This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/collada/TransformWriter.cpp
Gaia Clary bc055258d5 fix: collada transformtype must be identical for animation export and object export
When exporting an object we can choose the transformation type 'Matrix'
or 'trans/rot/scale' When exporting an animation we have the same choice
regarding the used transformation type.

However we must make sure that animations and objects use the same
transformation type within one colleda export. The user interface is
now reworked such that the correct settings are always guaranteed.

I also reworked the tool tips
2019-05-27 16:00:32 +02:00

149 lines
4.7 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup collada
*/
#include "BLI_math.h"
#include "BLI_sys_types.h"
#include "BKE_object.h"
#include "TransformWriter.h"
void TransformWriter::add_joint_transform(COLLADASW::Node &node,
float mat[4][4],
float parent_mat[4][4],
BCExportSettings &export_settings,
bool has_restmat
)
{
float local[4][4];
if (parent_mat) {
float invpar[4][4];
invert_m4_m4(invpar, parent_mat);
mul_m4_m4m4(local, invpar, mat);
}
else {
copy_m4_m4(local, mat);
}
if (!has_restmat && export_settings.get_apply_global_orientation()) {
bc_apply_global_transform(local, export_settings.get_global_transform());
}
double dmat[4][4];
UnitConverter *converter = new UnitConverter();
converter->mat4_to_dae_double(dmat, local);
delete converter;
if (export_settings.get_object_transformation_type() == BC_TRANSFORMATION_TYPE_MATRIX) {
node.addMatrix("transform", dmat);
}
else {
float loc[3], rot[3], scale[3];
bc_decompose(local, loc, rot, NULL, scale);
add_transform(node, loc, rot, scale);
}
}
void TransformWriter::add_node_transform_ob(COLLADASW::Node &node,
Object *ob,
BCExportSettings &export_settings)
{
BC_export_transformation_type transformation_type =
export_settings.get_object_transformation_type();
bool limit_precision = export_settings.get_limit_precision();
/* Export the local Matrix (relative to the object parent,
* be it an object, bone or vertex(-tices)). */
Matrix f_obmat;
BKE_object_matrix_local_get(ob, f_obmat);
if (export_settings.get_apply_global_orientation()) {
bc_apply_global_transform(f_obmat, export_settings.get_global_transform());
}
else {
bc_add_global_transform(f_obmat, export_settings.get_global_transform());
}
switch (transformation_type) {
case BC_TRANSFORMATION_TYPE_MATRIX: {
UnitConverter converter;
double d_obmat[4][4];
converter.mat4_to_dae_double(d_obmat, f_obmat);
if (limit_precision)
bc_sanitize_mat(d_obmat, LIMITTED_PRECISION);
node.addMatrix("transform", d_obmat);
break;
}
case BC_TRANSFORMATION_TYPE_TRANSROTLOC: {
float loc[3], rot[3], scale[3];
bc_decompose(f_obmat, loc, rot, NULL, scale);
if (limit_precision) {
bc_sanitize_v3(loc, LIMITTED_PRECISION);
bc_sanitize_v3(rot, LIMITTED_PRECISION);
bc_sanitize_v3(scale, LIMITTED_PRECISION);
}
add_transform(node, loc, rot, scale);
break;
}
}
}
void TransformWriter::add_node_transform_identity(
COLLADASW::Node &node,
BCExportSettings &export_settings)
{
BC_export_transformation_type transformation_type =
export_settings.get_object_transformation_type();
switch (transformation_type) {
case BC_TRANSFORMATION_TYPE_MATRIX: {
BCMatrix mat;
DMatrix d_obmat;
mat.get_matrix(d_obmat);
node.addMatrix("transform", d_obmat);
break;
}
default: {
float loc[3] = {0.0f, 0.0f, 0.0f};
float scale[3] = {1.0f, 1.0f, 1.0f};
float rot[3] = {0.0f, 0.0f, 0.0f};
add_transform(node, loc, rot, scale);
break;
}
}
}
void TransformWriter::add_transform(COLLADASW::Node &node,
float loc[3],
float rot[3],
float scale[3])
{
#if 0
node.addRotateZ("rotationZ", COLLADABU::Math::Utils::radToDegF(rot[2]));
node.addRotateY("rotationY", COLLADABU::Math::Utils::radToDegF(rot[1]));
node.addRotateX("rotationX", COLLADABU::Math::Utils::radToDegF(rot[0]));
#endif
node.addTranslate("location", loc[0], loc[1], loc[2]);
node.addRotateZ("rotationZ", RAD2DEGF(rot[2]));
node.addRotateY("rotationY", RAD2DEGF(rot[1]));
node.addRotateX("rotationX", RAD2DEGF(rot[0]));
node.addScale("scale", scale[0], scale[1], scale[2]);
}