This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/intern/multi_function_procedure_executor.cc
Jacques Lucke d48735cca2 Functions: speedup multi-function procedure executor
This improves performance of the procedure executor on secondary metrics
(i.e. not for the main use case when many elements are processed together,
but for the use case when a single element is processed at a time).

In my benchmark I'm measuring a 50-60% improvement:
* Procedure with a single function (executed many times): `5.8s -> 2.7s`.
* Procedure with 1000 functions (executed many times): `2.4 -> 1.0s`.

The speedup is mainly achieved in multiple ways:
* Store an `Array` of variable states, instead of a map. The array is indexed
  with indices stored in each variable. This also avoids separately allocating
  variable states.
* Move less data around in the scheduler and use a `Stack` instead of `Map`.
  `Map` was used before because it allows for some optimizations that might
  be more important in the future, but they don't matter right now (e.g. joining
  execution paths that diverged earlier).
* Avoid memory allocations by giving the `LinearAllocator` some memory
  from the stack.
2022-06-19 14:25:56 +02:00

1249 lines
41 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "FN_multi_function_procedure_executor.hh"
#include "BLI_stack.hh"
namespace blender::fn {
MFProcedureExecutor::MFProcedureExecutor(const MFProcedure &procedure) : procedure_(procedure)
{
MFSignatureBuilder signature("Procedure Executor");
for (const ConstMFParameter &param : procedure.params()) {
signature.add("Parameter", MFParamType(param.type, param.variable->data_type()));
}
signature_ = signature.build();
this->set_signature(&signature_);
}
using IndicesSplitVectors = std::array<Vector<int64_t>, 2>;
namespace {
enum class ValueType {
GVArray = 0,
Span = 1,
GVVectorArray = 2,
GVectorArray = 3,
OneSingle = 4,
OneVector = 5,
};
constexpr int tot_variable_value_types = 6;
} // namespace
/**
* During evaluation, a variable may be stored in various different forms, depending on what
* instructions do with the variables.
*/
struct VariableValue {
ValueType type;
VariableValue(ValueType type) : type(type)
{
}
};
/* This variable is the unmodified virtual array from the caller. */
struct VariableValue_GVArray : public VariableValue {
static inline constexpr ValueType static_type = ValueType::GVArray;
const GVArray &data;
VariableValue_GVArray(const GVArray &data) : VariableValue(static_type), data(data)
{
BLI_assert(data);
}
};
/* This variable has a different value for every index. Some values may be uninitialized. The span
* may be owned by the caller. */
struct VariableValue_Span : public VariableValue {
static inline constexpr ValueType static_type = ValueType::Span;
void *data;
bool owned;
VariableValue_Span(void *data, bool owned) : VariableValue(static_type), data(data), owned(owned)
{
}
};
/* This variable is the unmodified virtual vector array from the caller. */
struct VariableValue_GVVectorArray : public VariableValue {
static inline constexpr ValueType static_type = ValueType::GVVectorArray;
const GVVectorArray &data;
VariableValue_GVVectorArray(const GVVectorArray &data) : VariableValue(static_type), data(data)
{
}
};
/* This variable has a different vector for every index. */
struct VariableValue_GVectorArray : public VariableValue {
static inline constexpr ValueType static_type = ValueType::GVectorArray;
GVectorArray &data;
bool owned;
VariableValue_GVectorArray(GVectorArray &data, bool owned)
: VariableValue(static_type), data(data), owned(owned)
{
}
};
/* This variable has the same value for every index. */
struct VariableValue_OneSingle : public VariableValue {
static inline constexpr ValueType static_type = ValueType::OneSingle;
void *data;
bool is_initialized = false;
VariableValue_OneSingle(void *data) : VariableValue(static_type), data(data)
{
}
};
/* This variable has the same vector for every index. */
struct VariableValue_OneVector : public VariableValue {
static inline constexpr ValueType static_type = ValueType::OneVector;
GVectorArray &data;
VariableValue_OneVector(GVectorArray &data) : VariableValue(static_type), data(data)
{
}
};
static_assert(std::is_trivially_destructible_v<VariableValue_GVArray>);
static_assert(std::is_trivially_destructible_v<VariableValue_Span>);
static_assert(std::is_trivially_destructible_v<VariableValue_GVVectorArray>);
static_assert(std::is_trivially_destructible_v<VariableValue_GVectorArray>);
static_assert(std::is_trivially_destructible_v<VariableValue_OneSingle>);
static_assert(std::is_trivially_destructible_v<VariableValue_OneVector>);
class VariableState;
/**
* The #ValueAllocator is responsible for providing memory for variables and their values. It also
* manages the reuse of buffers to improve performance.
