This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle_system.c
2012-10-20 18:46:57 +00:00

4641 lines
127 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
*
* Adaptive time step
* Copyright 2011 AutoCRC
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle_system.c
* \ingroup bke
*/
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_boid_types.h"
#include "DNA_particle_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force.h"
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_ipo_types.h" // XXX old animation system stuff... to be removed!
#include "DNA_listBase.h"
#include "BLI_edgehash.h"
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
#include "BLI_kdopbvh.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "BLI_linklist.h"
#include "BKE_main.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_collision.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_particle.h"
#include "BKE_global.h"
#include "BKE_DerivedMesh.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_cloth.h"
#include "BKE_depsgraph.h"
#include "BKE_lattice.h"
#include "BKE_pointcache.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#include "BKE_bvhutils.h"
#include "PIL_time.h"
#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifdef WITH_MOD_FLUID
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#endif // WITH_MOD_FLUID
/************************************************/
/* Reacting to system events */
/************************************************/
static int particles_are_dynamic(ParticleSystem *psys)
{
if (psys->pointcache->flag & PTCACHE_BAKED)
return 0;
if (psys->part->type == PART_HAIR)
return psys->flag & PSYS_HAIR_DYNAMICS;
else
return ELEM3(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
}
static int psys_get_current_display_percentage(ParticleSystem *psys)
{
ParticleSettings *part=psys->part;
if ((psys->renderdata && !particles_are_dynamic(psys)) || /* non-dynamic particles can be rendered fully */
(part->child_nbr && part->childtype) || /* display percentage applies to children */
(psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
{
return 100;
}
return psys->part->disp;
}
static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
{
if (pid && psys->pointcache->flag & PTCACHE_EXTERNAL)
return pid->cache->totpoint;
else if (psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT)
return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
else
return psys->part->totpart - psys->totunexist;
}
void psys_reset(ParticleSystem *psys, int mode)
{
PARTICLE_P;
if (ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
if (mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
/* don't free if not absolutely necessary */
if (psys->totpart != tot_particles(psys, NULL)) {
psys_free_particles(psys);
psys->totpart= 0;
}
psys->totkeyed= 0;
psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
if (psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
}
}
else if (mode == PSYS_RESET_CACHE_MISS) {
/* set all particles to be skipped */
LOOP_PARTICLES
pa->flag |= PARS_NO_DISP;
}
/* reset children */
if (psys->child) {
MEM_freeN(psys->child);
psys->child= NULL;
}
psys->totchild= 0;
/* reset path cache */
psys_free_path_cache(psys, psys->edit);
/* reset point cache */
BKE_ptcache_invalidate(psys->pointcache);
if (psys->fluid_springs) {
MEM_freeN(psys->fluid_springs);
psys->fluid_springs = NULL;
}
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
}
static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *newpars = NULL;
BoidParticle *newboids = NULL;
PARTICLE_P;
int totpart, totsaved = 0;
if (new_totpart<0) {
if ((part->distr == PART_DISTR_GRID) && (part->from != PART_FROM_VERT)) {
totpart= part->grid_res;
totpart*=totpart*totpart;
}
else
totpart=part->totpart;
}
else
totpart=new_totpart;
if (totpart != psys->totpart) {
if (psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
if (totpart) {
newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
if (newpars == NULL)
return;
if (psys->part->phystype == PART_PHYS_BOIDS) {
newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles");
if (newboids == NULL) {
/* allocation error! */
if (newpars)
MEM_freeN(newpars);
return;
}
}
}
if (psys->particles) {
totsaved=MIN2(psys->totpart,totpart);
/*save old pars*/
if (totsaved) {
memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
if (psys->particles->boid)
memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle));
}
if (psys->particles->keys)
MEM_freeN(psys->particles->keys);
if (psys->particles->boid)
MEM_freeN(psys->particles->boid);
for (p=0, pa=newpars; p<totsaved; p++, pa++) {
if (pa->keys) {
pa->keys= NULL;
pa->totkey= 0;
}
}
for (p=totsaved, pa=psys->particles+totsaved; p<psys->totpart; p++, pa++)
if (pa->hair) MEM_freeN(pa->hair);
MEM_freeN(psys->particles);
psys_free_pdd(psys);
}
psys->particles=newpars;
psys->totpart=totpart;
if (newboids) {
LOOP_PARTICLES
pa->boid = newboids++;
}
}
if (psys->child) {
MEM_freeN(psys->child);
psys->child=NULL;
psys->totchild=0;
}
}
static int get_psys_child_number(struct Scene *scene, ParticleSystem *psys)
{
int nbr;
if (!psys->part->childtype)
return 0;
if (psys->renderdata)
nbr= psys->part->ren_child_nbr;
else
nbr= psys->part->child_nbr;
return get_render_child_particle_number(&scene->r, nbr);
}
static int get_psys_tot_child(struct Scene *scene, ParticleSystem *psys)
{
return psys->totpart*get_psys_child_number(scene, psys);
}
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if (psys->child) {
/* only re-allocate if we have to */
if (psys->part->childtype && psys->totchild == tot) {
memset(psys->child, 0, tot*sizeof(ChildParticle));
return;
}
MEM_freeN(psys->child);
psys->child=NULL;
psys->totchild=0;
}
if (psys->part->childtype) {
psys->totchild= tot;
if (psys->totchild)
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
}
}
/************************************************/
/* Distribution */
/************************************************/
void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
{
/* use for building derived mesh mapping info:
*
* node: the allocated links - total derived mesh element count
* nodearray: the array of nodes aligned with the base mesh's elements, so
* each original elements can reference its derived elements
*/
Mesh *me= (Mesh*)ob->data;
PARTICLE_P;
/* CACHE LOCATIONS */
if (!dm->deformedOnly) {
/* Will use later to speed up subsurf/derivedmesh */
LinkNode *node, *nodedmelem, **nodearray;
int totdmelem, totelem, i, *origindex;
if (psys->part->from == PART_FROM_VERT) {
totdmelem= dm->getNumVerts(dm);
totelem= me->totvert;
origindex= dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else { /* FROM_FACE/FROM_VOLUME */
totdmelem= dm->getNumTessFaces(dm);
totelem= me->totpoly;
origindex= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
}
nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
for (i=0, node=nodedmelem; i<totdmelem; i++, origindex++, node++) {
node->link= SET_INT_IN_POINTER(i);
if (*origindex != -1) {
if (nodearray[*origindex]) {
/* prepend */
node->next = nodearray[*origindex];
nodearray[*origindex]= node;
}
else
nodearray[*origindex]= node;
}
}
/* cache the verts/faces! */
LOOP_PARTICLES {
if (pa->num < 0) {
pa->num_dmcache = -1;
continue;
}
if (psys->part->from == PART_FROM_VERT) {
if (nodearray[pa->num])
pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
}
else { /* FROM_FACE/FROM_VOLUME */
/* Note that sometimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this,
* but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */
pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL);
}
}
MEM_freeN(nodearray);
MEM_freeN(nodedmelem);
}
else {
/* TODO PARTICLE, make the following line unnecessary, each function
* should know to use the num or num_dmcache, set the num_dmcache to
* an invalid value, just in case */
LOOP_PARTICLES
pa->num_dmcache = -1;
}
}
static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, ParticleSystem *psys)
{
ChildParticle *cpa = NULL;
int i, p;
int child_nbr= get_psys_child_number(scene, psys);
int totpart= get_psys_tot_child(scene, psys);
alloc_child_particles(psys, totpart);
cpa = psys->child;
for (i=0; i<child_nbr; i++) {
for (p=0; p<psys->totpart; p++,cpa++) {
float length=2.0;
cpa->parent=p;
/* create even spherical distribution inside unit sphere */
while (length>=1.0f) {
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
length=len_v3(cpa->fuv);
}
cpa->num=-1;
}
}
/* dmcache must be updated for parent particles if children from faces is used */
psys_calc_dmcache(ob, finaldm, psys);
}
static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
{
ParticleData *pa=NULL;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
int totvert=dm->getNumVerts(dm), from=psys->part->from;
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
mv=mvert;
/* find bounding box of dm */
copy_v3_v3(min, mv->co);
copy_v3_v3(max, mv->co);
mv++;
for (i=1; i<totvert; i++, mv++) {
min[0]=MIN2(min[0],mv->co[0]);
min[1]=MIN2(min[1],mv->co[1]);
min[2]=MIN2(min[2],mv->co[2]);
max[0]=MAX2(max[0],mv->co[0]);
max[1]=MAX2(max[1],mv->co[1]);
max[2]=MAX2(max[2],mv->co[2]);
}
sub_v3_v3v3(delta, max, min);
/* determine major axis */
axis = (delta[0]>=delta[1]) ? 0 : ((delta[1]>=delta[2]) ? 1 : 2);
d = delta[axis]/(float)res;
size[axis] = res;
size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
/* float errors grrr.. */
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
size[0] = MAX2(size[0], 1);
size[1] = MAX2(size[1], 1);
size[2] = MAX2(size[2], 1);
/* no full offset for flat/thin objects */
min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
for (i=0,p=0,pa=psys->particles; i<res; i++) {
for (j=0; j<res; j++) {
for (k=0; k<res; k++,p++,pa++) {
pa->fuv[0] = min[0] + (float)i*d;
pa->fuv[1] = min[1] + (float)j*d;
pa->fuv[2] = min[2] + (float)k*d;
