770 lines
22 KiB
C++
770 lines
22 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifndef __BLI_SET_HH__
|
|
#define __BLI_SET_HH__
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* A `blender::Set<Key>` is an unordered container for unique elements of type `Key`. It is
|
|
* designed to be a more convenient and efficient replacement for `std::unordered_set`. All core
|
|
* operations (add, remove and contains) can be done in O(1) amortized expected time.
|
|
*
|
|
* In most cases, your default choice for a hash set in Blender should be `blender::Set`.
|
|
*
|
|
* blender::Set is implemented using open addressing in a slot array with a power-of-two size.
|
|
* Every slot is in one of three states: empty, occupied or removed. If a slot is occupied, it
|
|
* contains an instance of the key type.
|
|
*
|
|
* Benchmarking and comparing hash tables is hard, because many factors influence the result. The
|
|
* performance of a hash table depends on the combination of the hash function, probing strategy,
|
|
* max load factor, key type, slot type and the data distribution. This implementation is designed
|
|
* to be relatively fast by default in all cases. However, it also offers many customization
|
|
* points that allow it to be optimized for a specific use case.
|
|
*
|
|
* A rudimentary benchmark can be found in BLI_set_test.cc. The results of that benchmark are
|
|
* there as well. The numbers show that in this specific case blender::Set outperforms
|
|
* std::unordered_set consistently by a good amount.
|
|
*
|
|
* Some noteworthy information:
|
|
* - Key must be a movable type.
|
|
* - Pointers to keys might be invalidated when the set is changed or moved.
|
|
* - The hash function can be customized. See BLI_hash.hh for details.
|
|
* - The probing strategy can be customized. See BLI_probing_stragies.hh for details.
|
|
* - The slot type can be customized. See BLI_set_slots.hh for details.
|
|
* - Small buffer optimization is enabled by default, if the key is not too large.
|
|
* - The methods `add_new` and `remove_contained` should be used instead of `add` and `remove`
|
|
* whenever appropriate. Assumptions and intention are described better this way.
|
|
* - Lookups can be performed using types other than Key without conversion. For that use the
|
|
* methods ending with `_as`. The template parameters Hash and IsEqual have to support the other
|
|
* key type. This can greatly improve performance when the set contains strings.
|
|
* - The default constructor is cheap, even when a large InlineBufferCapacity is used. A large
|
|
* slot array will only be initialized when the first key is added.
|
|
* - The `print_stats` method can be used to get information about the distribution of keys and
|
|
* memory usage of the set.
|
|
* - The method names don't follow the std::unordered_set names in many cases. Searching for such
|
|
* names in this file will usually let you discover the new name.
|
|
* - There is a StdUnorderedSetWrapper class, that wraps std::unordered_set and gives it the same
|
|
* interface as blender::Set. This is useful for benchmarking.
|
|
*
|
|
* Possible Improvements:
|
|
* - Use a branchless loop over slots in grow function (measured ~10% performance improvement when
|
|
* the distribution of occupied slots is suffiently random).
|
|
* - Support max load factor customization.
|
|
* - Improve performance with large data sets through software prefetching. I got fairly
|
|
* significant improvements in simple tests (~30% faster). It still needs to be investigated how
|
|
* to make a nice interface for this functionality.
|
|
*/
|
|
|
|
#include <unordered_set>
|
|
|
|
#include "BLI_array.hh"
|
|
#include "BLI_hash.hh"
|
|
#include "BLI_hash_tables.hh"
|
|
#include "BLI_probing_strategies.hh"
|
|
#include "BLI_set_slots.hh"
|
|
|
|
namespace blender {
|
|
|
|
template<
|
|
/** Type of the elements that are stored in this set. It has to be movable. Furthermore, the
|
|
* hash and is-equal functions have to support it.
|
|
*/
|
|
typename Key,
|
|
/**
|
|
* The minimum number of elements that can be stored in this Set without doing a heap
|
|
* allocation. This is useful when you expect to have many small sets. However, keep in mind
|
|
* that (unlike vector) initializing a set has a O(n) cost in the number of slots.
|
|
*
|
|
* When Key is large, the small buffer optimization is disabled by default to avoid large
|
|
* unexpected allocations on the stack. It can still be enabled explicitly though.
