This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_set.hh
2020-06-13 12:50:07 +10:00

770 lines
22 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __BLI_SET_HH__
#define __BLI_SET_HH__
/** \file
* \ingroup bli
*
* A `blender::Set<Key>` is an unordered container for unique elements of type `Key`. It is
* designed to be a more convenient and efficient replacement for `std::unordered_set`. All core
* operations (add, remove and contains) can be done in O(1) amortized expected time.
*
* In most cases, your default choice for a hash set in Blender should be `blender::Set`.
*
* blender::Set is implemented using open addressing in a slot array with a power-of-two size.
* Every slot is in one of three states: empty, occupied or removed. If a slot is occupied, it
* contains an instance of the key type.
*
* Benchmarking and comparing hash tables is hard, because many factors influence the result. The
* performance of a hash table depends on the combination of the hash function, probing strategy,
* max load factor, key type, slot type and the data distribution. This implementation is designed
* to be relatively fast by default in all cases. However, it also offers many customization
* points that allow it to be optimized for a specific use case.
*
* A rudimentary benchmark can be found in BLI_set_test.cc. The results of that benchmark are
* there as well. The numbers show that in this specific case blender::Set outperforms
* std::unordered_set consistently by a good amount.
*
* Some noteworthy information:
* - Key must be a movable type.
* - Pointers to keys might be invalidated when the set is changed or moved.
* - The hash function can be customized. See BLI_hash.hh for details.
* - The probing strategy can be customized. See BLI_probing_stragies.hh for details.
* - The slot type can be customized. See BLI_set_slots.hh for details.
* - Small buffer optimization is enabled by default, if the key is not too large.
* - The methods `add_new` and `remove_contained` should be used instead of `add` and `remove`
* whenever appropriate. Assumptions and intention are described better this way.
* - Lookups can be performed using types other than Key without conversion. For that use the
* methods ending with `_as`. The template parameters Hash and IsEqual have to support the other
* key type. This can greatly improve performance when the set contains strings.
* - The default constructor is cheap, even when a large InlineBufferCapacity is used. A large
* slot array will only be initialized when the first key is added.
* - The `print_stats` method can be used to get information about the distribution of keys and
* memory usage of the set.
* - The method names don't follow the std::unordered_set names in many cases. Searching for such
* names in this file will usually let you discover the new name.
* - There is a StdUnorderedSetWrapper class, that wraps std::unordered_set and gives it the same
* interface as blender::Set. This is useful for benchmarking.
*
* Possible Improvements:
* - Use a branchless loop over slots in grow function (measured ~10% performance improvement when
* the distribution of occupied slots is suffiently random).
* - Support max load factor customization.
* - Improve performance with large data sets through software prefetching. I got fairly
* significant improvements in simple tests (~30% faster). It still needs to be investigated how
* to make a nice interface for this functionality.
*/
#include <unordered_set>
#include "BLI_array.hh"
#include "BLI_hash.hh"
#include "BLI_hash_tables.hh"
#include "BLI_probing_strategies.hh"
#include "BLI_set_slots.hh"
namespace blender {
template<
/** Type of the elements that are stored in this set. It has to be movable. Furthermore, the
* hash and is-equal functions have to support it.
*/
typename Key,
/**
* The minimum number of elements that can be stored in this Set without doing a heap
* allocation. This is useful when you expect to have many small sets. However, keep in mind
* that (unlike vector) initializing a set has a O(n) cost in the number of slots.
*
* When Key is large, the small buffer optimization is disabled by default to avoid large
* unexpected allocations on the stack. It can still be enabled explicitly though.
*/
uint32_t InlineBufferCapacity = (sizeof(Key) < 100) ? 4 : 0,
/**
* The strategy used to deal with collisions. They are defined in BLI_probing_strategies.hh.
*/
typename ProbingStrategy = DefaultProbingStrategy,
/**
* The hash function used to hash the keys. There is a default for many types. See BLI_hash.hh
* for examples on how to define a custom hash function.
*/
typename Hash = DefaultHash<Key>,
/**
* The equality operator used to compare keys. By default it will simply compare keys using the
* `==` operator.
*/
typename IsEqual = DefaultEquality,
/**
* This is what will actually be stored in the hash table array. At a minimum a slot has to
* be able to hold a key and information about whether the slot is empty, occupied or removed.
* Using a non-standard slot type can improve performance or reduce the memory footprint. For
* example, a hash can be stored in the slot, to make inequality checks more efficient. Some
* types have special values that can represent an empty or removed state, eliminating the need
* for an additional variable. Also see BLI_set_slots.hh.
*/
typename Slot = typename DefaultSetSlot<Key>::type,
/**
* The allocator used by this set. Should rarely be changed, except when you don't want that
* MEM_* is used internally.