pa->flag |= PARS_UNEXIST;
pa->hair_index = 0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if (from==PART_FROM_VERT) {
float vec[3];
pa=psys->particles;
min[0] -= d/2.0f;
min[1] -= d/2.0f;
min[2] -= d/2.0f;
for (i=0,mv=mvert; i<totvert; i++,mv++) {
sub_v3_v3v3(vec,mv->co,min);
vec[0]/=delta[0];
vec[1]/=delta[1];
vec[2]/=delta[2];
(pa + ((int)(vec[0] * (size[0] - 1)) * res +
(int)(vec[1] * (size[1] - 1))) * res +
(int)(vec[2] * (size[2] - 1)))->flag &= ~PARS_UNEXIST;
}
}
else if (ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
float co1[3], co2[3];
MFace *mface= NULL, *mface_array;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax= from==PART_FROM_FACE ? 3 : 1;
totface=dm->getNumTessFaces(dm);
mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
for (a=0; a<amax; a++) {
if (a==0) { a0mul=res*res; a1mul=res; a2mul=1; }
else if (a==1) { a0mul=res; a1mul=1; a2mul=res*res; }
else { a0mul=1; a1mul=res*res; a2mul=res; }
for (a1=0; a1<size[(a+1)%3]; a1++) {
for (a2=0; a2<size[(a+2)%3]; a2++) {
mface= mface_array;
pa = psys->particles + a1*a1mul + a2*a2mul;
copy_v3_v3(co1, pa->fuv);
co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
copy_v3_v3(co2, co1);
co2[a] += delta[a] + 0.001f*d;
co1[a] -= 0.001f*d;
/* lets intersect the faces */
for (i=0; i<totface; i++,mface++) {
copy_v3_v3(v1, mvert[mface->v1].co);
copy_v3_v3(v2, mvert[mface->v2].co);
copy_v3_v3(v3, mvert[mface->v3].co);
if (isect_axial_line_tri_v3(a, co1, co2, v2, v3, v1, &lambda)) {
if (from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else /* store number of intersections */
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
if (mface->v4) {
copy_v3_v3(v4, mvert[mface->v4].co);
if (isect_axial_line_tri_v3(a, co1, co2, v4, v1, v3, &lambda)) {
if (from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
}
}
if (from==PART_FROM_VOLUME) {
int in=pa->hair_index%2;
if (in) pa->hair_index++;
for (i=0; i<size[0]; i++) {
if (in || (pa+i*a0mul)->hair_index%2)
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in=(in + (pa+i*a0mul)->hair_index) % 2;
}
}
}
}
}
}
if (psys->part->flag & PART_GRID_HEXAGONAL) {
for (i=0,p=0,pa=psys->particles; i<res; i++) {
for (j=0; j<res; j++) {
for (k=0; k<res; k++,p++,pa++) {
if (j%2)
pa->fuv[0] += d/2.f;
if (k%2) {
pa->fuv[0] += d/2.f;
pa->fuv[1] += d/2.f;
}
}
}
}
}
if (psys->part->flag & PART_GRID_INVERT) {
for (i=0; i<size[0]; i++) {
for (j=0; j<size[1]; j++) {
pa=psys->particles + res*(i*res + j);
for (k=0; k<size[2]; k++, pa++) {
pa->flag ^= PARS_UNEXIST;
}
}
}
}
if (psys->part->grid_rand > 0.f) {
float rfac = d * psys->part->grid_rand;
for (p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
if (pa->flag & PARS_UNEXIST)
continue;
pa->fuv[0] += rfac * (PSYS_FRAND(p + 31) - 0.5f);
pa->fuv[1] += rfac * (PSYS_FRAND(p + 32) - 0.5f);
pa->fuv[2] += rfac * (PSYS_FRAND(p + 33) - 0.5f);
}
}
}
/* modified copy from rayshade.c */
static void hammersley_create(float *out, int n, int seed, float amount)
{
RNG *rng;
double p, t, offs[2];
int k, kk;
rng = rng_new(31415926 + n + seed);
offs[0]= rng_getDouble(rng) + (double)amount;
offs[1]= rng_getDouble(rng) + (double)amount;
rng_free(rng);
for (k = 0; k < n; k++) {
t = 0;
for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
if (kk & 1) /* kk mod 2 = 1 */
t += p;
out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0);
out[2*k + 1]= fmod(t + offs[1], 1.0);
}
}
/* modified copy from effect.c */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if (num==0) return;
rad1= (float)(1.0f/sqrtf((float)num));
rad2= (float)(1.0f/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
rng = rng_new(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for (i=0; i<num2; i+=2) {
jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if (!quad) {
if (u+v > 1.0f)
v= 1.0f-v;
else
u= 1.0f-u;
}
vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
co[0]= u;
co[1]= v;
co[2]= 0.0f;
if (quad) {
vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
interp_weights_poly_v3( w,vert, 4, co);
}
else {
interp_weights_poly_v3( w,vert, 3, co);
w[3]= 0.0f;
}
}
/* Find the index in "sum" array before "value" is crossed. */
static int distribute_binary_search(float *sum, int n, float value)
{
int mid, low=0, high=n;
if (value == 0.f)
return 0;
while (low <= high) {
mid= (low + high)/2;
if (sum[mid] < value && value <= sum[mid+1])
return mid;
if (sum[mid] >= value)
high= mid - 1;
else if (sum[mid] < value)
low= mid + 1;
else
return mid;
}
return low;
}
/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
* be sure to keep up to date if this changes */
#define PSYS_RND_DIST_SKIP 2
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
#define ONLY_WORKING_WITH_PA_VERTS 0
static void distribute_threads_exec(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->sim.ob;
DerivedMesh *dm= ctx->dm;
float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3];
float cur_d, min_d, randu, randv;
int from= ctx->from;
int cfrom= ctx->cfrom;
int distr= ctx->distr;
int i, intersect, tot;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
if (from == PART_FROM_VERT) {
/* TODO_PARTICLE - use original index */
pa->num= ctx->index[p];
pa->fuv[0] = 1.0f;
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
#if ONLY_WORKING_WITH_PA_VERTS
if (ctx->tree) {
KDTreeNearest ptn[3];
int w, maxw;
psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
for (w=0; w<maxw; w++) {
pa->verts[w]=ptn->num;
}
}
#endif
}
else if (from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
MFace *mface;
pa->num = i = ctx->index[p];
mface = dm->getTessFaceData(dm,i,CD_MFACE);
switch (distr) {
case PART_DISTR_JIT:
if (ctx->jitlevel == 1) {
if (mface->v4)
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
else
psys_uv_to_w(0.33333f, 0.33333f, mface->v4, pa->fuv);
}
else {
ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
if (!isnan(ctx->jitoff[i])) {
psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
ctx->jitoff[i]++;
}
}
break;
case PART_DISTR_RAND:
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
/* experimental */
if (from==PART_FROM_VOLUME) {
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
tot=dm->getNumTessFaces(dm);
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
normalize_v3(nor);
mul_v3_fl(nor,-100.0);
add_v3_v3v3(co2,co1,nor);
min_d=2.0;
intersect=0;
for (i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++) {
if (i==pa->num) continue;
v1=mvert[mface->v1].co;
v2=mvert[mface->v2].co;
v3=mvert[mface->v3].co;
if (isect_line_tri_v3(co1, co2, v2, v3, v1, &cur_d, 0)) {
if (cur_d<min_d) {
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
if (mface->v4) {
v4=mvert[mface->v4].co;
if (isect_line_tri_v3(co1, co2, v4, v1, v3, &cur_d, 0)) {
if (cur_d<min_d) {
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
}
}
if (intersect==0)
pa->foffset=0.0;
else {
switch (distr) {
case PART_DISTR_JIT:
pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
break;
case PART_DISTR_RAND:
pa->foffset *= BLI_frand();
break;
}
}
}
}
else if (from == PART_FROM_CHILD) {
MFace *mf;
if (ctx->index[p] < 0) {
cpa->num=0;
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
return;
}
mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
cpa->num = ctx->index[p];
if (ctx->tree) {
KDTreeNearest ptn[10];
int w,maxw;//, do_seams;
float maxd /*, mind,dd */, totw= 0.0f;
int parent[10];
float pweight[10];
psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,4,orco1,NULL,ptn);
maxd=ptn[maxw-1].dist;
/* mind=ptn[0].dist; */ /* UNUSED */
/* the weights here could be done better */
for (w=0; w<maxw; w++) {
parent[w]=ptn[w].index;
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
}
for (;w<10; w++) {
parent[w]=-1;
pweight[w]=0.0f;
}
for (w=0,i=0; w<maxw && i<4; w++) {
if (parent[w]>=0) {
cpa->pa[i]=parent[w];
cpa->w[i]=pweight[w];
totw+=pweight[w];
i++;
}
}
for (;i<4; i++) {
cpa->pa[i]=-1;
cpa->w[i]=0.0f;
}
if (totw>0.0f) for (w=0; w<4; w++)
cpa->w[w]/=totw;
cpa->parent=cpa->pa[0];
}
}
if (rng_skip_tot > 0) /* should never be below zero */
rng_skip(thread->rng, rng_skip_tot);
}
static void *distribute_threads_exec_cb(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleSystem *psys= thread->ctx->sim.psys;
ParticleData *pa;
ChildParticle *cpa;
int p, totpart;
if (thread->ctx->from == PART_FROM_CHILD) {
totpart= psys->totchild;
cpa= psys->child;
for (p=0; p<totpart; p++, cpa++) {
if (thread->ctx->skip) /* simplification skip */
rng_skip(thread->rng, PSYS_RND_DIST_SKIP * thread->ctx->skip[p]);
if ((p+thread->num) % thread->tot == 0)
distribute_threads_exec(thread, NULL, cpa, p);
else /* thread skip */
rng_skip(thread->rng, PSYS_RND_DIST_SKIP);
}
}
else {
totpart= psys->totpart;
pa= psys->particles + thread->num;
for (p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
distribute_threads_exec(thread, pa, NULL, p);
}
return 0;
}
/* not thread safe, but qsort doesn't take userdata argument */
static int *COMPARE_ORIG_INDEX = NULL;
static int distribute_compare_orig_index(const void *p1, const void *p2)
{
int index1 = COMPARE_ORIG_INDEX[*(const int *)p1];
int index2 = COMPARE_ORIG_INDEX[*(const int *)p2];
if (index1 < index2)
return -1;
else if (index1 == index2) {
/* this pointer comparison appears to make qsort stable for glibc,
* and apparently on solaris too, makes the renders reproducible */
if (p1 < p2)
return -1;
else if (p1 == p2)
return 0;
else
return 1;
}
else
return 1;
}
static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
{
if (from == PART_FROM_CHILD) {
ChildParticle *cpa;
int p, totchild = get_psys_tot_child(scene, psys);
if (psys->child && totchild) {
for (p=0,cpa=psys->child; p<totchild; p++,cpa++) {
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
cpa->foffset= 0.0f;
cpa->parent=0;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->num= -1;
}
}
}
else {
PARTICLE_P;
LOOP_PARTICLES {