|
|
*/
|
|
uint32_t InlineBufferCapacity = (sizeof(Key) < 100) ? 4 : 0,
|
|
/**
|
|
* The strategy used to deal with collisions. They are defined in BLI_probing_strategies.hh.
|
|
*/
|
|
typename ProbingStrategy = DefaultProbingStrategy,
|
|
/**
|
|
* The hash function used to hash the keys. There is a default for many types. See BLI_hash.hh
|
|
* for examples on how to define a custom hash function.
|
|
*/
|
|
typename Hash = DefaultHash<Key>,
|
|
/**
|
|
* The equality operator used to compare keys. By default it will simply compare keys using the
|
|
* `==` operator.
|
|
*/
|
|
typename IsEqual = DefaultEquality,
|
|
/**
|
|
* This is what will actually be stored in the hash table array. At a minimum a slot has to
|
|
* be able to hold a key and information about whether the slot is empty, occupied or removed.
|
|
* Using a non-standard slot type can improve performance or reduce the memory footprint. For
|
|
* example, a hash can be stored in the slot, to make inequality checks more efficient. Some
|
|
* types have special values that can represent an empty or removed state, eliminating the need
|
|
* for an additional variable. Also see BLI_set_slots.hh.
|
|
*/
|
|
typename Slot = typename DefaultSetSlot<Key>::type,
|
|
/**
|
|
* The allocator used by this set. Should rarely be changed, except when you don't want that
|
|
* MEM_* is used internally.
|
|
*/
|
|
typename Allocator = GuardedAllocator>
|
|
class Set {
|
|
private:
|
|
/**
|
|
* Slots are either empty, occupied or removed. The number of occupied slots can be computed by
|
|
* subtracting the removed slots from the occupied-and-removed slots.
|
|
*/
|
|
uint32_t m_removed_slots;
|
|
uint32_t m_occupied_and_removed_slots;
|
|
|
|
/**
|
|
* The maximum number of slots that can be used (either occupied or removed) until the set has to
|
|
* grow. This is the total number of slots times the max load factor.
|
|
*/
|
|
uint32_t m_usable_slots;
|
|
|
|
/**
|
|
* The number of slots minus one. This is a bit mask that can be used to turn any integer into a
|
|
* valid slot index efficiently.
|
|
*/
|
|
uint32_t m_slot_mask;
|
|
|
|
/** This is called to hash incoming keys. */
|
|
Hash m_hash;
|
|
|
|
/** This is called to check equality of two keys. */
|
|
IsEqual m_is_equal;
|
|
|
|
/** The max load factor is 1/2 = 50% by default. */
|
|
#define LOAD_FACTOR 1, 2
|
|
LoadFactor m_max_load_factor = LoadFactor(LOAD_FACTOR);
|
|
using SlotArray =
|
|
Array<Slot, LoadFactor::compute_total_slots(InlineBufferCapacity, LOAD_FACTOR), Allocator>;
|
|
#undef LOAD_FACTOR
|
|
|
|
/**
|
|
* This is the array that contains the actual slots. There is always at least one empty slot and
|
|
* the size of the array is a power of two.
|
|
*/
|
|
SlotArray m_slots;
|
|
|
|
/** Iterate over a slot index sequence for a given hash. */
|
|
#define SET_SLOT_PROBING_BEGIN(HASH, R_SLOT) \
|
|
SLOT_PROBING_BEGIN (ProbingStrategy, HASH, m_slot_mask, SLOT_INDEX) \
|
|
auto &R_SLOT = m_slots[SLOT_INDEX];
|
|
#define SET_SLOT_PROBING_END() SLOT_PROBING_END()
|
|
|
|
public:
|
|
/**
|
|
* Initialize an empty set. This is a cheap operation no matter how large the inline buffer
|
|
* is. This is necessary to avoid a high cost when no elements are added at all. An optimized
|
|
* grow operation is performed on the first insertion.
|
|
*/
|
|
Set()
|
|
: m_removed_slots(0),
|
|
m_occupied_and_removed_slots(0),
|
|
m_usable_slots(0),
|
|
m_slot_mask(0),
|
|
m_slots(1)
|
|
{
|
|
}
|
|
|
|
~Set() = default;
|
|
|
|
/**
|
|
* Construct a set that contains the given keys. Duplicates will be removed automatically.