*/
class ValueAllocator : NonCopyable, NonMovable {
private:
/**
* Allocate with 64 byte alignment for better reusability of buffers and improved cache
* performance.
*/
static constexpr inline int min_alignment = 64;
/** All buffers in the free-lists below have been allocated with this allocator. */
LinearAllocator<> &linear_allocator_;
/**
* Use stacks so that the most recently used buffers are reused first. This improves cache
* efficiency.
*/
std::array<Stack<VariableValue *>, tot_variable_value_types> variable_value_free_lists_;
/**
* The integer key is the size of one element (e.g. 4 for an integer buffer). All buffers are
* aligned to #min_alignment bytes.
*/
Map<int, Stack<void *>> span_buffers_free_list_;
/** Cache buffers for single values of different types. */
Map<const CPPType *, Stack<void *>> single_value_free_lists_;
/** The cached memory buffers can hold #VariableState values. */
Stack<void *> variable_state_free_list_;
public:
ValueAllocator(LinearAllocator<> &linear_allocator) : linear_allocator_(linear_allocator)
{
}
VariableValue_GVArray *obtain_GVArray(const GVArray &varray)
{
return this->obtain<VariableValue_GVArray>(varray);
}
VariableValue_GVVectorArray *obtain_GVVectorArray(const GVVectorArray &varray)
{
return this->obtain<VariableValue_GVVectorArray>(varray);
}
VariableValue_Span *obtain_Span_not_owned(void *buffer)
{
return this->obtain<VariableValue_Span>(buffer, false);
}
VariableValue_Span *obtain_Span(const CPPType &type, int size)
{
void *buffer = nullptr;
const int64_t element_size = type.size();
const int64_t alignment = type.alignment();
if (alignment > min_alignment) {
/* In this rare case we fallback to not reusing existing buffers. */
buffer = linear_allocator_.allocate(element_size * size, alignment);
}
else {
Stack<void *> *stack = span_buffers_free_list_.lookup_ptr(element_size);
if (stack == nullptr || stack->is_empty()) {
buffer = linear_allocator_.allocate(element_size * size, min_alignment);
}
else {
/* Reuse existing buffer. */
buffer = stack->pop();
}
}
return this->obtain<VariableValue_Span>(buffer, true);
}
VariableValue_GVectorArray *obtain_GVectorArray_not_owned(GVectorArray &data)
{
return this->obtain<VariableValue_GVectorArray>(data, false);
}
VariableValue_GVectorArray *obtain_GVectorArray(const CPPType &type, int size)
{
GVectorArray *vector_array = new GVectorArray(type, size);
return this->obtain<VariableValue_GVectorArray>(*vector_array, true);
}
VariableValue_OneSingle *obtain_OneSingle(const CPPType &type)
{
Stack<void *> &stack = single_value_free_lists_.lookup_or_add_default(&type);
void *buffer;
if (stack.is_empty()) {
buffer = linear_allocator_.allocate(type.size(), type.alignment());
}
else {
buffer = stack.pop();
}
return this->obtain<VariableValue_OneSingle>(buffer);
}
VariableValue_OneVector *obtain_OneVector(const CPPType &type)
{
GVectorArray *vector_array = new GVectorArray(type, 1);
return this->obtain<VariableValue_OneVector>(*vector_array);
}
void release_value(VariableValue *value, const MFDataType &data_type)
{
switch (value->type) {
case ValueType::GVArray: {
break;
}
case ValueType::Span: {
auto *value_typed = static_cast<VariableValue_Span *>(value);
if (value_typed->owned) {
const CPPType &type = data_type.single_type();
/* Assumes all values in the buffer are uninitialized already. */
Stack<void *> &buffers = span_buffers_free_list_.lookup_or_add_default(type.size());
buffers.push(value_typed->data);
}
break;
}
case ValueType::GVVectorArray: {
break;
}
case ValueType::GVectorArray: {
auto *value_typed = static_cast<VariableValue_GVectorArray *>(value);
if (value_typed->owned) {
delete &value_typed->data;
}
break;
}
case ValueType::OneSingle: {
auto *value_typed = static_cast<VariableValue_OneSingle *>(value);
const CPPType &type = data_type.single_type();
if (value_typed->is_initialized) {
type.destruct(value_typed->data);
}
single_value_free_lists_.lookup_or_add_default(&type).push(value_typed->data);
break;
}
case ValueType::OneVector: {
auto *value_typed = static_cast<VariableValue_OneVector *>(value);
delete &value_typed->data;
break;
}
}
Stack<VariableValue *> &stack = variable_value_free_lists_[(int)value->type];
stack.push(value);
}
private:
template<typename T, typename... Args> T *obtain(Args &&...args)
{
static_assert(std::is_base_of_v<VariableValue, T>);
Stack<VariableValue *> &stack = variable_value_free_lists_[(int)T::static_type];
if (stack.is_empty()) {
void *buffer = linear_allocator_.allocate(sizeof(T), alignof(T));
return new (buffer) T(std::forward<Args>(args)...);
}
return new (stack.pop()) T(std::forward<Args>(args)...);
}
};
/**
* This class keeps track of a single variable during evaluation.