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
}
/* Creates a distribution of coordinates on a DerivedMesh */
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
static int distribute_threads_init_data(ParticleThread *threads, Scene *scene, DerivedMesh *finaldm, int from)
{
ParticleThreadContext *ctx= threads[0].ctx;
Object *ob= ctx->sim.ob;
ParticleSystem *psys= ctx->sim.psys;
ParticleData *pa=0, *tpars= 0;
ParticleSettings *part;
ParticleSeam *seams= 0;
KDTree *tree=0;
DerivedMesh *dm= NULL;
float *jit= NULL;
int i, seed, p=0, totthread= threads[0].tot;
int cfrom=0;
int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
int jitlevel= 1, distr;
float *element_weight=NULL,*element_sum=NULL,*jitter_offset=NULL, *vweight=NULL;
float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3], ornor[3];
if (ELEM3(NULL, ob, psys, psys->part))
return 0;
part=psys->part;
totpart=psys->totpart;
if (totpart==0)
return 0;
if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
/* First handle special cases */
if (from == PART_FROM_CHILD) {
/* Simple children */
if (part->childtype != PART_CHILD_FACES) {
BLI_srandom(31415926 + psys->seed + psys->child_seed);
distribute_simple_children(scene, ob, finaldm, psys);
return 0;
}
}
else {
/* Grid distribution */
if (part->distr==PART_DISTR_GRID && from != PART_FROM_VERT) {
BLI_srandom(31415926 + psys->seed);
dm= CDDM_from_mesh((Mesh*)ob->data, ob);
DM_ensure_tessface(dm);
distribute_grid(dm,psys);
dm->release(dm);
return 0;
}
}
/* Create trees and original coordinates if needed */
if (from == PART_FROM_CHILD) {
distr=PART_DISTR_RAND;
BLI_srandom(31415926 + psys->seed + psys->child_seed);
dm= finaldm;
/* BMESH ONLY */
DM_ensure_tessface(dm);
children=1;
tree=BLI_kdtree_new(totpart);
for (p=0,pa=psys->particles; p<totpart; p++,pa++) {
psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco, ornor);
}
BLI_kdtree_balance(tree);
totpart = get_psys_tot_child(scene, psys);
cfrom = from = PART_FROM_FACE;
}
else {
distr = part->distr;
BLI_srandom(31415926 + psys->seed);
dm= CDDM_from_mesh((Mesh*)ob->data, ob);
/* BMESH ONLY, for verts we don't care about tessfaces */
if (from != PART_FROM_VERT) {
DM_ensure_tessface(dm);
}
/* we need orco for consistent distributions */
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, BKE_mesh_orco_verts_get(ob));
if (from == PART_FROM_VERT) {
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
int totvert = dm->getNumVerts(dm);
tree=BLI_kdtree_new(totvert);
for (p=0; p<totvert; p++) {
if (orcodata) {
copy_v3_v3(co,orcodata[p]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co, 1, 1);
}
else
copy_v3_v3(co,mv[p].co);
BLI_kdtree_insert(tree,p,co,NULL);
}
BLI_kdtree_balance(tree);
}
}
/* Get total number of emission elements and allocate needed arrays */
totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
if (totelem == 0) {
distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
if (G.debug & G_DEBUG)
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
if (dm != finaldm) dm->release(dm);
BLI_kdtree_free(tree);
return 0;
}
element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
element_sum = MEM_callocN(sizeof(float)*(totelem+1), "particle_distribution_sum");
jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
/* Calculate weights from face areas */
if ((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT) {
MVert *v1, *v2, *v3, *v4;
float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
float (*orcodata)[3];
orcodata= dm->getVertDataArray(dm, CD_ORCO);
for (i=0; i<totelem; i++) {
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
if (orcodata) {
copy_v3_v3(co1, orcodata[mf->v1]);
copy_v3_v3(co2, orcodata[mf->v2]);
copy_v3_v3(co3, orcodata[mf->v3]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co1, 1, 1);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co2, 1, 1);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co3, 1, 1);
if (mf->v4) {
copy_v3_v3(co4, orcodata[mf->v4]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co4, 1, 1);
}
}
else {
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
copy_v3_v3(co1, v1->co);
copy_v3_v3(co2, v2->co);
copy_v3_v3(co3, v3->co);
if (mf->v4) {
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
copy_v3_v3(co4, v4->co);
}
}
cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
if (cur > maxweight)
maxweight = cur;
element_weight[i] = cur;
totarea += cur;
}
for (i=0; i<totelem; i++)
element_weight[i] /= totarea;
maxweight /= totarea;
}
else {
float min=1.0f/(float)(MIN2(totelem,totpart));
for (i=0; i<totelem; i++)
element_weight[i]=min;
maxweight=min;
}
/* Calculate weights from vgroup */
vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
if (vweight) {
if (from==PART_FROM_VERT) {
for (i=0;i<totelem; i++)
element_weight[i]*=vweight[i];
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for (i=0;i<totelem; i++) {
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if (mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0f;
}
else {
tweight /= 3.0f;
}
element_weight[i]*=tweight;
}
}
MEM_freeN(vweight);
}
/* Calculate total weight of all elements */
totweight= 0.0f;
for (i=0;i<totelem; i++)
totweight += element_weight[i];
inv_totweight = (totweight > 0.f ? 1.f/totweight : 0.f);
/* Calculate cumulative weights */
element_sum[0]= 0.0f;
for (i=0; i<totelem; i++)
element_sum[i+1]= element_sum[i] + element_weight[i] * inv_totweight;
/* Finally assign elements to particles */
if ((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
float pos;
for (p=0; p<totpart; p++) {
/* In theory element_sum[totelem] should be 1.0, but due to float errors this is not necessarily always true, so scale pos accordingly. */
pos= BLI_frand() * element_sum[totelem];
particle_element[p]= distribute_binary_search(element_sum, totelem, pos);
particle_element[p]= MIN2(totelem-1, particle_element[p]);
jitter_offset[particle_element[p]]= pos;
}
}
else {
double step, pos;
step= (totpart < 2) ? 0.5 : 1.0/(double)totpart;
pos= 1e-6; /* tiny offset to avoid zero weight face */
i= 0;
for (p=0; p<totpart; p++, pos+=step) {
while ((i < totelem) && (pos > element_sum[i+1]))
i++;
particle_element[p]= MIN2(totelem-1, i);
/* avoid zero weight face */
if (p == totpart-1 && element_weight[particle_element[p]] == 0.0f)
particle_element[p]= particle_element[p-1];
jitter_offset[particle_element[p]]= pos;
}
}
MEM_freeN(element_sum);
/* For hair, sort by origindex (allows optimization's in rendering), */
/* however with virtual parents the children need to be in random order. */
if (part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
COMPARE_ORIG_INDEX = NULL;
if (from == PART_FROM_VERT) {
if (dm->numVertData)
COMPARE_ORIG_INDEX= dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else {
if (dm->numTessFaceData)
COMPARE_ORIG_INDEX= dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
}
if (COMPARE_ORIG_INDEX) {
qsort(particle_element, totpart, sizeof(int), distribute_compare_orig_index);
COMPARE_ORIG_INDEX = NULL;
}
}
/* Create jittering if needed */
if (distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
jitlevel= part->userjit;
if (jitlevel == 0) {
jitlevel= totpart/totelem;
if (part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
if (jitlevel<3) jitlevel= 3;
}
jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
/* for small amounts of particles we use regular jitter since it looks
* a bit better, for larger amounts we switch to hammersley sequence
* because it is much faster */
if (jitlevel < 25)
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
else
hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* Setup things for threaded distribution */
ctx->tree= tree;
ctx->seams= seams;
ctx->totseam= totseam;
ctx->sim.psys= psys;
ctx->index= particle_element;
ctx->jit= jit;
ctx->jitlevel= jitlevel;
ctx->jitoff= jitter_offset;
ctx->weight= element_weight;
ctx->maxweight= maxweight;
ctx->from= (children)? PART_FROM_CHILD: from;
ctx->cfrom= cfrom;
ctx->distr= distr;
ctx->dm= dm;
ctx->tpars= tpars;
if (children) {
totpart= psys_render_simplify_distribution(ctx, totpart);
alloc_child_particles(psys, totpart);
}
if (!children || psys->totchild < 10000)
totthread= 1;
seed= 31415926 + ctx->sim.psys->seed;
for (i=0; i<totthread; i++) {
threads[i].rng= rng_new(seed);
threads[i].tot= totthread;
}
return 1;
}
static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
{
DerivedMesh *finaldm = sim->psmd->dm;
ListBase threads;
ParticleThread *pthreads;
ParticleThreadContext *ctx;
int i, totthread;
pthreads= psys_threads_create(sim);
if (!distribute_threads_init_data(pthreads, sim->scene, finaldm, from)) {
psys_threads_free(pthreads);
return;
}
totthread= pthreads[0].tot;
if (totthread > 1) {
BLI_init_threads(&threads, distribute_threads_exec_cb, totthread);
for (i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
distribute_threads_exec_cb(&pthreads[0]);
psys_calc_dmcache(sim->ob, finaldm, sim->psys);
ctx= pthreads[0].ctx;
if (ctx->dm != finaldm)
ctx->dm->release(ctx->dm);
psys_threads_free(pthreads);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
{
distribute_invalid(sim->scene, sim->psys, 0);
fprintf(stderr,"Shape emission not yet possible!\n");
}
static void distribute_particles(ParticleSimulationData *sim, int from)
{
PARTICLE_PSMD;
int distr_error=0;
if (psmd) {
if (psmd->dm)
distribute_particles_on_dm(sim, from);
else
distr_error=1;
}
else
distribute_particles_on_shape(sim, from);
if (distr_error) {
distribute_invalid(sim->scene, sim->psys, from);
fprintf(stderr,"Particle distribution error!\n");
}
}
/* threaded child particle distribution and path caching */
ParticleThread *psys_threads_create(ParticleSimulationData *sim)
{
ParticleThread *threads;
ParticleThreadContext *ctx;
int i, totthread;
if (sim->scene->r.mode & R_FIXED_THREADS)
totthread= sim->scene->r.threads;