*/
typename Allocator = GuardedAllocator>
class Set {
private:
/**
* Slots are either empty, occupied or removed. The number of occupied slots can be computed by
* subtracting the removed slots from the occupied-and-removed slots.
*/
uint32_t m_removed_slots;
uint32_t m_occupied_and_removed_slots;
/**
* The maximum number of slots that can be used (either occupied or removed) until the set has to
* grow. This is the total number of slots times the max load factor.
*/
uint32_t m_usable_slots;
/**
* The number of slots minus one. This is a bit mask that can be used to turn any integer into a
* valid slot index efficiently.
*/
uint32_t m_slot_mask;
/** This is called to hash incoming keys. */
Hash m_hash;
/** This is called to check equality of two keys. */
IsEqual m_is_equal;
/** The max load factor is 1/2 = 50% by default. */
#define LOAD_FACTOR 1, 2
LoadFactor m_max_load_factor = LoadFactor(LOAD_FACTOR);
using SlotArray =
Array<Slot, LoadFactor::compute_total_slots(InlineBufferCapacity, LOAD_FACTOR), Allocator>;
#undef LOAD_FACTOR
/**
* This is the array that contains the actual slots. There is always at least one empty slot and
* the size of the array is a power of two.
*/
SlotArray m_slots;
/** Iterate over a slot index sequence for a given hash. */
#define SET_SLOT_PROBING_BEGIN(HASH, R_SLOT) \
SLOT_PROBING_BEGIN (ProbingStrategy, HASH, m_slot_mask, SLOT_INDEX) \
auto &R_SLOT = m_slots[SLOT_INDEX];
#define SET_SLOT_PROBING_END() SLOT_PROBING_END()
public:
/**
* Initialize an empty set. This is a cheap operation no matter how large the inline buffer
* is. This is necessary to avoid a high cost when no elements are added at all. An optimized
* grow operation is performed on the first insertion.
*/
Set()
: m_removed_slots(0),
m_occupied_and_removed_slots(0),
m_usable_slots(0),
m_slot_mask(0),
m_slots(1)
{
}
~Set() = default;
/**
* Construct a set that contains the given keys. Duplicates will be removed automatically.
*/
Set(const std::initializer_list<Key> &list) : Set()
{
this->add_multiple(list);
}
Set(const Set &other) = default;
Set(Set &&other) noexcept
: m_removed_slots(other.m_removed_slots),
m_occupied_and_removed_slots(other.m_occupied_and_removed_slots),
m_usable_slots(other.m_usable_slots),
m_slot_mask(other.m_slot_mask),
m_hash(std::move(other.m_hash)),
m_is_equal(std::move(other.m_is_equal)),
m_slots(std::move(other.m_slots))
{
other.~Set();
new (&other) Set();
}
Set &operator=(const Set &other)
{
if (this == &other) {
return *this;
}
this->~Set();
new (this) Set(other);
return *this;
}
Set &operator=(Set &&other)
{
if (this == &other) {
return *this;
}
this->~Set();
new (this) Set(std::move(other));
return *this;
}
/**
* Add a new key to the set. This invokes undefined behavior when the key is in the set already.
* When you know for certain that a key is not in the set yet, use this method for better
* performance. This also expresses the intent better.
*/
void add_new(const Key &key)
{
this->add_new__impl(key, m_hash(key));
}
void add_new(Key &&key)
{
this->add_new__impl(std::move(key), m_hash(key));
}
/**
* Add a key to the set. If the key exists in the set already, nothing is done. The return value
* is true if the key was newly added to the set.
*
* This is similar to std::unordered_set::insert.
*/
bool add(const Key &key)
{
return this->add_as(key);
}
bool add(Key &&key)
{
return this->add_as(std::move(key));
}
/**
* Same as `add`, but accepts other key types that are supported by the hash function.
*/
template<typename ForwardKey> bool add_as(ForwardKey &&key)
{
return this->add__impl(std::forward<ForwardKey>(key), m_hash(key));
}
/**
* Convenience function to add many keys to the set at once. Duplicates are removed
* automatically.
*
* We might be able to make this faster than sequentially adding all keys, but that is not
* implemented yet.
*/
void add_multiple(Span<Key> keys)
{
for (const Key &key : keys) {
this->add(key);
}
}
/**
* Convenience function to add many new keys to the set at once. The keys must not exist in the
* set before and there must not be duplicates in the array.
*/
void add_multiple_new(Span<Key> keys)
{
for (const Key &key : keys) {
this->add_new(key);
}
}
/**
* Returns true if the key is in the set.
*
* This is similar to std::unordered_set::find() != std::unordered_set::end().
*/
bool contains(const Key &key) const
{
return this->contains_as(key);
}
/**
* Same as `contains`, but accepts other key types that are supported by the hash function.