|
|
*/
|
|
Set(const std::initializer_list<Key> &list) : Set()
|
|
{
|
|
this->add_multiple(list);
|
|
}
|
|
|
|
Set(const Set &other) = default;
|
|
|
|
Set(Set &&other) noexcept
|
|
: m_removed_slots(other.m_removed_slots),
|
|
m_occupied_and_removed_slots(other.m_occupied_and_removed_slots),
|
|
m_usable_slots(other.m_usable_slots),
|
|
m_slot_mask(other.m_slot_mask),
|
|
m_hash(std::move(other.m_hash)),
|
|
m_is_equal(std::move(other.m_is_equal)),
|
|
m_slots(std::move(other.m_slots))
|
|
{
|
|
other.~Set();
|
|
new (&other) Set();
|
|
}
|
|
|
|
Set &operator=(const Set &other)
|
|
{
|
|
if (this == &other) {
|
|
return *this;
|
|
}
|
|
|
|
this->~Set();
|
|
new (this) Set(other);
|
|
|
|
return *this;
|
|
}
|
|
|
|
Set &operator=(Set &&other)
|
|
{
|
|
if (this == &other) {
|
|
return *this;
|
|
}
|
|
|
|
this->~Set();
|
|
new (this) Set(std::move(other));
|
|
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Add a new key to the set. This invokes undefined behavior when the key is in the set already.
|
|
* When you know for certain that a key is not in the set yet, use this method for better
|
|
* performance. This also expresses the intent better.
|
|
*/
|
|
void add_new(const Key &key)
|
|
{
|
|
this->add_new__impl(key, m_hash(key));
|
|
}
|
|
void add_new(Key &&key)
|
|
{
|
|
this->add_new__impl(std::move(key), m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* Add a key to the set. If the key exists in the set already, nothing is done. The return value
|
|
* is true if the key was newly added to the set.
|
|
*
|
|
* This is similar to std::unordered_set::insert.
|
|
*/
|
|
bool add(const Key &key)
|
|
{
|
|
return this->add_as(key);
|
|
}
|
|
bool add(Key &&key)
|
|
{
|
|
return this->add_as(std::move(key));
|
|
}
|
|
|
|
/**
|
|
* Same as `add`, but accepts other key types that are supported by the hash function.
|
|
*/
|
|
template<typename ForwardKey> bool add_as(ForwardKey &&key)
|
|
{
|
|
return this->add__impl(std::forward<ForwardKey>(key), m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* Convenience function to add many keys to the set at once. Duplicates are removed
|
|
* automatically.
|
|
*
|
|
* We might be able to make this faster than sequentially adding all keys, but that is not
|
|
* implemented yet.
|
|
*/
|
|
void add_multiple(Span<Key> keys)
|
|
{
|
|
for (const Key &key : keys) {
|
|
this->add(key);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convenience function to add many new keys to the set at once. The keys must not exist in the
|
|
* set before and there must not be duplicates in the array.
|
|
*/
|
|
void add_multiple_new(Span<Key> keys)
|
|
{
|
|
for (const Key &key : keys) {
|
|
this->add_new(key);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns true if the key is in the set.
|
|
*
|
|
* This is similar to std::unordered_set::find() != std::unordered_set::end().
|
|
*/
|
|
bool contains(const Key &key) const
|
|
{
|
|
return this->contains_as(key);
|
|
}
|
|
|
|
/**
|
|
* Same as `contains`, but accepts other key types that are supported by the hash function.
|
|
*/
|
|
template<typename ForwardKey> bool contains_as(const ForwardKey &key) const
|
|
{
|
|
return this->contains__impl(key, m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* Deletes the key from the set. Returns true when the key did exist beforehand, otherwise false.
|
|
*
|
|
* This is similar to std::unordered_set::erase.
|
|
*/
|
|
bool remove(const Key &key)
|
|
{
|
|
return this->remove_as(key);
|
|
}
|
|
|
|
/**
|
|
* Same as `remove`, but accepts other key types that are supported by the hash function.