else
totthread= BLI_system_thread_count();
threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
ctx->sim = *sim;
ctx->dm= ctx->sim.psmd->dm;
ctx->ma= give_current_material(sim->ob, sim->psys->part->omat);
memset(threads, 0, sizeof(ParticleThread)*totthread);
for (i=0; i<totthread; i++) {
threads[i].ctx= ctx;
threads[i].num= i;
threads[i].tot= totthread;
}
return threads;
}
void psys_threads_free(ParticleThread *threads)
{
ParticleThreadContext *ctx= threads[0].ctx;
int i, totthread= threads[0].tot;
/* path caching */
if (ctx->vg_length)
MEM_freeN(ctx->vg_length);
if (ctx->vg_clump)
MEM_freeN(ctx->vg_clump);
if (ctx->vg_kink)
MEM_freeN(ctx->vg_kink);
if (ctx->vg_rough1)
MEM_freeN(ctx->vg_rough1);
if (ctx->vg_rough2)
MEM_freeN(ctx->vg_rough2);
if (ctx->vg_roughe)
MEM_freeN(ctx->vg_roughe);
if (ctx->sim.psys->lattice) {
end_latt_deform(ctx->sim.psys->lattice);
ctx->sim.psys->lattice= NULL;
}
/* distribution */
if (ctx->jit) MEM_freeN(ctx->jit);
if (ctx->jitoff) MEM_freeN(ctx->jitoff);
if (ctx->weight) MEM_freeN(ctx->weight);
if (ctx->index) MEM_freeN(ctx->index);
if (ctx->skip) MEM_freeN(ctx->skip);
if (ctx->seams) MEM_freeN(ctx->seams);
//if (ctx->vertpart) MEM_freeN(ctx->vertpart);
BLI_kdtree_free(ctx->tree);
/* threads */
for (i=0; i<totthread; i++) {
if (threads[i].rng)
rng_free(threads[i].rng);
if (threads[i].rng_path)
rng_free(threads[i].rng_path);
}
MEM_freeN(ctx);
MEM_freeN(threads);
}
/* set particle parameters that don't change during particle's life */
void initialize_particle(ParticleSimulationData *sim, ParticleData *pa, int p)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleTexture ptex;
pa->flag &= ~PARS_UNEXIST;
if (part->type != PART_FLUID) {
psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.f);
if (ptex.exist < PSYS_FRAND(p+125))
pa->flag |= PARS_UNEXIST;
pa->time = (part->type == PART_HAIR) ? 0.f : part->sta + (part->end - part->sta)*ptex.time;
}
pa->hair_index = 0;
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
/* usage other than straight after distribute has to handle this index by itself - jahka*/
//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we don't have a derived mesh face */
}
static void initialize_all_particles(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
PARTICLE_P;
psys->totunexist = 0;
LOOP_PARTICLES {
if ((pa->flag & PARS_UNEXIST)==0)
initialize_particle(sim, pa, p);
if (pa->flag & PARS_UNEXIST)
psys->totunexist++;
}
/* Free unexisting particles. */
if (psys->totpart && psys->totunexist == psys->totpart) {
if (psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles = NULL;
psys->totpart = psys->totunexist = 0;
}
if (psys->totunexist) {
int newtotpart = psys->totpart - psys->totunexist;
ParticleData *npa, *newpars;
npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
for (p=0, pa=psys->particles; p<newtotpart; p++, pa++, npa++) {
while (pa->flag & PARS_UNEXIST)
pa++;
memcpy(npa, pa, sizeof(ParticleData));
}
if (psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles = newpars;
psys->totpart -= psys->totunexist;
if (psys->particles->boid) {
BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
LOOP_PARTICLES
pa->boid = newboids++;
}
}
}
static void get_angular_velocity_vector(short avemode, ParticleKey *state, float vec[3])
{
switch (avemode) {
case PART_AVE_VELOCITY:
copy_v3_v3(vec, state->vel);
break;
case PART_AVE_HORIZONTAL:
{
float zvec[3];
zvec[0] = zvec[1] = 0;
zvec[2] = 1.f;
cross_v3_v3v3(vec, state->vel, zvec);
break;
}
case PART_AVE_VERTICAL:
{
float zvec[3], temp[3];
zvec[0] = zvec[1] = 0;
zvec[2] = 1.f;
cross_v3_v3v3(temp, state->vel, zvec);
cross_v3_v3v3(vec, temp, state->vel);
break;
}
case PART_AVE_GLOBAL_X:
vec[0] = 1.f;
vec[1] = vec[2] = 0;
break;
case PART_AVE_GLOBAL_Y:
vec[1] = 1.f;
vec[0] = vec[2] = 0;
break;
case PART_AVE_GLOBAL_Z:
vec[2] = 1.f;
vec[0] = vec[1] = 0;
break;
}
}
void psys_get_birth_coordinates(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSettings *part;
ParticleTexture ptex;
float fac, phasefac, nor[3]={0,0,0},loc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4];
float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3]={0.0,0.0,0.0};
float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0};
float q_phase[4];
int p = pa - psys->particles;
part=psys->part;
/* get birth location from object */
if (part->tanfac != 0.f)
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
else
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0,0);
/* get possible textural influence */
psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
/* particles live in global space so */
/* let's convert: */
/* -location */
mul_m4_v3(ob->obmat, loc);
/* -normal */
mul_mat3_m4_v3(ob->obmat, nor);
normalize_v3(nor);
/* -tangent */
if (part->tanfac!=0.0f) {
//float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
float phase=0.0f;
mul_v3_fl(vtan,-cosf((float)M_PI*(part->tanphase+phase)));
fac= -sinf((float)M_PI*(part->tanphase+phase));
madd_v3_v3fl(vtan, utan, fac);
mul_mat3_m4_v3(ob->obmat,vtan);
copy_v3_v3(utan, nor);
mul_v3_fl(utan,dot_v3v3(vtan,nor));
sub_v3_v3(vtan, utan);
normalize_v3(vtan);
}
/* -velocity (boids need this even if there's no random velocity) */
if (part->randfac != 0.0f || (part->phystype==PART_PHYS_BOIDS && pa->boid)) {
r_vel[0] = 2.0f * (PSYS_FRAND(p + 10) - 0.5f);
r_vel[1] = 2.0f * (PSYS_FRAND(p + 11) - 0.5f);
r_vel[2] = 2.0f * (PSYS_FRAND(p + 12) - 0.5f);
mul_mat3_m4_v3(ob->obmat, r_vel);
normalize_v3(r_vel);
}
/* -angular velocity */
if (part->avemode==PART_AVE_RAND) {
r_ave[0] = 2.0f * (PSYS_FRAND(p + 13) - 0.5f);
r_ave[1] = 2.0f * (PSYS_FRAND(p + 14) - 0.5f);
r_ave[2] = 2.0f * (PSYS_FRAND(p + 15) - 0.5f);
mul_mat3_m4_v3(ob->obmat,r_ave);
normalize_v3(r_ave);
}
/* -rotation */
if (part->randrotfac != 0.0f) {
r_rot[0] = 2.0f * (PSYS_FRAND(p + 16) - 0.5f);
r_rot[1] = 2.0f * (PSYS_FRAND(p + 17) - 0.5f);
r_rot[2] = 2.0f * (PSYS_FRAND(p + 18) - 0.5f);
r_rot[3] = 2.0f * (PSYS_FRAND(p + 19) - 0.5f);
normalize_qt(r_rot);
mat4_to_quat(rot,ob->obmat);
mul_qt_qtqt(r_rot,r_rot,rot);
}
if (part->phystype==PART_PHYS_BOIDS && pa->boid) {
float dvec[3], q[4], mat[3][3];
copy_v3_v3(state->co,loc);
/* boids don't get any initial velocity */
zero_v3(state->vel);
/* boids store direction in ave */
if (fabsf(nor[2])==1.0f) {
sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
normalize_v3(state->ave);
}
else {
copy_v3_v3(state->ave, nor);
}
/* calculate rotation matrix */
project_v3_v3v3(dvec, r_vel, state->ave);
sub_v3_v3v3(mat[0], state->ave, dvec);
normalize_v3(mat[0]);
negate_v3_v3(mat[2], r_vel);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
/* apply rotation */
mat3_to_quat_is_ok( q,mat);
copy_qt_qt(state->rot, q);
}
else {
/* conversion done so now we apply new: */
/* -velocity from: */
/* *reactions */
if (dtime > 0.f) {
sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
}
/* *emitter velocity */
if (dtime != 0.f && part->obfac != 0.f) {
sub_v3_v3v3(vel, loc, state->co);
mul_v3_fl(vel, part->obfac/dtime);
}
/* *emitter normal */
if (part->normfac != 0.f)
madd_v3_v3fl(vel, nor, part->normfac);
/* *emitter tangent */
if (sim->psmd && part->tanfac != 0.f)
madd_v3_v3fl(vel, vtan, part->tanfac);
/* *emitter object orientation */
if (part->ob_vel[0] != 0.f) {
normalize_v3_v3(vec, ob->obmat[0]);
madd_v3_v3fl(vel, vec, part->ob_vel[0]);
}
if (part->ob_vel[1] != 0.f) {
normalize_v3_v3(vec, ob->obmat[1]);
madd_v3_v3fl(vel, vec, part->ob_vel[1]);
}
if (part->ob_vel[2] != 0.f) {
normalize_v3_v3(vec, ob->obmat[2]);
madd_v3_v3fl(vel, vec, part->ob_vel[2]);
}
/* *texture */
/* TODO */
/* *random */
if (part->randfac != 0.f)
madd_v3_v3fl(vel, r_vel, part->randfac);
/* *particle */
if (part->partfac != 0.f)
madd_v3_v3fl(vel, p_vel, part->partfac);
mul_v3_v3fl(state->vel, vel, ptex.ivel);
/* -location from emitter */
copy_v3_v3(state->co,loc);
/* -rotation */
unit_qt(state->rot);
if (part->rotmode) {
/* create vector into which rotation is aligned */
switch (part->rotmode) {
case PART_ROT_NOR:
copy_v3_v3(rot_vec, nor);
break;
case PART_ROT_VEL:
copy_v3_v3(rot_vec, vel);
break;
case PART_ROT_GLOB_X:
case PART_ROT_GLOB_Y:
case PART_ROT_GLOB_Z:
rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
break;
case PART_ROT_OB_X:
case PART_ROT_OB_Y:
case PART_ROT_OB_Z:
copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
break;
}
/* create rotation quat */
negate_v3(rot_vec);
vec_to_quat( q2,rot_vec, OB_POSX, OB_POSZ);
/* randomize rotation quat */
if (part->randrotfac!=0.0f)
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
else
copy_qt_qt(rot,q2);
/* rotation phase */
phasefac = part->phasefac;
if (part->randphasefac != 0.0f)
phasefac += part->randphasefac * PSYS_FRAND(p + 20);
axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI);
/* combine base rotation & phase */
mul_qt_qtqt(state->rot, rot, q_phase);
}
/* -angular velocity */
zero_v3(state->ave);
if (part->avemode) {
if (part->avemode == PART_AVE_RAND)
copy_v3_v3(state->ave, r_ave);
else
get_angular_velocity_vector(part->avemode, state, state->ave);
normalize_v3(state->ave);
mul_v3_fl(state->ave, part->avefac);
}
}
}
/* sets particle to the emitter surface with initial velocity & rotation */
void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSettings *part;
ParticleTexture ptex;
int p = pa - psys->particles;
part=psys->part;
/* get precise emitter matrix if particle is born */
if (part->type!=PART_HAIR && dtime > 0.f && pa->time < cfra && pa->time >= sim->psys->cfra) {
/* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */
while (ob) {
BKE_animsys_evaluate_animdata(sim->scene, &ob->id, ob->adt, pa->time, ADT_RECALC_ANIM);
ob = ob->parent;
}
ob = sim->ob;
BKE_object_where_is_calc_time(sim->scene, ob, pa->time);
psys->flag |= PSYS_OB_ANIM_RESTORE;
}
psys_get_birth_coordinates(sim, pa, &pa->state, dtime, cfra);