*/
class VariableState : NonCopyable, NonMovable {
public:
/** The current value of the variable. The storage format may change over time. */
VariableValue *value_ = nullptr;
/** Number of indices that are currently initialized in this variable. */
int tot_initialized_ = 0;
/* This a non-owning pointer to either span buffer or #GVectorArray or null. */
void *caller_provided_storage_ = nullptr;
void destruct_value(ValueAllocator &value_allocator, const MFDataType &data_type)
{
value_allocator.release_value(value_, data_type);
value_ = nullptr;
}
/* True if this contains only one value for all indices, i.e. the value for all indices is
* the same. */
bool is_one() const
{
if (value_ == nullptr) {
return true;
}
switch (value_->type) {
case ValueType::GVArray:
return this->value_as<VariableValue_GVArray>()->data.is_single();
case ValueType::Span:
return tot_initialized_ == 0;
case ValueType::GVVectorArray:
return this->value_as<VariableValue_GVVectorArray>()->data.is_single_vector();
case ValueType::GVectorArray:
return tot_initialized_ == 0;
case ValueType::OneSingle:
return true;
case ValueType::OneVector:
return true;
}
BLI_assert_unreachable();
return false;
}
bool is_fully_initialized(const IndexMask full_mask)
{
return tot_initialized_ == full_mask.size();
}
bool is_fully_uninitialized(const IndexMask full_mask)
{
UNUSED_VARS(full_mask);
return tot_initialized_ == 0;
}
void add_as_input(MFParamsBuilder &params, IndexMask mask, const MFDataType &data_type) const
{
/* Sanity check to make sure that enough values are initialized. */
BLI_assert(mask.size() <= tot_initialized_);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::GVArray: {
params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
break;
}
case ValueType::Span: {
const void *data = this->value_as<VariableValue_Span>()->data;
const GSpan span{data_type.single_type(), data, mask.min_array_size()};
params.add_readonly_single_input(span);
break;
}
case ValueType::GVVectorArray: {
params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
break;
}
case ValueType::GVectorArray: {
params.add_readonly_vector_input(this->value_as<VariableValue_GVectorArray>()->data);
break;
}
case ValueType::OneSingle: {
const auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(value_typed->is_initialized);
const GPointer gpointer{data_type.single_type(), value_typed->data};
params.add_readonly_single_input(gpointer);
break;
}
case ValueType::OneVector: {
params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data[0]);
break;
}
}
}
void ensure_is_mutable(IndexMask full_mask,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
if (value_ != nullptr && ELEM(value_->type, ValueType::Span, ValueType::GVectorArray)) {
return;
}
const int array_size = full_mask.min_array_size();
switch (data_type.category()) {
case MFDataType::Single: {
const CPPType &type = data_type.single_type();
VariableValue_Span *new_value = nullptr;
if (caller_provided_storage_ == nullptr) {
new_value = value_allocator.obtain_Span(type, array_size);
}
else {
/* Reuse the storage provided caller when possible. */
new_value = value_allocator.obtain_Span_not_owned(caller_provided_storage_);
}
if (value_ != nullptr) {
if (value_->type == ValueType::GVArray) {
/* Fill new buffer with data from virtual array. */
this->value_as<VariableValue_GVArray>()->data.materialize_to_uninitialized(
full_mask, new_value->data);
}
else if (value_->type == ValueType::OneSingle) {
auto *old_value_typed_ = this->value_as<VariableValue_OneSingle>();
if (old_value_typed_->is_initialized) {
/* Fill the buffer with a single value. */
type.fill_construct_indices(old_value_typed_->data, new_value->data, full_mask);
}
}
else {
BLI_assert_unreachable();
}
value_allocator.release_value(value_, data_type);
}
value_ = new_value;
break;
}
case MFDataType::Vector: {
const CPPType &type = data_type.vector_base_type();
VariableValue_GVectorArray *new_value = nullptr;
if (caller_provided_storage_ == nullptr) {
new_value = value_allocator.obtain_GVectorArray(type, array_size);
}
else {
new_value = value_allocator.obtain_GVectorArray_not_owned(
*(GVectorArray *)caller_provided_storage_);
}
if (value_ != nullptr) {
if (value_->type == ValueType::GVVectorArray) {
/* Fill new vector array with data from virtual vector array. */
new_value->data.extend(full_mask, this->value_as<VariableValue_GVVectorArray>()->data);
}
else if (value_->type == ValueType::OneVector) {
