
}
}
return false;
}
/**
* Returns true when this and the other array have an element in common. This should only be
* called on small arrays, because it has a running time of O(n*m) where n and m are the sizes of
* the arrays.
*/
constexpr bool intersects__linear_search(Span other) const
{
/* The size should really be smaller than that. If it is not, the calling code should be
* changed. */
BLI_assert(size_ < 1000);
for (int64_t i = 0; i < size_; i++) {
const T &value = data_[i];
if (other.contains(value)) {
return true;
}
}
return false;
}
/**
* Returns the index of the first occurrence of the given value. This invokes undefined behavior
* when the value is not in the array.
*/
constexpr int64_t first_index(const T &search_value) const
{
const int64_t index = this->first_index_try(search_value);
BLI_assert(index >= 0);
return index;
}
/**
* Returns the index of the first occurrence of the given value or -1 if it does not exist.
*/
constexpr int64_t first_index_try(const T &search_value) const
{
for (int64_t i = 0; i < size_; i++) {
if (data_[i] == search_value) {
return i;
}
}
return -1;
}
/**
* Utility to make it more convenient to iterate over all indices that can be used with this
* array.
*/
constexpr IndexRange index_range() const
{
return IndexRange(size_);
}
/**
* Returns a new Span to the same underlying memory buffer. No conversions are done.
*/
template<typename NewT> Span<NewT> constexpr cast() const
{
BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
return Span<NewT>(reinterpret_cast<const NewT *>(data_), new_size);
}
/**
* A debug utility to print the content of the Span. Every element will be printed on a
* separate line using the given callback.
*/
template<typename PrintLineF> void print_as_lines(std::string name, PrintLineF print_line) const
{
std::cout << "Span: " << name << " \tSize:" << size_ << '\n';
for (const T &value : *this) {
std::cout << " ";
print_line(value);
std::cout << '\n';
}
}
/**
* A debug utility to print the content of the span. Every element be printed on a separate
* line.
*/
void print_as_lines(std::string name) const
{
this->print_as_lines(name, [](const T &value) { std::cout << value; });
}
};
/**
* Mostly the same as Span, except that one can change the array elements through a
* MutableSpan.
*/
template<typename T> class MutableSpan {
private:
T *data_;
int64_t size_;
public:
constexpr MutableSpan() = default;
constexpr MutableSpan(T *start, const int64_t size) : data_(start), size_(size)
{
}
constexpr MutableSpan(std::vector<T> &vector) : MutableSpan(vector.data(), vector.size())
{
}
template<std::size_t N>
constexpr MutableSpan(std::array<T, N> &array) : MutableSpan(array.data(), N)
{
}
constexpr operator Span<T>() const
{
return Span<T>(data_, size_);
}
/**
* Returns the number of elements in the array.
*/
constexpr int64_t size() const
{
return size_;
}
/**
* Returns true if the size is zero.
*/
constexpr bool is_empty() const
{
return size_ == 0;
}
/**
* Replace all elements in the referenced array with the given value.
*/
constexpr void fill(const T &value)
{
initialized_fill_n(data_, size_, value);
}
/**
* Replace a subset of all elements with the given value. This invokes undefined behavior when
* one of the indices is out of bounds.
*/
constexpr void fill_indices(Span<int64_t> indices, const T &value)
{
for (int64_t i : indices) {
BLI_assert(i < size_);
data_[i] = value;
}
}
/**
* Returns a pointer to the beginning of the referenced array. This may be nullptr, when the size
* is zero.
*/
constexpr T *data() const
{
return data_;
}
constexpr T *begin() const
{
return data_;
}
constexpr T *end() const
{
return data_ + size_;
}
constexpr std::reverse_iterator<T *> rbegin() const
{
return std::reverse_iterator<T *>(this->end());
}
constexpr std::reverse_iterator<T *> rend() const
{
return std::reverse_iterator<T *>(this->begin());
}
constexpr T &operator[](const int64_t index) const
{
BLI_assert(index < this->size());
return data_[index];
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative.
*/
constexpr MutableSpan slice(const int64_t start, const int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
return MutableSpan(data_ + start, new_size);
}
/**
* Returns a new MutableSpan with n elements removed from the beginning. This invokes
* undefined behavior when n is negative.
*/
constexpr MutableSpan drop_front(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return MutableSpan(data_ + n, new_size);
}
/**
* Returns a new MutableSpan with n elements removed from the end. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan drop_back(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return MutableSpan(data_, new_size);
}
/**
* Returns a new MutableSpan that only contains the first n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan take_front(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return MutableSpan(data_, new_size);
}
/**
* Return a new MutableSpan that only contains the last n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan take_back(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return MutableSpan(data_ + size_ - new_size, new_size);
}
/**
* Returns an (immutable) Span that references the same array. This is usually not needed,
* due to implicit conversions. However, sometimes automatic type deduction needs some help.
*/
constexpr Span<T> as_span() const
{
return Span<T>(data_, size_);
}
/**
* Utility to make it more convenient to iterate over all indices that can be used with this
* array.
*/
constexpr IndexRange index_range() const
{
return IndexRange(size_);
}
/**
* Returns a reference to the last element. This invokes undefined behavior when the array is
* empty.
*/
constexpr T &last() const
{
BLI_assert(size_ > 0);
return data_[size_ - 1];
}
/**
* Does a linear search to count how often the value is in the array.
* Returns the number of occurrences.
*/
constexpr int64_t count(const T &value) const
{
int64_t counter = 0;
for (const T &element : *this) {
if (element == value) {
counter++;
}
}
return counter;
}
/**
* Copy all values from another span into this span. This invokes undefined behavior when the
* destination contains uninitialized data and T is not trivially copy constructible.
* The size of both spans is expected to be the same.
*/
constexpr void copy_from(Span<T> values)
{
BLI_assert(size_ == values.size());
initialized_copy_n(values.data(), size_, data_);
}
/**
* Returns a new span to the same underlying memory buffer. No conversions are done.
*/
template<typename NewT> constexpr MutableSpan<NewT> cast() const
{
BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
return MutableSpan<NewT>(reinterpret_cast<NewT *>(data_), new_size);
}
};
/**
* Utilities to check that arrays have the same size in debug builds.
*/
template<typename T1, typename T2> constexpr void assert_same_size(const T1 &v1, const T2 &v2)
{
UNUSED_VARS_NDEBUG(v1, v2);
#ifdef DEBUG
int64_t size = v1.size();
BLI_assert(size == v1.size());
BLI_assert(size == v2.size());
#endif
}
template<typename T1, typename T2, typename T3>
constexpr void assert_same_size(const T1 &v1, const T2 &v2, const T3 &v3)
{
UNUSED_VARS_NDEBUG(v1, v2, v3);
#ifdef DEBUG
int64_t size = v1.size();
BLI_assert(size == v1.size());
BLI_assert(size == v2.size());
BLI_assert(size == v3.size());
#endif
}
} /* namespace blender */