if (part->phystype==PART_PHYS_BOIDS && pa->boid) {
BoidParticle *bpa = pa->boid;
/* and gravity in r_ve */
bpa->gravity[0] = bpa->gravity[1] = 0.0f;
bpa->gravity[2] = -1.0f;
if ((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) &&
(sim->scene->physics_settings.gravity[2] != 0.0f))
{
bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
}
bpa->data.health = part->boids->health;
bpa->data.mode = eBoidMode_InAir;
bpa->data.state_id = ((BoidState*)part->boids->states.first)->id;
bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
}
if (part->type == PART_HAIR) {
pa->lifetime = 100.0f;
}
else {
/* get possible textural influence */
psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
pa->lifetime = part->lifetime * ptex.life;
if (part->randlife != 0.0f)
pa->lifetime *= 1.0f - part->randlife * PSYS_FRAND(p + 21);
}
pa->dietime = pa->time + pa->lifetime;
if (sim->psys->pointcache && sim->psys->pointcache->flag & PTCACHE_BAKED &&
sim->psys->pointcache->mem_cache.first) {
float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
pa->dietime = MIN2(pa->dietime, dietime);
}
if (pa->time > cfra)
pa->alive = PARS_UNBORN;
else if (pa->dietime <= cfra)
pa->alive = PARS_DEAD;
else
pa->alive = PARS_ALIVE;
pa->state.time = cfra;
}
static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
{
ParticleData *pa;
int p, totpart=sim->psys->totpart;
for (p=from, pa=sim->psys->particles+from; p<totpart; p++, pa++)
reset_particle(sim, pa, dtime, cfra);
}
/************************************************/
/* Particle targets */
/************************************************/
ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
{
ParticleSystem *psys = NULL;
if (pt->ob == NULL || pt->ob == ob)
psys = BLI_findlink(&ob->particlesystem, pt->psys-1);
else
psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1);
if (psys)
pt->flag |= PTARGET_VALID;
else
pt->flag &= ~PTARGET_VALID;
return psys;
}
/************************************************/
/* Keyed particles */
/************************************************/
/* Counts valid keyed targets */
void psys_count_keyed_targets(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys, *kpsys;
ParticleTarget *pt = psys->targets.first;
int keys_valid = 1;
psys->totkeyed = 0;
for (; pt; pt=pt->next) {
kpsys = psys_get_target_system(sim->ob, pt);
if (kpsys && kpsys->totpart) {
psys->totkeyed += keys_valid;
if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
psys->totkeyed += 1;
}
else {
keys_valid = 0;
}
}
psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
}
static void set_keyed_keys(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
ParticleSimulationData ksim= {0};
ParticleTarget *pt;
PARTICLE_P;
ParticleKey *key;
int totpart = psys->totpart, k, totkeys = psys->totkeyed;
int keyed_flag = 0;
ksim.scene= sim->scene;
/* no proper targets so let's clear and bail out */
if (psys->totkeyed==0) {
free_keyed_keys(psys);
psys->flag &= ~PSYS_KEYED;
return;
}
if (totpart && psys->particles->totkey != totkeys) {
free_keyed_keys(psys);
key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
LOOP_PARTICLES {
pa->keys = key;
pa->totkey = totkeys;
key += totkeys;
}
}
psys->flag &= ~PSYS_KEYED;
pt = psys->targets.first;
for (k=0; k<totkeys; k++) {
ksim.ob = pt->ob ? pt->ob : sim->ob;
ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
keyed_flag = (ksim.psys->flag & PSYS_KEYED);
ksim.psys->flag &= ~PSYS_KEYED;
LOOP_PARTICLES {
key = pa->keys + k;
key->time = -1.0; /* use current time */
psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1);
if (psys->flag & PSYS_KEYED_TIMING) {
key->time = pa->time + pt->time;
if (pt->duration != 0.0f && k+1 < totkeys) {
copy_particle_key(key+1, key, 1);
(key+1)->time = pa->time + pt->time + pt->duration;
}
}
else if (totkeys > 1)
key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
else
key->time = pa->time;
}
if (psys->flag & PSYS_KEYED_TIMING && pt->duration!=0.0f)
k++;
ksim.psys->flag |= keyed_flag;
pt = (pt->next && pt->next->flag & PTARGET_VALID)? pt->next : psys->targets.first;
}
psys->flag |= PSYS_KEYED;
}
/************************************************/
/* Point Cache */
/************************************************/
void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
{
PointCache *cache = psys->pointcache;
if (cache->flag & PTCACHE_DISK_CACHE && cache->mem_cache.first == NULL) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, ob, psys);
cache->flag &= ~PTCACHE_DISK_CACHE;
BKE_ptcache_disk_to_mem(&pid);
cache->flag |= PTCACHE_DISK_CACHE;
}
}
static void psys_clear_temp_pointcache(ParticleSystem *psys)
{
if (psys->pointcache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
}
void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
{
ParticleSettings *part = psys->part;
*sfra = MAX2(1, (int)part->sta);
*efra = MIN2((int)(part->end + part->lifetime + 1.0f), scene->r.efra);
}
/************************************************/
/* Effectors */
/************************************************/
static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
{
if (psys) {
PARTICLE_P;
int totpart = 0;
if (!psys->bvhtree || psys->bvhtree_frame != cfra) {
LOOP_SHOWN_PARTICLES {
totpart++;
}
BLI_bvhtree_free(psys->bvhtree);
psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_ALIVE) {
if (pa->state.time == cfra)
BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
else
BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
}
}
BLI_bvhtree_balance(psys->bvhtree);
psys->bvhtree_frame = cfra;
}
}
}
void psys_update_particle_tree(ParticleSystem *psys, float cfra)
{
if (psys) {
PARTICLE_P;
int totpart = 0;
if (!psys->tree || psys->tree_frame != cfra) {
LOOP_SHOWN_PARTICLES {
totpart++;
}
BLI_kdtree_free(psys->tree);
psys->tree = BLI_kdtree_new(psys->totpart);
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_ALIVE) {
if (pa->state.time == cfra)
BLI_kdtree_insert(psys->tree, p, pa->prev_state.co, NULL);
else
BLI_kdtree_insert(psys->tree, p, pa->state.co, NULL);
}
}
BLI_kdtree_balance(psys->tree);
psys->tree_frame = cfra;
}
}
}
static void psys_update_effectors(ParticleSimulationData *sim)
{
pdEndEffectors(&sim->psys->effectors);
sim->psys->effectors = pdInitEffectors(sim->scene, sim->ob, sim->psys, sim->psys->part->effector_weights);
precalc_guides(sim, sim->psys->effectors);
}
static void integrate_particle(ParticleSettings *part, ParticleData *pa, float dtime, float *external_acceleration, void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse), void *forcedata)
{
ParticleKey states[5];
float force[3],acceleration[3],impulse[3],dx[4][3],dv[4][3],oldpos[3];
float pa_mass= (part->flag & PART_SIZEMASS ? part->mass * pa->size : part->mass);
int i, steps=1;
int integrator = part->integrator;
copy_v3_v3(oldpos, pa->state.co);
/* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
if (pa->prev_state.time < 0.f && integrator == PART_INT_VERLET)
integrator = PART_INT_EULER;
switch (integrator) {
case PART_INT_EULER:
steps=1;
break;
case PART_INT_MIDPOINT:
steps=2;
break;
case PART_INT_RK4:
steps=4;
break;
case PART_INT_VERLET:
steps=1;
break;
}
for (i=0; i<steps; i++) {
copy_particle_key(states + i, &pa->state, 1);
}
states->time = 0.f;
for (i=0; i<steps; i++) {
zero_v3(force);
zero_v3(impulse);
force_func(forcedata, states+i, force, impulse);
/* force to acceleration*/
mul_v3_v3fl(acceleration, force, 1.0f/pa_mass);
if (external_acceleration)
add_v3_v3(acceleration, external_acceleration);
/* calculate next state */
add_v3_v3(states[i].vel, impulse);
switch (integrator) {
case PART_INT_EULER:
madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
break;
case PART_INT_MIDPOINT:
if (i==0) {
madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime*0.5f);
madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime*0.5f);
states[1].time = dtime*0.5f;
/*fra=sim->psys->cfra+0.5f*dfra;*/
}
else {
madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
}
break;
case PART_INT_RK4:
switch (i) {
case 0:
copy_v3_v3(dx[0], states->vel);
mul_v3_fl(dx[0], dtime);
copy_v3_v3(dv[0], acceleration);
mul_v3_fl(dv[0], dtime);
madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
states[1].time = dtime*0.5f;
/*fra=sim->psys->cfra+0.5f*dfra;*/
break;
case 1:
madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
mul_v3_fl(dx[1], dtime);
copy_v3_v3(dv[1], acceleration);
mul_v3_fl(dv[1], dtime);
madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
states[2].time = dtime*0.5f;
break;
case 2:
madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
mul_v3_fl(dx[2], dtime);
copy_v3_v3(dv[2], acceleration);
mul_v3_fl(dv[2], dtime);
add_v3_v3v3(states[3].co, states->co, dx[2]);
add_v3_v3v3(states[3].vel, states->vel, dv[2]);
states[3].time = dtime;
/*fra=cfra;*/
break;
case 3:
add_v3_v3v3(dx[3], states->vel, dv[2]);
mul_v3_fl(dx[3], dtime);
copy_v3_v3(dv[3], acceleration);
mul_v3_fl(dv[3], dtime);
madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f/6.0f);
madd_v3_v3fl(pa->state.co, dx[1], 1.0f/3.0f);
madd_v3_v3fl(pa->state.co, dx[2], 1.0f/3.0f);
madd_v3_v3fl(pa->state.co, dx[3], 1.0f/6.0f);
madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f/6.0f);
madd_v3_v3fl(pa->state.vel, dv[1], 1.0f/3.0f);
madd_v3_v3fl(pa->state.vel, dv[2], 1.0f/3.0f);
madd_v3_v3fl(pa->state.vel, dv[3], 1.0f/6.0f);
}
break;
case PART_INT_VERLET: /* Verlet integration */
madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
mul_v3_fl(pa->state.vel, 1.0f/dtime);
break;
}
}
}
/*********************************************************************************************************
* SPH fluid physics
*
* In theory, there could be unlimited implementation of SPH simulators
*
* This code uses in some parts adapted algorithms from the pseudo code as outlined in the Research paper:
*
* Titled: Particle-based Viscoelastic Fluid Simulation.
* Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
* Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
*
* Presented at Siggraph, (2005)
*
* ********************************************************************************************************/
#define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
{
/* Are more refs required? */
if (psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
psys->fluid_springs = (ParticleSpring*)MEM_callocN(psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
}
else if (psys->tot_fluidsprings == psys->alloc_fluidsprings) {
/* Double the number of refs allocated */
psys->alloc_fluidsprings *= 2;
psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
}
memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
psys->tot_fluidsprings++;
return psys->fluid_springs + psys->tot_fluidsprings - 1;
}
static void sph_spring_delete(ParticleSystem *psys, int j)
{
if (j != psys->tot_fluidsprings - 1)
psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
psys->tot_fluidsprings--;
if (psys->tot_fluidsprings < psys->alloc_fluidsprings/2 && psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE) {
psys->alloc_fluidsprings /= 2;
psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
}
}
static void sph_springs_modify(ParticleSystem *psys, float dtime)
{
SPHFluidSettings *fluid = psys->part->fluid;
ParticleData *pa1, *pa2;
ParticleSpring *spring = psys->fluid_springs;
float h, d, Rij[3], rij, Lij;
int i;
float yield_ratio = fluid->yield_ratio;
float plasticity = fluid->plasticity_constant;
/* scale things according to dtime */
float timefix = 25.f * dtime;
if ((fluid->flag & SPH_VISCOELASTIC_SPRINGS)==0 || fluid->spring_k == 0.f)
return;
/* Loop through the springs */
for (i=0; i<psys->tot_fluidsprings; i++, spring++) {
pa1 = psys->particles + spring->particle_index[0];
pa2 = psys->particles + spring->particle_index[1];
sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
rij = normalize_v3(Rij);
/* adjust rest length */
Lij = spring->rest_length;
d = yield_ratio * timefix * Lij;
if (rij > Lij + d) // Stretch
spring->rest_length += plasticity * (rij - Lij - d) * timefix;
else if (rij < Lij - d) // Compress
spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
h = 4.f*pa1->size;
if (spring->rest_length > h)
spring->delete_flag = 1;
}
/* Loop through springs backwaqrds - for efficient delete function */
for (i=psys->tot_fluidsprings-1; i >= 0; i--) {
if (psys->fluid_springs[i].delete_flag)
sph_spring_delete(psys, i);
}
}
static EdgeHash *sph_springhash_build(ParticleSystem *psys)
{
EdgeHash *springhash = NULL;
ParticleSpring *spring;
int i = 0;
springhash = BLI_edgehash_new();
for (i=0, spring=psys->fluid_springs; i<psys->tot_fluidsprings; i++, spring++)
BLI_edgehash_insert(springhash, spring->particle_index[0], spring->particle_index[1], SET_INT_IN_POINTER(i+1));
return springhash;
}
#define SPH_NEIGHBORS 512
typedef struct SPHNeighbor {
ParticleSystem *psys;
int index;
} SPHNeighbor;
typedef struct SPHRangeData {
SPHNeighbor neighbors[SPH_NEIGHBORS];
int tot_neighbors;
float density, near_density;
float h;
ParticleSystem *npsys;
ParticleData *pa;
float massfac;
int use_size;
} SPHRangeData;
typedef struct SPHData {
ParticleSystem *psys[10];
ParticleData *pa;
float mass;
EdgeHash *eh;
float *gravity;
/* Average distance to neighbors (other particles in the support domain),
* for calculating the Courant number (adaptive time step). */
int pass;
float element_size;
float flow[3];
/* Integrator callbacks. This allows different SPH implementations. */
void (*force_cb) (void *sphdata_v, ParticleKey *state, float *force, float *impulse);
void (*density_cb) (void *rangedata_v, int index, float squared_dist);
} SPHData;
static void sph_density_accum_cb(void *userdata, int index, float squared_dist)
{
SPHRangeData *pfr = (SPHRangeData *)userdata;
ParticleData *npa = pfr->npsys->particles + index;
float q;
float dist;
if (npa == pfr->pa || squared_dist < FLT_EPSILON)
return;
/* Ugh! One particle has too many neighbors! If some aren't taken into
* account, the forces will be biased by the tree search order. This
* effectively adds enery to the system, and results in a churning motion.
* But, we have to stop somewhere, and it's not the end of the world.
* - jahka and z0r
*/
if (pfr->tot_neighbors >= SPH_NEIGHBORS)
return;
pfr->neighbors[pfr->tot_neighbors].index = index;
pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
pfr->tot_neighbors++;
dist = sqrtf(squared_dist);
q = (1.f - dist/pfr->h) * pfr->massfac;
if (pfr->use_size)
q *= npa->size;
pfr->density += q*q;
pfr->near_density += q*q*q;
}
/*
* Find the Courant number for an SPH particle (used for adaptive time step).
*/
static void sph_particle_courant(SPHData *sphdata, SPHRangeData *pfr)
{
ParticleData *pa, *npa;
int i;
float flow[3], offset[3], dist;
zero_v3(flow);
dist = 0.0f;
if (pfr->tot_neighbors > 0) {
pa = pfr->pa;
for (i=0; i < pfr->tot_neighbors; i++) {
npa = pfr->neighbors[i].psys->particles + pfr->neighbors[i].index;
sub_v3_v3v3(offset, pa->prev_state.co, npa->prev_state.co);
dist += len_v3(offset);
add_v3_v3(flow, npa->prev_state.vel);
}
dist += sphdata->psys[0]->part->fluid->radius; // TODO: remove this? - z0r
sphdata->element_size = dist / pfr->tot_neighbors;
mul_v3_v3fl(sphdata->flow, flow, 1.0f / pfr->tot_neighbors);
}
else {
sphdata->element_size = MAXFLOAT;
copy_v3_v3(sphdata->flow, flow);
}
}
static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
{
SPHData *sphdata = (SPHData *)sphdata_v;
ParticleSystem **psys = sphdata->psys;
ParticleData *pa = sphdata->pa;
SPHFluidSettings *fluid = psys[0]->part->fluid;
ParticleSpring *spring = NULL;
SPHRangeData pfr;
SPHNeighbor *pfn;
float mass = sphdata->mass;
float *gravity = sphdata->gravity;
EdgeHash *springhash = sphdata->eh;
float q, u, rij, dv[3];
float pressure, near_pressure;
float visc = fluid->viscosity_omega;
float stiff_visc = fluid->viscosity_beta * (fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.f);
float inv_mass = 1.0f/mass;
float spring_constant = fluid->spring_k;
float h = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.f*pa->size : 1.f); /* 4.0 seems to be a pretty good value */
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f); /* 4.77 is an experimentally determined density factor */
float rest_length = fluid->rest_length * (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
float stiffness = fluid->stiffness_k;
float stiffness_near_fac = fluid->stiffness_knear * (fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.f);
ParticleData *npa;
float vec[3];
float vel[3];
float co[3];
int i, spring_index, index = pa - psys[0]->particles;
pfr.tot_neighbors = 0;
pfr.density = pfr.near_density = 0.f;
pfr.h = h;
pfr.pa = pa;
for (i=0; i<10 && psys[i]; i++) {
pfr.npsys = psys[i];
pfr.massfac = psys[i]->part->mass*inv_mass;
pfr.use_size = psys[i]->part->flag & PART_SIZEMASS;
BLI_bvhtree_range_query(psys[i]->bvhtree, state->co, h, sphdata->density_cb, &pfr);
}
pressure = stiffness * (pfr.density - rest_density);
near_pressure = stiffness_near_fac * pfr.near_density;
pfn = pfr.neighbors;
for (i=0; i<pfr.tot_neighbors; i++, pfn++) {
npa = pfn->psys->particles + pfn->index;
madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
sub_v3_v3v3(vec, co, state->co);
rij = normalize_v3(vec);
q = (1.f - rij/h) * pfn->psys->part->mass * inv_mass;
if (pfn->psys->part->flag & PART_SIZEMASS)
q *= npa->size;
copy_v3_v3(vel, npa->prev_state.vel);
/* Double Density Relaxation */
madd_v3_v3fl(force, vec, -(pressure + near_pressure*q)*q);
/* Viscosity */
if (visc > 0.f || stiff_visc > 0.f) {
sub_v3_v3v3(dv, vel, state->vel);
u = dot_v3v3(vec, dv);
if (u < 0.f && visc > 0.f)
madd_v3_v3fl(force, vec, 0.5f * q * visc * u );
if (u > 0.f && stiff_visc > 0.f)
madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u );
}
if (spring_constant > 0.f) {
/* Viscoelastic spring force */
if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
/* BLI_edgehash_lookup appears to be thread-safe. - z0r */
spring_index = GET_INT_FROM_POINTER(BLI_edgehash_lookup(springhash, index, pfn->index));
if (spring_index) {
spring = psys[0]->fluid_springs + spring_index - 1;
madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (spring->rest_length - rij));
}
else if (fluid->spring_frames == 0 || (pa->prev_state.time-pa->time) <= fluid->spring_frames) {
ParticleSpring temp_spring;
temp_spring.particle_index[0] = index;
temp_spring.particle_index[1] = pfn->index;
temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
temp_spring.delete_flag = 0;
/* sph_spring_add is not thread-safe. - z0r */
#pragma omp critical
sph_spring_add(psys[0], &temp_spring);
}
}
else {/* PART_SPRING_HOOKES - Hooke's spring force */
madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (rest_length - rij));
}
}
}
/* Artificial buoyancy force in negative gravity direction */
if (fluid->buoyancy > 0.f && gravity)
madd_v3_v3fl(force, gravity, fluid->buoyancy * (pfr.density-rest_density));
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
sph_particle_courant(sphdata, &pfr);
sphdata->pass++;
}
static void sph_solver_init(ParticleSimulationData *sim, SPHData *sphdata)
{
ParticleTarget *pt;
int i;
// Add other coupled particle systems.