/* Fill all indices with the same value. */
const GSpan vector = this->value_as<VariableValue_OneVector>()->data[0];
new_value->data.extend(full_mask, GVVectorArray_For_SingleGSpan{vector, array_size});
}
else {
BLI_assert_unreachable();
}
value_allocator.release_value(value_, data_type);
}
value_ = new_value;
break;
}
}
}
void add_as_mutable(MFParamsBuilder &params,
IndexMask mask,
IndexMask full_mask,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
/* Sanity check to make sure that enough values are initialized. */
BLI_assert(mask.size() <= tot_initialized_);
this->ensure_is_mutable(full_mask, data_type, value_allocator);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::Span: {
void *data = this->value_as<VariableValue_Span>()->data;
const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
params.add_single_mutable(span);
break;
}
case ValueType::GVectorArray: {
params.add_vector_mutable(this->value_as<VariableValue_GVectorArray>()->data);
break;
}
case ValueType::GVArray:
case ValueType::GVVectorArray:
case ValueType::OneSingle:
case ValueType::OneVector: {
BLI_assert_unreachable();
break;
}
}
}
void add_as_output(MFParamsBuilder &params,
IndexMask mask,
IndexMask full_mask,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
/* Sanity check to make sure that enough values are not initialized. */
BLI_assert(mask.size() <= full_mask.size() - tot_initialized_);
this->ensure_is_mutable(full_mask, data_type, value_allocator);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::Span: {
void *data = this->value_as<VariableValue_Span>()->data;
const GMutableSpan span{data_type.single_type(), data, mask.min_array_size()};
params.add_uninitialized_single_output(span);
break;
}
case ValueType::GVectorArray: {
params.add_vector_output(this->value_as<VariableValue_GVectorArray>()->data);
break;
}
case ValueType::GVArray:
case ValueType::GVVectorArray:
case ValueType::OneSingle:
case ValueType::OneVector: {
BLI_assert_unreachable();
break;
}
}
tot_initialized_ += mask.size();
}
void add_as_input__one(MFParamsBuilder &params, const MFDataType &data_type) const
{
BLI_assert(this->is_one());
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::GVArray: {
params.add_readonly_single_input(this->value_as<VariableValue_GVArray>()->data);
break;
}
case ValueType::GVVectorArray: {
params.add_readonly_vector_input(this->value_as<VariableValue_GVVectorArray>()->data);
break;
}
case ValueType::OneSingle: {
const auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(value_typed->is_initialized);
GPointer ptr{data_type.single_type(), value_typed->data};
params.add_readonly_single_input(ptr);
break;
}
case ValueType::OneVector: {
params.add_readonly_vector_input(this->value_as<VariableValue_OneVector>()->data);
break;
}
case ValueType::Span:
case ValueType::GVectorArray: {
BLI_assert_unreachable();
break;
}
}
}
void ensure_is_mutable__one(const MFDataType &data_type, ValueAllocator &value_allocator)
{
BLI_assert(this->is_one());
if (value_ != nullptr && ELEM(value_->type, ValueType::OneSingle, ValueType::OneVector)) {
return;
}
switch (data_type.category()) {
case MFDataType::Single: {
const CPPType &type = data_type.single_type();
VariableValue_OneSingle *new_value = value_allocator.obtain_OneSingle(type);
if (value_ != nullptr) {
if (value_->type == ValueType::GVArray) {
this->value_as<VariableValue_GVArray>()->data.get_internal_single_to_uninitialized(
new_value->data);
new_value->is_initialized = true;
}
else if (value_->type == ValueType::Span) {
BLI_assert(tot_initialized_ == 0);
/* Nothing to do, the single value is uninitialized already. */
}
else {
BLI_assert_unreachable();
}
value_allocator.release_value(value_, data_type);
}
value_ = new_value;
break;
}
case MFDataType::Vector: {
const CPPType &type = data_type.vector_base_type();
VariableValue_OneVector *new_value = value_allocator.obtain_OneVector(type);
if (value_ != nullptr) {
if (value_->type == ValueType::GVVectorArray) {
const GVVectorArray &old_vector_array =
this->value_as<VariableValue_GVVectorArray>()->data;
new_value->data.extend(IndexRange(1), old_vector_array);
}
else if (value_->type == ValueType::GVectorArray) {
BLI_assert(tot_initialized_ == 0);
/* Nothing to do. */
}
else {
BLI_assert_unreachable();
}
value_allocator.release_value(value_, data_type);
}
value_ = new_value;
break;
}
}
}
void add_as_mutable__one(MFParamsBuilder &params,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