|
|
*/
|
|
template<typename ForwardKey> bool remove_as(const ForwardKey &key)
|
|
{
|
|
return this->remove__impl(key, m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* Deletes the key from the set. This invokes undefined behavior when the key is not in the map.
|
|
*/
|
|
void remove_contained(const Key &key)
|
|
{
|
|
this->remove_contained_as(key);
|
|
}
|
|
|
|
/**
|
|
* Same as `remove_contained`, but accepts other key types that are supported by the hash
|
|
* function.
|
|
*/
|
|
template<typename ForwardKey> void remove_contained_as(const ForwardKey &key)
|
|
{
|
|
this->remove_contained__impl(key, m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* An iterator that can iterate over all keys in the set. The iterator is invalidated when the
|
|
* set is moved or when it is grown.
|
|
*
|
|
* Keys returned by this iterator are always const. They should not change, because this might
|
|
* also change their hash.
|
|
*/
|
|
class Iterator {
|
|
private:
|
|
const Slot *m_slots;
|
|
uint32_t m_total_slots;
|
|
uint32_t m_current_slot;
|
|
|
|
public:
|
|
Iterator(const Slot *slots, uint32_t total_slots, uint32_t current_slot)
|
|
: m_slots(slots), m_total_slots(total_slots), m_current_slot(current_slot)
|
|
{
|
|
}
|
|
|
|
Iterator &operator++()
|
|
{
|
|
while (++m_current_slot < m_total_slots) {
|
|
if (m_slots[m_current_slot].is_occupied()) {
|
|
break;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const Key &operator*() const
|
|
{
|
|
return *m_slots[m_current_slot].key();
|
|
}
|
|
|
|
friend bool operator!=(const Iterator &a, const Iterator &b)
|
|
{
|
|
BLI_assert(a.m_slots == b.m_slots);
|
|
BLI_assert(a.m_total_slots == b.m_total_slots);
|
|
return a.m_current_slot != b.m_current_slot;
|
|
}
|
|
};
|
|
|
|
Iterator begin() const
|
|
{
|
|
for (uint32_t i = 0; i < m_slots.size(); i++) {
|
|
if (m_slots[i].is_occupied()) {
|
|
return Iterator(m_slots.data(), m_slots.size(), i);
|
|
}
|
|
}
|
|
return this->end();
|
|
}
|
|
|
|
Iterator end() const
|
|
{
|
|
return Iterator(m_slots.data(), m_slots.size(), m_slots.size());
|
|
}
|
|
|
|
/**
|
|
* Print common statistics like size and collision count. This is useful for debugging purposes.
|
|
*/
|
|
void print_stats(StringRef name = "") const
|
|
{
|
|
HashTableStats stats(*this, *this);
|
|
stats.print(name);
|
|
}
|
|
|
|
/**
|
|
* Get the number of collisions that the probing strategy has to go through to find the key or
|
|
* determine that it is not in the set.
|
|
*/
|
|
uint32_t count_collisions(const Key &key) const
|
|
{
|
|
return this->count_collisions__impl(key, m_hash(key));
|
|
}
|
|
|
|
/**
|
|
* Remove all elements from the set.
|
|
*/
|
|
void clear()
|
|
{
|
|
this->~Set();
|
|
new (this) Set();
|
|
}
|
|
|
|
/**
|
|
* Creates a new slot array and reinserts all keys inside of that. This method can be used to get
|
|
* rid of removed slots. Also this is useful for benchmarking the grow function.
|
|
*/
|
|
void rehash()
|
|
{
|
|
this->realloc_and_reinsert(this->size());
|
|
}
|
|
|
|
/**
|
|
* Returns the number of keys stored in the set.
|
|
*/
|
|
uint32_t size() const
|
|
{
|
|
return m_occupied_and_removed_slots - m_removed_slots;
|
|
}
|
|
|
|
/**
|
|
* Returns true if no keys are stored.
|
|
*/
|
|
bool is_empty() const
|
|
{
|
|
return m_occupied_and_removed_slots == m_removed_slots;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of available slots. This is mostly for debugging purposes.
|
|
*/
|
|
uint32_t capacity() const
|
|
{
|
|
return m_slots.size();
|
|
}
|
|
|
|
/**
|
|
* Returns the amount of removed slots in the set. This is mostly for debugging purposes.