sphdata->psys[0] = sim->psys;
for (i=1, pt=sim->psys->targets.first; i<10; i++, pt=(pt?pt->next:NULL))
sphdata->psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
if (psys_uses_gravity(sim))
sphdata->gravity = sim->scene->physics_settings.gravity;
else
sphdata->gravity = NULL;
sphdata->eh = sph_springhash_build(sim->psys);
// These per-particle values should be overridden later, but just for
// completeness we give them default values now.
sphdata->pa = NULL;
sphdata->mass = 1.0f;
sphdata->force_cb = sph_force_cb;
sphdata->density_cb = sph_density_accum_cb;
}
static void sph_solver_finalise(SPHData *sphdata)
{
if (sphdata->eh) {
BLI_edgehash_free(sphdata->eh, NULL);
sphdata->eh = NULL;
}
}
static void sph_integrate(ParticleSimulationData *sim, ParticleData *pa, float dfra, SPHData *sphdata)
{
ParticleSettings *part = sim->psys->part;
// float timestep = psys_get_timestep(sim); // UNUSED
float pa_mass = part->mass * (part->flag & PART_SIZEMASS ? pa->size : 1.f);
float dtime = dfra*psys_get_timestep(sim);
// int steps = 1; // UNUSED
float effector_acceleration[3];
sphdata->pa = pa;
sphdata->mass = pa_mass;
sphdata->pass = 0;
//sphdata.element_size and sphdata.flow are set in the callback.
/* restore previous state and treat gravity & effectors as external acceleration*/
sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
mul_v3_fl(effector_acceleration, 1.f/dtime);
copy_particle_key(&pa->state, &pa->prev_state, 0);
integrate_particle(part, pa, dtime, effector_acceleration, sphdata->force_cb, sphdata);
}
/************************************************/
/* Basic physics */
/************************************************/
typedef struct EfData {
ParticleTexture ptex;
ParticleSimulationData *sim;
ParticleData *pa;
} EfData;
static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
{
EfData *efdata = (EfData *)efdata_v;
ParticleSimulationData *sim = efdata->sim;
ParticleSettings *part = sim->psys->part;
ParticleData *pa = efdata->pa;
EffectedPoint epoint;
/* add effectors */
pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
if (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)
pdDoEffectors(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse);
mul_v3_fl(force, efdata->ptex.field);
mul_v3_fl(impulse, efdata->ptex.field);
/* calculate air-particle interaction */
if (part->dragfac != 0.0f)
madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
/* brownian force */
if (part->brownfac != 0.0f) {
force[0] += (BLI_frand()-0.5f) * part->brownfac;
force[1] += (BLI_frand()-0.5f) * part->brownfac;
force[2] += (BLI_frand()-0.5f) * part->brownfac;
}
if (part->flag & PART_ROT_DYN && epoint.ave)
copy_v3_v3(pa->state.ave, epoint.ave);
}
/* gathers all forces that effect particles and calculates a new state for the particle */
static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
{
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
ParticleKey tkey;
float dtime=dfra*psys_get_timestep(sim), time;
float *gravity = NULL, gr[3];
EfData efdata;
psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
efdata.pa = pa;
efdata.sim = sim;
/* add global acceleration (gravitation) */
if (psys_uses_gravity(sim) &&
/* normal gravity is too strong for hair so it's disabled by default */
(part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR))
{
zero_v3(gr);
madd_v3_v3fl(gr, sim->scene->physics_settings.gravity, part->effector_weights->global_gravity * efdata.ptex.gravity);
gravity = gr;
}
/* maintain angular velocity */
copy_v3_v3(pa->state.ave, pa->prev_state.ave);
integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
/* damp affects final velocity */
if (part->dampfac != 0.f)
mul_v3_fl(pa->state.vel, 1.f - part->dampfac * efdata.ptex.damp * 25.f * dtime);
//copy_v3_v3(pa->state.ave, states->ave);
/* finally we do guides */
time=(cfra-pa->time)/pa->lifetime;
CLAMP(time, 0.0f, 1.0f);
copy_v3_v3(tkey.co,pa->state.co);
copy_v3_v3(tkey.vel,pa->state.vel);
tkey.time=pa->state.time;
if (part->type != PART_HAIR) {
if (do_guides(sim->psys->effectors, &tkey, p, time)) {
copy_v3_v3(pa->state.co,tkey.co);
/* guides don't produce valid velocity */
sub_v3_v3v3(pa->state.vel, tkey.co, pa->prev_state.co);
mul_v3_fl(pa->state.vel,1.0f/dtime);
pa->state.time=tkey.time;
}
}
}
static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
{
float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep, extrotfac;
if ((part->flag & PART_ROTATIONS) == 0) {
unit_qt(pa->state.rot);
return;
}
if (part->flag & PART_ROT_DYN) {
extrotfac = len_v3(pa->state.ave);
}
else {
extrotfac = 0.0f;
}
if ((part->flag & PART_ROT_DYN) && ELEM3(part->avemode, PART_AVE_VELOCITY, PART_AVE_HORIZONTAL, PART_AVE_VERTICAL)) {
float angle;
float len1 = len_v3(pa->prev_state.vel);
float len2 = len_v3(pa->state.vel);
float vec[3];
if (len1 == 0.0f || len2 == 0.0f) {
zero_v3(pa->state.ave);
}
else {
cross_v3_v3v3(pa->state.ave, pa->prev_state.vel, pa->state.vel);
normalize_v3(pa->state.ave);
angle = dot_v3v3(pa->prev_state.vel, pa->state.vel) / (len1 * len2);
mul_v3_fl(pa->state.ave, saacos(angle) / dtime);
}
get_angular_velocity_vector(part->avemode, &pa->state, vec);
axis_angle_to_quat(rot2, vec, dtime*part->avefac);
}
rotfac = len_v3(pa->state.ave);
if (rotfac == 0.0f || (part->flag & PART_ROT_DYN)==0 || extrotfac == 0.0f) {
unit_qt(rot1);
}
else {
axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime);
}
mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot);
mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot);
/* keep rotation quat in good health */
normalize_qt(pa->state.rot);
}
/************************************************/
/* Collisions */
/************************************************/
#define COLLISION_MAX_COLLISIONS 10
#define COLLISION_MIN_RADIUS 0.001f
#define COLLISION_MIN_DISTANCE 0.0001f
#define COLLISION_ZERO 0.00001f
typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
static float nr_signed_distance_to_plane(float *p, float radius, ParticleCollisionElement *pce, float *nor)
{
float p0[3], e1[3], e2[3], d;
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
sub_v3_v3v3(p0, p, pce->x0);
cross_v3_v3v3(nor, e1, e2);
normalize_v3(nor);
d = dot_v3v3(p0, nor);
if (pce->inv_nor == -1) {
if (d < 0.f)
pce->inv_nor = 1;
else
pce->inv_nor = 0;
}
if (pce->inv_nor == 1) {
negate_v3(nor);
d = -d;
}
return d - radius;
}
static float nr_distance_to_edge(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
{
float v0[3], v1[3], v2[3], c[3];
sub_v3_v3v3(v0, pce->x1, pce->x0);
sub_v3_v3v3(v1, p, pce->x0);
sub_v3_v3v3(v2, p, pce->x1);
cross_v3_v3v3(c, v1, v2);
return fabsf(len_v3(c)/len_v3(v0)) - radius;
}
static float nr_distance_to_vert(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
{
return len_v3v3(p, pce->x0) - radius;
}
static void collision_interpolate_element(ParticleCollisionElement *pce, float t, float fac, ParticleCollision *col)
{
/* t is the current time for newton rhapson */
/* fac is the starting factor for current collision iteration */
/* the col->fac's are factors for the particle subframe step start and end during collision modifier step */
float f = fac + t*(1.f-fac);
float mul = col->fac1 + f * (col->fac2-col->fac1);
if (pce->tot > 0) {
madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
if (pce->tot > 1) {
madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
if (pce->tot > 2)
madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
}
}
}
static void collision_point_velocity(ParticleCollisionElement *pce)
{
float v[3];
copy_v3_v3(pce->vel, pce->v[0]);
if (pce->tot > 1) {
sub_v3_v3v3(v, pce->v[1], pce->v[0]);
madd_v3_v3fl(pce->vel, v, pce->uv[0]);
if (pce->tot > 2) {
sub_v3_v3v3(v, pce->v[2], pce->v[0]);
madd_v3_v3fl(pce->vel, v, pce->uv[1]);
}
}
}
static float collision_point_distance_with_normal(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
{
if (fac >= 0.f)
collision_interpolate_element(pce, 0.f, fac, col);
switch (pce->tot) {
case 1:
{
sub_v3_v3v3(nor, p, pce->x0);
return normalize_v3(nor);
}
case 2:
{
float u, e[3], vec[3];
sub_v3_v3v3(e, pce->x1, pce->x0);
sub_v3_v3v3(vec, p, pce->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
madd_v3_v3v3fl(nor, vec, e, -u);
return normalize_v3(nor);
}
case 3:
return nr_signed_distance_to_plane(p, 0.f, pce, nor);
}
return 0;
}
static void collision_point_on_surface(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
{
collision_interpolate_element(pce, 0.f, fac, col);
switch (pce->tot) {
case 1:
{
sub_v3_v3v3(co, p, pce->x0);
normalize_v3(co);
madd_v3_v3v3fl(co, pce->x0, co, col->radius);
break;
}
case 2:
{
float u, e[3], vec[3], nor[3];
sub_v3_v3v3(e, pce->x1, pce->x0);