BLI_assert(this->is_one());
this->ensure_is_mutable__one(data_type, value_allocator);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::OneSingle: {
auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(value_typed->is_initialized);
params.add_single_mutable(GMutableSpan{data_type.single_type(), value_typed->data, 1});
break;
}
case ValueType::OneVector: {
params.add_vector_mutable(this->value_as<VariableValue_OneVector>()->data);
break;
}
case ValueType::GVArray:
case ValueType::Span:
case ValueType::GVVectorArray:
case ValueType::GVectorArray: {
BLI_assert_unreachable();
break;
}
}
}
void add_as_output__one(MFParamsBuilder &params,
IndexMask mask,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
BLI_assert(this->is_one());
this->ensure_is_mutable__one(data_type, value_allocator);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::OneSingle: {
auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(!value_typed->is_initialized);
params.add_uninitialized_single_output(
GMutableSpan{data_type.single_type(), value_typed->data, 1});
/* It becomes initialized when the multi-function is called. */
value_typed->is_initialized = true;
break;
}
case ValueType::OneVector: {
auto *value_typed = this->value_as<VariableValue_OneVector>();
BLI_assert(value_typed->data[0].is_empty());
params.add_vector_output(value_typed->data);
break;
}
case ValueType::GVArray:
case ValueType::Span:
case ValueType::GVVectorArray:
case ValueType::GVectorArray: {
BLI_assert_unreachable();
break;
}
}
tot_initialized_ += mask.size();
}
/**
* Destruct the masked elements in this variable.
* \return True when all elements of this variable are initialized and the variable state can be
* released.
*/
bool destruct(IndexMask mask,
IndexMask full_mask,
const MFDataType &data_type,
ValueAllocator &value_allocator)
{
BLI_assert(value_ != nullptr);
int new_tot_initialized = tot_initialized_ - mask.size();
/* Sanity check to make sure that enough indices can be destructed. */
BLI_assert(new_tot_initialized >= 0);
switch (value_->type) {
case ValueType::GVArray: {
if (mask.size() < full_mask.size()) {
/* Not all elements are destructed. Since we can't work on the original array, we have to
* create a copy first. */
this->ensure_is_mutable(full_mask, data_type, value_allocator);
BLI_assert(value_->type == ValueType::Span);
const CPPType &type = data_type.single_type();
type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
}
break;
}
case ValueType::Span: {
const CPPType &type = data_type.single_type();
type.destruct_indices(this->value_as<VariableValue_Span>()->data, mask);
break;
}
case ValueType::GVVectorArray: {
if (mask.size() < full_mask.size()) {
/* Not all elements are cleared. Since we can't work on the original vector array, we
* have to create a copy first. A possible future optimization is to create the partial
* copy directly. */
this->ensure_is_mutable(full_mask, data_type, value_allocator);
BLI_assert(value_->type == ValueType::GVectorArray);
this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
}
break;
}
case ValueType::GVectorArray: {
this->value_as<VariableValue_GVectorArray>()->data.clear(mask);
break;
}
case ValueType::OneSingle: {
auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(value_typed->is_initialized);
UNUSED_VARS_NDEBUG(value_typed);
if (mask.size() == tot_initialized_) {
const CPPType &type = data_type.single_type();
type.destruct(value_typed->data);
value_typed->is_initialized = false;
}
break;
}
case ValueType::OneVector: {
auto *value_typed = this->value_as<VariableValue_OneVector>();
if (mask.size() == tot_initialized_) {
value_typed->data.clear(IndexRange(1));
}
break;
}
}
tot_initialized_ = new_tot_initialized;
const bool should_self_destruct = new_tot_initialized == 0 &&
caller_provided_storage_ == nullptr;
return should_self_destruct;
}
void indices_split(IndexMask mask, IndicesSplitVectors &r_indices)
{
BLI_assert(mask.size() <= tot_initialized_);
BLI_assert(value_ != nullptr);
switch (value_->type) {
case ValueType::GVArray: {
const VArray<bool> varray = this->value_as<VariableValue_GVArray>()->data.typed<bool>();
for (const int i : mask) {
r_indices[varray[i]].append(i);
}
break;
}
case ValueType::Span: {
const Span<bool> span((bool *)this->value_as<VariableValue_Span>()->data,
mask.min_array_size());
for (const int i : mask) {
r_indices[span[i]].append(i);
}
break;
}
case ValueType::OneSingle: {
auto *value_typed = this->value_as<VariableValue_OneSingle>();