|
|
*/
|
|
uint32_t removed_amount() const
|
|
{
|
|
return m_removed_slots;
|
|
}
|
|
|
|
/**
|
|
* Returns the bytes required per element. This is mostly for debugging purposes.
|
|
*/
|
|
uint32_t size_per_element() const
|
|
{
|
|
return sizeof(Slot);
|
|
}
|
|
|
|
/**
|
|
* Returns the approximate memory requirements of the set in bytes. This is more correct for
|
|
* larger sets.
|
|
*/
|
|
uint32_t size_in_bytes() const
|
|
{
|
|
return sizeof(Slot) * m_slots.size();
|
|
}
|
|
|
|
/**
|
|
* Potentially resize the set such that it can hold the specified number of keys without another
|
|
* grow operation.
|
|
*/
|
|
void reserve(uint32_t n)
|
|
{
|
|
if (m_usable_slots < n) {
|
|
this->realloc_and_reinsert(n);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns true if there is a key that exists in both sets.
|
|
*/
|
|
static bool Intersects(const Set &a, const Set &b)
|
|
{
|
|
/* Make sure we iterate over the shorter set. */
|
|
if (a.size() > b.size()) {
|
|
return Intersects(b, a);
|
|
}
|
|
|
|
for (const Key &key : a) {
|
|
if (b.contains(key)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns true if no key from a is also in b and vice versa.
|
|
*/
|
|
static bool Disjoint(const Set &a, const Set &b)
|
|
{
|
|
return !Intersects(a, b);
|
|
}
|
|
|
|
private:
|
|
BLI_NOINLINE void realloc_and_reinsert(uint32_t min_usable_slots)
|
|
{
|
|
uint32_t total_slots, usable_slots;
|
|
m_max_load_factor.compute_total_and_usable_slots(
|
|
SlotArray::inline_buffer_capacity(), min_usable_slots, &total_slots, &usable_slots);
|
|
uint32_t new_slot_mask = total_slots - 1;
|
|
|
|
/**
|
|
* Optimize the case when the set was empty beforehand. We can avoid some copies here.
|
|
*/
|
|
if (this->size() == 0) {
|
|
m_slots.~Array();
|
|
new (&m_slots) SlotArray(total_slots);
|
|
m_removed_slots = 0;
|
|
m_occupied_and_removed_slots = 0;
|
|
m_usable_slots = usable_slots;
|
|
m_slot_mask = new_slot_mask;
|
|
return;
|
|
}
|
|
|
|
/* The grown array that we insert the keys into. */
|
|
SlotArray new_slots(total_slots);
|
|
|
|
for (Slot &slot : m_slots) {
|
|
if (slot.is_occupied()) {
|
|
this->add_after_grow_and_destruct_old(slot, new_slots, new_slot_mask);
|
|
}
|
|
}
|
|
|
|
/* All occupied slots have been destructed already and empty/removed slots are assumed to be
|
|
* trivially destructible. */
|
|
m_slots.clear_without_destruct();
|
|
m_slots = std::move(new_slots);
|
|
m_occupied_and_removed_slots -= m_removed_slots;
|
|
m_usable_slots = usable_slots;
|
|
m_removed_slots = 0;
|
|
m_slot_mask = new_slot_mask;
|
|
}
|
|
|
|
void add_after_grow_and_destruct_old(Slot &old_slot,
|
|
SlotArray &new_slots,
|
|
uint32_t new_slot_mask)
|
|
{
|
|
uint32_t hash = old_slot.get_hash(Hash());
|
|
|
|
SLOT_PROBING_BEGIN (ProbingStrategy, hash, new_slot_mask, slot_index) {
|
|
Slot &slot = new_slots[slot_index];
|
|
if (slot.is_empty()) {
|
|
slot.relocate_occupied_here(old_slot, hash);
|
|
return;
|
|
}
|
|
}
|
|
SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey> bool contains__impl(const ForwardKey &key, uint32_t hash) const
|
|
{
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.is_empty()) {
|
|
return false;
|
|
}
|
|
if (slot.contains(key, m_is_equal, hash)) {
|
|
return true;
|
|
}
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey> void add_new__impl(ForwardKey &&key, uint32_t hash)
|
|
{
|
|
BLI_assert(!this->contains_as(key));
|
|
|
|
this->ensure_can_add();