*/
template<typename ForwardKey> bool contains_as(const ForwardKey &key) const
{
return this->contains__impl(key, m_hash(key));
}
/**
* Deletes the key from the set. Returns true when the key did exist beforehand, otherwise false.
*
* This is similar to std::unordered_set::erase.
*/
bool remove(const Key &key)
{
return this->remove_as(key);
}
/**
* Same as `remove`, but accepts other key types that are supported by the hash function.
*/
template<typename ForwardKey> bool remove_as(const ForwardKey &key)
{
return this->remove__impl(key, m_hash(key));
}
/**
* Deletes the key from the set. This invokes undefined behavior when the key is not in the map.
*/
void remove_contained(const Key &key)
{
this->remove_contained_as(key);
}
/**
* Same as `remove_contained`, but accepts other key types that are supported by the hash
* function.
*/
template<typename ForwardKey> void remove_contained_as(const ForwardKey &key)
{
this->remove_contained__impl(key, m_hash(key));
}
/**
* An iterator that can iterate over all keys in the set. The iterator is invalidated when the
* set is moved or when it is grown.
*
* Keys returned by this iterator are always const. They should not change, because this might
* also change their hash.
*/
class Iterator {
private:
const Slot *m_slots;
uint32_t m_total_slots;
uint32_t m_current_slot;
public:
Iterator(const Slot *slots, uint32_t total_slots, uint32_t current_slot)
: m_slots(slots), m_total_slots(total_slots), m_current_slot(current_slot)
{
}
Iterator &operator++()
{
while (++m_current_slot < m_total_slots) {
if (m_slots[m_current_slot].is_occupied()) {
break;
}
}
return *this;
}
const Key &operator*() const
{
return *m_slots[m_current_slot].key();
}
friend bool operator!=(const Iterator &a, const Iterator &b)
{
BLI_assert(a.m_slots == b.m_slots);
BLI_assert(a.m_total_slots == b.m_total_slots);
return a.m_current_slot != b.m_current_slot;
}
};
Iterator begin() const
{
for (uint32_t i = 0; i < m_slots.size(); i++) {
if (m_slots[i].is_occupied()) {
return Iterator(m_slots.data(), m_slots.size(), i);
}
}
return this->end();
}
Iterator end() const
{
return Iterator(m_slots.data(), m_slots.size(), m_slots.size());
}
/**
* Print common statistics like size and collision count. This is useful for debugging purposes.
*/
void print_stats(StringRef name = "") const
{
HashTableStats stats(*this, *this);
stats.print(name);
}
/**
* Get the number of collisions that the probing strategy has to go through to find the key or
* determine that it is not in the set.
*/
uint32_t count_collisions(const Key &key) const
{
return this->count_collisions__impl(key, m_hash(key));
}
/**
* Remove all elements from the set.
*/
void clear()
{
this->~Set();
new (this) Set();
}
/**
* Creates a new slot array and reinserts all keys inside of that. This method can be used to get
* rid of removed slots. Also this is useful for benchmarking the grow function.
*/
void rehash()
{
this->realloc_and_reinsert(this->size());
}
/**
* Returns the number of keys stored in the set.
*/
uint32_t size() const
{
return m_occupied_and_removed_slots - m_removed_slots;
}
/**
* Returns true if no keys are stored.
*/
bool is_empty() const
{
return m_occupied_and_removed_slots == m_removed_slots;
}
/**
* Returns the number of available slots. This is mostly for debugging purposes.
*/
uint32_t capacity() const
{
return m_slots.size();
}
/**
* Returns the amount of removed slots in the set. This is mostly for debugging purposes.
*/
uint32_t removed_amount() const
{
return m_removed_slots;
}
/**
* Returns the bytes required per element. This is mostly for debugging purposes.
*/
uint32_t size_per_element() const
{
return sizeof(Slot);
}
/**
* Returns the approximate memory requirements of the set in bytes. This is more correct for
* larger sets.
*/
uint32_t size_in_bytes() const
{
return sizeof(Slot) * m_slots.size();
}
/**
* Potentially resize the set such that it can hold the specified number of keys without another
* grow operation.
*/
void reserve(uint32_t n)
{
if (m_usable_slots < n) {
this->realloc_and_reinsert(n);
}
}
/**
* Returns true if there is a key that exists in both sets.
*/
static bool Intersects(const Set &a, const Set &b)
{
/* Make sure we iterate over the shorter set. */
if (a.size() > b.size()) {
return Intersects(b, a);
}
for (const Key &key : a) {
if (b.contains(key)) {
return true;
}
}
return false;
}
/**
* Returns true if no key from a is also in b and vice versa.