BLI_assert(value_typed->is_initialized);
const bool condition = *(bool *)value_typed->data;
r_indices[condition].extend(mask);
break;
}
case ValueType::GVVectorArray:
case ValueType::GVectorArray:
case ValueType::OneVector: {
BLI_assert_unreachable();
break;
}
}
}
template<typename T> T *value_as()
{
BLI_assert(value_ != nullptr);
BLI_assert(value_->type == T::static_type);
return static_cast<T *>(value_);
}
template<typename T> const T *value_as() const
{
BLI_assert(value_ != nullptr);
BLI_assert(value_->type == T::static_type);
return static_cast<T *>(value_);
}
};
/** Keeps track of the states of all variables during evaluation. */
class VariableStates {
private:
ValueAllocator value_allocator_;
const MFProcedure &procedure_;
/** The state of every variable, indexed by #MFVariable::index_in_procedure(). */
Array<VariableState> variable_states_;
IndexMask full_mask_;
public:
VariableStates(LinearAllocator<> &linear_allocator,
const MFProcedure &procedure,
IndexMask full_mask)
: value_allocator_(linear_allocator),
procedure_(procedure),
variable_states_(procedure.variables().size()),
full_mask_(full_mask)
{
}
~VariableStates()
{
for (const int variable_i : procedure_.variables().index_range()) {
VariableState &state = variable_states_[variable_i];
if (state.value_ != nullptr) {
const MFVariable *variable = procedure_.variables()[variable_i];
state.destruct_value(value_allocator_, variable->data_type());
}
}
}
ValueAllocator &value_allocator()
{
return value_allocator_;
}
const IndexMask &full_mask() const
{
return full_mask_;
}
void add_initial_variable_states(const MFProcedureExecutor &fn,
const MFProcedure &procedure,
MFParams &params)
{
for (const int param_index : fn.param_indices()) {
MFParamType param_type = fn.param_type(param_index);
const MFVariable *variable = procedure.params()[param_index].variable;
auto add_state = [&](VariableValue *value,
bool input_is_initialized,
void *caller_provided_storage = nullptr) {
const int tot_initialized = input_is_initialized ? full_mask_.size() : 0;
const int variable_i = variable->index_in_procedure();
VariableState &variable_state = variable_states_[variable_i];
BLI_assert(variable_state.value_ == nullptr);
variable_state.value_ = value;
variable_state.tot_initialized_ = tot_initialized;
variable_state.caller_provided_storage_ = caller_provided_storage;
};
switch (param_type.category()) {
case MFParamCategory::SingleInput: {
const GVArray &data = params.readonly_single_input(param_index);
add_state(value_allocator_.obtain_GVArray(data), true);
break;
}
case MFParamCategory::VectorInput: {
const GVVectorArray &data = params.readonly_vector_input(param_index);
add_state(value_allocator_.obtain_GVVectorArray(data), true);
break;
}
case MFParamCategory::SingleOutput: {
GMutableSpan data = params.uninitialized_single_output(param_index);
add_state(value_allocator_.obtain_Span_not_owned(data.data()), false, data.data());
break;
}
case MFParamCategory::VectorOutput: {
GVectorArray &data = params.vector_output(param_index);
add_state(value_allocator_.obtain_GVectorArray_not_owned(data), false, &data);
break;
}
case MFParamCategory::SingleMutable: {
GMutableSpan data = params.single_mutable(param_index);
add_state(value_allocator_.obtain_Span_not_owned(data.data()), true, data.data());
break;
}
case MFParamCategory::VectorMutable: {
GVectorArray &data = params.vector_mutable(param_index);
add_state(value_allocator_.obtain_GVectorArray_not_owned(data), true, &data);
break;
}
}
}
}
void add_as_param(VariableState &variable_state,
MFParamsBuilder &params,
const MFParamType &param_type,
const IndexMask &mask)
{
const MFDataType data_type = param_type.data_type();
switch (param_type.interface_type()) {
case MFParamType::Input: {
variable_state.add_as_input(params, mask, data_type);
break;
}
case MFParamType::Mutable: {
variable_state.add_as_mutable(params, mask, full_mask_, data_type, value_allocator_);
break;
}
case MFParamType::Output: {
variable_state.add_as_output(params, mask, full_mask_, data_type, value_allocator_);
break;
}
}
}
void add_as_param__one(VariableState &variable_state,
MFParamsBuilder &params,
const MFParamType &param_type,
const IndexMask &mask)
{
const MFDataType data_type = param_type.data_type();
switch (param_type.interface_type()) {
case MFParamType::Input: {
variable_state.add_as_input__one(params, data_type);
break;
}
case MFParamType::Mutable: {