|
|
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.is_empty()) {
|
|
slot.occupy(std::forward<ForwardKey>(key), hash);
|
|
m_occupied_and_removed_slots++;
|
|
return;
|
|
}
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey> bool add__impl(ForwardKey &&key, uint32_t hash)
|
|
{
|
|
this->ensure_can_add();
|
|
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.is_empty()) {
|
|
slot.occupy(std::forward<ForwardKey>(key), hash);
|
|
m_occupied_and_removed_slots++;
|
|
return true;
|
|
}
|
|
if (slot.contains(key, m_is_equal, hash)) {
|
|
return false;
|
|
}
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey> bool remove__impl(const ForwardKey &key, uint32_t hash)
|
|
{
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.contains(key, m_is_equal, hash)) {
|
|
slot.remove();
|
|
m_removed_slots++;
|
|
return true;
|
|
}
|
|
if (slot.is_empty()) {
|
|
return false;
|
|
}
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey> void remove_contained__impl(const ForwardKey &key, uint32_t hash)
|
|
{
|
|
BLI_assert(this->contains_as(key));
|
|
m_removed_slots++;
|
|
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.contains(key, m_is_equal, hash)) {
|
|
slot.remove();
|
|
return;
|
|
}
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
template<typename ForwardKey>
|
|
uint32_t count_collisions__impl(const ForwardKey &key, uint32_t hash) const
|
|
{
|
|
uint32_t collisions = 0;
|
|
|
|
SET_SLOT_PROBING_BEGIN (hash, slot) {
|
|
if (slot.contains(key, m_is_equal, hash)) {
|
|
return collisions;
|
|
}
|
|
if (slot.is_empty()) {
|
|
return collisions;
|
|
}
|
|
collisions++;
|
|
}
|
|
SET_SLOT_PROBING_END();
|
|
}
|
|
|
|
void ensure_can_add()
|
|
{
|
|
if (m_occupied_and_removed_slots >= m_usable_slots) {
|
|
this->realloc_and_reinsert(this->size() + 1);
|
|
BLI_assert(m_occupied_and_removed_slots < m_usable_slots);
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A wrapper for std::unordered_set with the API of blender::Set. This can be used for
|
|
* benchmarking.
|
|
*/
|
|
template<typename Key> class StdUnorderedSetWrapper {
|
|
private:
|
|
using SetType = std::unordered_set<Key, blender::DefaultHash<Key>>;
|
|
SetType m_set;
|
|
|
|
public:
|
|
uint32_t size() const
|
|
{
|
|
return (uint32_t)m_set.size();
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return m_set.empty();
|
|
}
|
|
|
|
void reserve(uint32_t n)
|
|
{
|
|
m_set.reserve(n);
|
|
}
|
|
|
|
void add_new(const Key &key)
|
|
{
|
|
m_set.insert(key);
|
|
}
|
|
void add_new(Key &&key)
|
|
{
|
|
m_set.insert(std::move(key));
|
|
}
|
|
|
|
bool add(const Key &key)
|
|
{
|
|
return m_set.insert(key).second;
|
|
}
|
|
bool add(Key &&key)
|
|
{
|
|
return m_set.insert(std::move(key)).second;
|
|
}
|
|
|
|
void add_multiple(Span<Key> keys)
|
|
{
|
|
for (const Key &key : keys) {
|
|
m_set.insert(key);
|
|
}
|
|
}
|
|
|
|
bool contains(const Key &key) const
|
|
{
|
|
return m_set.find(key) != m_set.end();
|
|
}
|
|
|
|
bool remove(const Key &key)
|
|
{
|
|
return (bool)m_set.erase(key);
|
|
}
|
|
|
|
void remove_contained(const Key &key)
|
|
{
|
|
return m_set.erase(key);
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
m_set.clear();
|
|
}
|
|
|
|
typename SetType::iterator begin() const
|
|
{
|
|
return m_set.begin();
|
|
}
|
|
|
|
typename SetType::iterator end() const
|
|
{
|
|
return m_set.end();
|
|
}
|
|
};
|
|
|
|
} // namespace blender
|
|
|
|
#endif /* __BLI_SET_HH__ */
|