*/
static bool Disjoint(const Set &a, const Set &b)
{
return !Intersects(a, b);
}
private:
BLI_NOINLINE void realloc_and_reinsert(uint32_t min_usable_slots)
{
uint32_t total_slots, usable_slots;
m_max_load_factor.compute_total_and_usable_slots(
SlotArray::inline_buffer_capacity(), min_usable_slots, &total_slots, &usable_slots);
uint32_t new_slot_mask = total_slots - 1;
/**
* Optimize the case when the set was empty beforehand. We can avoid some copies here.
*/
if (this->size() == 0) {
m_slots.~Array();
new (&m_slots) SlotArray(total_slots);
m_removed_slots = 0;
m_occupied_and_removed_slots = 0;
m_usable_slots = usable_slots;
m_slot_mask = new_slot_mask;
return;
}
/* The grown array that we insert the keys into. */
SlotArray new_slots(total_slots);
for (Slot &slot : m_slots) {
if (slot.is_occupied()) {
this->add_after_grow_and_destruct_old(slot, new_slots, new_slot_mask);
}
}
/* All occupied slots have been destructed already and empty/removed slots are assumed to be
* trivially destructible. */
m_slots.clear_without_destruct();
m_slots = std::move(new_slots);
m_occupied_and_removed_slots -= m_removed_slots;
m_usable_slots = usable_slots;
m_removed_slots = 0;
m_slot_mask = new_slot_mask;
}
void add_after_grow_and_destruct_old(Slot &old_slot,
SlotArray &new_slots,
uint32_t new_slot_mask)
{
uint32_t hash = old_slot.get_hash(Hash());
SLOT_PROBING_BEGIN (ProbingStrategy, hash, new_slot_mask, slot_index) {
Slot &slot = new_slots[slot_index];
if (slot.is_empty()) {
slot.relocate_occupied_here(old_slot, hash);
return;
}
}
SLOT_PROBING_END();
}
template<typename ForwardKey> bool contains__impl(const ForwardKey &key, uint32_t hash) const
{
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
return false;
}
if (slot.contains(key, m_is_equal, hash)) {
return true;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> void add_new__impl(ForwardKey &&key, uint32_t hash)
{
BLI_assert(!this->contains_as(key));
this->ensure_can_add();
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
slot.occupy(std::forward<ForwardKey>(key), hash);
m_occupied_and_removed_slots++;
return;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool add__impl(ForwardKey &&key, uint32_t hash)
{
this->ensure_can_add();
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
slot.occupy(std::forward<ForwardKey>(key), hash);
m_occupied_and_removed_slots++;
return true;
}
if (slot.contains(key, m_is_equal, hash)) {
return false;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool remove__impl(const ForwardKey &key, uint32_t hash)
{
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, m_is_equal, hash)) {
slot.remove();
m_removed_slots++;
return true;
}
if (slot.is_empty()) {
return false;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> void remove_contained__impl(const ForwardKey &key, uint32_t hash)
{
BLI_assert(this->contains_as(key));
m_removed_slots++;
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, m_is_equal, hash)) {
slot.remove();
return;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
uint32_t count_collisions__impl(const ForwardKey &key, uint32_t hash) const
{
uint32_t collisions = 0;
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, m_is_equal, hash)) {
return collisions;
}
if (slot.is_empty()) {
return collisions;
}
collisions++;
}
SET_SLOT_PROBING_END();
}
void ensure_can_add()
{
if (m_occupied_and_removed_slots >= m_usable_slots) {
this->realloc_and_reinsert(this->size() + 1);
BLI_assert(m_occupied_and_removed_slots < m_usable_slots);
}
}
};
/**
* A wrapper for std::unordered_set with the API of blender::Set. This can be used for
* benchmarking.
*/
template<typename Key> class StdUnorderedSetWrapper {
private:
using SetType = std::unordered_set<Key, blender::DefaultHash<Key>>;
SetType m_set;
public:
uint32_t size() const
{
return (uint32_t)m_set.size();
}
bool is_empty() const
{
return m_set.empty();
}
void reserve(uint32_t n)
{
m_set.reserve(n);
}
void add_new(const Key &key)
{
m_set.insert(key);
}
void add_new(Key &&key)
{
m_set.insert(std::move(key));
}
bool add(const Key &key)
{
return m_set.insert(key).second;
}
bool add(Key &&key)
{
return m_set.insert(std::move(key)).second;
}
void add_multiple(Span<Key> keys)
{
for (const Key &key : keys) {
m_set.insert(key);
}
}
bool contains(const Key &key) const
{
return m_set.find(key) != m_set.end();
}
bool remove(const Key &key)
{
return (bool)m_set.erase(key);
}
void remove_contained(const Key &key)
{
return m_set.erase(key);
}
void clear()
{
m_set.clear();
}
typename SetType::iterator begin() const
{
return m_set.begin();
}
typename SetType::iterator end() const
{
return m_set.end();
}
};
} // namespace blender
#endif /* __BLI_SET_HH__ */