variable_state.add_as_mutable__one(params, data_type, value_allocator_);
break;
}
case MFParamType::Output: {
variable_state.add_as_output__one(params, mask, data_type, value_allocator_);
break;
}
}
}
void destruct(const MFVariable &variable, const IndexMask &mask)
{
VariableState &variable_state = this->get_variable_state(variable);
if (variable_state.destruct(mask, full_mask_, variable.data_type(), value_allocator_)) {
variable_state.destruct_value(value_allocator_, variable.data_type());
}
}
VariableState &get_variable_state(const MFVariable &variable)
{
const int variable_i = variable.index_in_procedure();
VariableState &variable_state = variable_states_[variable_i];
return variable_state;
}
};
static bool evaluate_as_one(const MultiFunction &fn,
Span<VariableState *> param_variable_states,
const IndexMask &mask,
const IndexMask &full_mask)
{
if (fn.depends_on_context()) {
return false;
}
if (mask.size() < full_mask.size()) {
return false;
}
for (VariableState *state : param_variable_states) {
if (state != nullptr && state->value_ != nullptr && !state->is_one()) {
return false;
}
}
return true;
}
static void gather_parameter_variable_states(const MultiFunction &fn,
const MFCallInstruction &instruction,
VariableStates &variable_states,
MutableSpan<VariableState *> r_param_variable_states)
{
for (const int param_index : fn.param_indices()) {
const MFVariable *variable = instruction.params()[param_index];
if (variable == nullptr) {
r_param_variable_states[param_index] = nullptr;
}
else {
VariableState &variable_state = variable_states.get_variable_state(*variable);
r_param_variable_states[param_index] = &variable_state;
}
}
}
static void fill_params__one(const MultiFunction &fn,
const IndexMask mask,
MFParamsBuilder &params,
VariableStates &variable_states,
const Span<VariableState *> param_variable_states)
{
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
VariableState *variable_state = param_variable_states[param_index];
if (variable_state == nullptr) {
params.add_ignored_single_output();
}
else {
variable_states.add_as_param__one(*variable_state, params, param_type, mask);
}
}
}
static void fill_params(const MultiFunction &fn,
const IndexMask mask,
MFParamsBuilder &params,
VariableStates &variable_states,
const Span<VariableState *> param_variable_states)
{
for (const int param_index : fn.param_indices()) {
const MFParamType param_type = fn.param_type(param_index);
VariableState *variable_state = param_variable_states[param_index];
if (variable_state == nullptr) {
params.add_ignored_single_output();
}
else {
variable_states.add_as_param(*variable_state, params, param_type, mask);
}
}
}
static void execute_call_instruction(const MFCallInstruction &instruction,
const IndexMask mask,
VariableStates &variable_states,
const MFContext &context)
{
const MultiFunction &fn = instruction.fn();
Vector<VariableState *> param_variable_states;
param_variable_states.resize(fn.param_amount());
gather_parameter_variable_states(fn, instruction, variable_states, param_variable_states);
/* If all inputs to the function are constant, it's enough to call the function only once instead
* of for every index. */
if (evaluate_as_one(fn, param_variable_states, mask, variable_states.full_mask())) {
MFParamsBuilder params(fn, 1);
fill_params__one(fn, mask, params, variable_states, param_variable_states);
try {
fn.call(IndexRange(1), params, context);
}
catch (...) {
/* Multi-functions must not throw exceptions. */
BLI_assert_unreachable();
}
}
else {
MFParamsBuilder params(fn, &mask);
fill_params(fn, mask, params, variable_states, param_variable_states);
try {
fn.call_auto(mask, params, context);
}
catch (...) {
/* Multi-functions must not throw exceptions. */
BLI_assert_unreachable();
}
}
}
/** An index mask, that might own the indices if necessary. */
struct InstructionIndices {
bool is_owned;
Vector<int64_t> owned_indices;
IndexMask referenced_indices;
IndexMask mask() const
{
if (this->is_owned) {
return this->owned_indices.as_span();
}
return this->referenced_indices;
}
};
/** Contains information about the next instruction that should be executed. */
struct NextInstructionInfo {
const MFInstruction *instruction = nullptr;
InstructionIndices indices;
IndexMask mask() const
{
return this->indices.mask();
}
operator bool() const
{
return this->instruction != nullptr;
}
};
/**
* Keeps track of the next instruction for all indices and decides in which order instructions are
* evaluated.
*/
class InstructionScheduler {
private:
Stack<NextInstructionInfo> next_instructions_;
public:
InstructionScheduler() = default;
void add_referenced_indices(const MFInstruction &instruction, IndexMask mask)
{
if (mask.is_empty()) {
return;
}
InstructionIndices new_indices;
new_indices.is_owned = false;
new_indices.referenced_indices = mask;
next_instructions_.push({&instruction, std::move(new_indices)});
}
void add_owned_indices(const MFInstruction &instruction, Vector<int64_t> indices)
{
if (indices.is_empty()) {
return;
}
BLI_assert(IndexMask::indices_are_valid_index_mask(indices));
InstructionIndices new_indices;
new_indices.is_owned = true;
new_indices.owned_indices = std::move(indices);
next_instructions_.push({&instruction, std::move(new_indices)});
}
bool is_done() const
{
return next_instructions_.is_empty();
}
const NextInstructionInfo &peek() const
{
BLI_assert(!this->is_done());
return next_instructions_.peek();
}
void update_instruction_pointer(const MFInstruction &instruction)
{
next_instructions_.peek().instruction = &instruction;
}
NextInstructionInfo pop()
{
return next_instructions_.pop();
}
};
void MFProcedureExecutor::call(IndexMask full_mask, MFParams params, MFContext context) const
{
BLI_assert(procedure_.validate());
AlignedBuffer<512, 64> local_buffer;
LinearAllocator<> linear_allocator;
linear_allocator.provide_buffer(local_buffer);
VariableStates variable_states{linear_allocator, procedure_, full_mask};
variable_states.add_initial_variable_states(*this, procedure_, params);
InstructionScheduler scheduler;
scheduler.add_referenced_indices(*procedure_.entry(), full_mask);
/* Loop until all indices got to a return instruction. */
while (!scheduler.is_done()) {
const NextInstructionInfo &instr_info = scheduler.peek();
const MFInstruction &instruction = *instr_info.instruction;
switch (instruction.type()) {
case MFInstructionType::Call: {
const MFCallInstruction &call_instruction = static_cast<const MFCallInstruction &>(
instruction);
execute_call_instruction(call_instruction, instr_info.mask(), variable_states, context);
scheduler.update_instruction_pointer(*call_instruction.next());
break;
}
case MFInstructionType::Branch: {
const MFBranchInstruction &branch_instruction = static_cast<const MFBranchInstruction &>(
instruction);
const MFVariable *condition_var = branch_instruction.condition();
VariableState &variable_state = variable_states.get_variable_state(*condition_var);
IndicesSplitVectors new_indices;
variable_state.indices_split(instr_info.mask(), new_indices);
scheduler.pop();
scheduler.add_owned_indices(*branch_instruction.branch_false(), new_indices[false]);
scheduler.add_owned_indices(*branch_instruction.branch_true(), new_indices[true]);
break;
}
case MFInstructionType::Destruct: {
const MFDestructInstruction &destruct_instruction =
static_cast<const MFDestructInstruction &>(instruction);
const MFVariable *variable = destruct_instruction.variable();
variable_states.destruct(*variable, instr_info.mask());
scheduler.update_instruction_pointer(*destruct_instruction.next());
break;
}
case MFInstructionType::Dummy: {
const MFDummyInstruction &dummy_instruction = static_cast<const MFDummyInstruction &>(
instruction);
scheduler.update_instruction_pointer(*dummy_instruction.next());
break;
}
case MFInstructionType::Return: {
/* Don't insert the indices back into the scheduler. */
scheduler.pop();
break;
}
}
}
for (const int param_index : this->param_indices()) {
const MFParamType param_type = this->param_type(param_index);
const MFVariable *variable = procedure_.params()[param_index].variable;
VariableState &variable_state = variable_states.get_variable_state(*variable);
switch (param_type.interface_type()) {
case MFParamType::Input: {
/* Input variables must be destructed in the end. */
BLI_assert(variable_state.is_fully_uninitialized(full_mask));
break;
}
case MFParamType::Mutable:
case MFParamType::Output: {
/* Mutable and output variables must be initialized in the end. */
BLI_assert(variable_state.is_fully_initialized(full_mask));
/* Make sure that the data is in the memory provided by the caller. */
variable_state.ensure_is_mutable(
full_mask, param_type.data_type(), variable_states.value_allocator());
break;
}
}
}
}
MultiFunction::ExecutionHints MFProcedureExecutor::get_execution_hints() const
{
ExecutionHints hints;
hints.allocates_array = true;
hints.min_grain_size = 10000;
return hints;
}
} // namespace blender::fn