sub_v3_v3v3(vec, p, pce->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
madd_v3_v3v3fl(nor, vec, e, -u);
normalize_v3(nor);
madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
madd_v3_v3fl(co, nor, col->radius);
break;
}
case 3:
{
float p0[3], e1[3], e2[3], nor[3];
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
sub_v3_v3v3(p0, p, pce->x0);
cross_v3_v3v3(nor, e1, e2);
normalize_v3(nor);
if (pce->inv_nor == 1)
negate_v3(nor);
madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
madd_v3_v3fl(co, e1, pce->uv[0]);
madd_v3_v3fl(co, e2, pce->uv[1]);
break;
}
}
}
/* find first root in range [0-1] starting from 0 */
static float collision_newton_rhapson(ParticleCollision *col, float radius, ParticleCollisionElement *pce, NRDistanceFunc distance_func)
{
float t0, t1, d0, d1, dd, n[3];
int iter;
pce->inv_nor = -1;
/* start from the beginning */
t0 = 0.f;
collision_interpolate_element(pce, t0, col->f, col);
d0 = distance_func(col->co1, radius, pce, n);
t1 = 0.001f;
d1 = 0.f;
for (iter=0; iter<10; iter++) {//, itersum++) {
/* get current location */
collision_interpolate_element(pce, t1, col->f, col);
interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
d1 = distance_func(pce->p, radius, pce, n);
/* no movement, so no collision */
if (d1 == d0) {
return -1.f;
}
/* particle already inside face, so report collision */
if (iter == 0 && d0 < 0.f && d0 > -radius) {
copy_v3_v3(pce->p, col->co1);
copy_v3_v3(pce->nor, n);
pce->inside = 1;
return 0.f;
}
dd = (t1-t0)/(d1-d0);
t0 = t1;
d0 = d1;
t1 -= d1*dd;
/* particle movin away from plane could also mean a strangely rotating face, so check from end */
if (iter == 0 && t1 < 0.f) {
t0 = 1.f;
collision_interpolate_element(pce, t0, col->f, col);
d0 = distance_func(col->co2, radius, pce, n);
t1 = 0.999f;
d1 = 0.f;
continue;
}
else if (iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.f))
return -1.f;
if (d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
if (t1 >= -COLLISION_ZERO && t1 <= 1.f) {
if (distance_func == nr_signed_distance_to_plane)
copy_v3_v3(pce->nor, n);
CLAMP(t1, 0.f, 1.f);
return t1;
}
else
return -1.f;
}
}
return -1.0;
}
static int collision_sphere_to_tri(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
{
ParticleCollisionElement *result = &col->pce;
float ct, u, v;
pce->inv_nor = -1;
pce->inside = 0;
ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
if (ct >= 0.f && ct < *t && (result->inside==0 || pce->inside==1) ) {
float e1[3], e2[3], p0[3];
float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
sub_v3_v3v3(e1, pce->x1, pce->x0);
sub_v3_v3v3(e2, pce->x2, pce->x0);
/* XXX: add radius correction here? */
sub_v3_v3v3(p0, pce->p, pce->x0);
e1e1 = dot_v3v3(e1, e1);
e1e2 = dot_v3v3(e1, e2);
e1p0 = dot_v3v3(e1, p0);
e2e2 = dot_v3v3(e2, e2);
e2p0 = dot_v3v3(e2, p0);
inv = 1.f/(e1e1 * e2e2 - e1e2 * e1e2);
u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
if (u>=0.f && u<=1.f && v>=0.f && u+v<=1.f) {
*result = *pce;
/* normal already calculated in pce */
result->uv[0] = u;
result->uv[1] = v;
*t = ct;
return 1;
}
}
return 0;
}
static int collision_sphere_to_edges(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
{
ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
ParticleCollisionElement *result = &col->pce;
float ct;
int i;
for (i=0; i<3; i++) {
/* in case of a quad, no need to check "edge" that goes through face twice */
if ((pce->x[3] && i==2))
continue;
cur = edge+i;
cur->x[0] = pce->x[i]; cur->x[1] = pce->x[(i+1)%3];
cur->v[0] = pce->v[i]; cur->v[1] = pce->v[(i+1)%3];
cur->tot = 2;
cur->inside = 0;
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
if (ct >= 0.f && ct < *t) {
float u, e[3], vec[3];
sub_v3_v3v3(e, cur->x1, cur->x0);
sub_v3_v3v3(vec, cur->p, cur->x0);
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
if (u < 0.f || u > 1.f)
break;
*result = *cur;
madd_v3_v3v3fl(result->nor, vec, e, -u);
normalize_v3(result->nor);
result->uv[0] = u;
hit = cur;
*t = ct;
}
}
return hit != NULL;
}
static int collision_sphere_to_verts(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
{
ParticleCollisionElement vert[3], *cur = NULL, *hit = NULL;
ParticleCollisionElement *result = &col->pce;
float ct;
int i;
for (i=0; i<3; i++) {
/* in case of quad, only check one vert the first time */
if (pce->x[3] && i != 1)
continue;
cur = vert+i;
cur->x[0] = pce->x[i];
cur->v[0] = pce->v[i];
cur->tot = 1;
cur->inside = 0;
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_vert);
if (ct >= 0.f && ct < *t) {
*result = *cur;
sub_v3_v3v3(result->nor, cur->p, cur->x0);
normalize_v3(result->nor);
hit = cur;
*t = ct;
}
}
return hit != NULL;
}
/* Callback for BVHTree near test */
void BKE_psys_collision_neartest_cb(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
ParticleCollision *col = (ParticleCollision *) userdata;
ParticleCollisionElement pce;
MFace *face = col->md->mfaces + index;
MVert *x = col->md->x;
MVert *v = col->md->current_v;
float t = hit->dist/col->original_ray_length;
int collision = 0;
pce.x[0] = x[face->v1].co;
pce.x[1] = x[face->v2].co;
pce.x[2] = x[face->v3].co;
pce.x[3] = face->v4 ? x[face->v4].co : NULL;
pce.v[0] = v[face->v1].co;
pce.v[1] = v[face->v2].co;
pce.v[2] = v[face->v3].co;
pce.v[3] = face->v4 ? v[face->v4].co : NULL;
pce.tot = 3;
pce.inside = 0;
pce.index = index;
/* don't collide with same face again */
if (col->hit == col->current && col->pce.index == index && col->pce.tot == 3)
return;
do
{
collision = collision_sphere_to_tri(col, ray->radius, &pce, &t);
if (col->pce.inside == 0) {
collision += collision_sphere_to_edges(col, ray->radius, &pce, &t);
collision += collision_sphere_to_verts(col, ray->radius, &pce, &t);
}
if (collision) {
hit->dist = col->original_ray_length * t;
hit->index = index;
collision_point_velocity(&col->pce);
col->hit = col->current;
}
pce.x[1] = pce.x[2];
pce.x[2] = pce.x[3];
pce.x[3] = NULL;
pce.v[1] = pce.v[2];
pce.v[2] = pce.v[3];
pce.v[3] = NULL;
} while (pce.x[2]);
}
static int collision_detect(ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, ListBase *colliders)
{
ColliderCache *coll;
float ray_dir[3];
if (colliders->first == NULL)
return 0;
sub_v3_v3v3(ray_dir, col->co2, col->co1);
hit->index = -1;
hit->dist = col->original_ray_length = len_v3(ray_dir);
col->pce.inside = 0;
/* even if particle is stationary we want to check for moving colliders */
/* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
if (hit->dist == 0.0f)
hit->dist = col->original_ray_length = 0.000001f;
for (coll = colliders->first; coll; coll=coll->next) {
/* for boids: don't check with current ground object */
if (coll->ob == col->skip)
continue;
/* particles should not collide with emitter at birth */
if (coll->ob == col->emitter && pa->time < col->cfra && pa->time >= col->old_cfra)
continue;
col->current = coll->ob;
col->md = coll->collmd;
col->fac1 = (col->old_cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
col->fac2 = (col->cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
if (col->md && col->md->bvhtree)
BLI_bvhtree_ray_cast(col->md->bvhtree, col->co1, ray_dir, col->radius, hit, BKE_psys_collision_neartest_cb, col);
}
return hit->index >= 0;
}
static int collision_response(ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, int kill, int dynamic_rotation)
{
ParticleCollisionElement *pce = &col->pce;
PartDeflect *pd = col->hit->pd;
float co[3]; /* point of collision */
float x = hit->dist/col->original_ray_length; /* location factor of collision between this iteration */
float f = col->f + x * (1.0f - col->f); /* time factor of collision between timestep */
float dt1 = (f - col->f) * col->total_time; /* time since previous collision (in seconds) */
float dt2 = (1.0f - f) * col->total_time; /* time left after collision (in seconds) */
int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0; /* did particle pass through the collision surface? */
/* calculate exact collision location */
interp_v3_v3v3(co, col->co1, col->co2, x);
/* particle dies in collision */
if (through == 0 && (kill || pd->flag & PDEFLE_KILL_PART)) {
pa->alive = PARS_DYING;
pa->dietime = col->old_cfra + (col->cfra - col->old_cfra) * f;
copy_v3_v3(pa->state.co, co);
interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, f);
interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, f);
interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, f);
/* particle is dead so we don't need to calculate further */
return 0;
}
/* figure out velocity and other data after collision */
else {
float v0[3]; /* velocity directly before collision to be modified into velocity directly after collision */
float v0_nor[3];/* normal component of v0 */
float v0_tan[3];/* tangential component of v0 */
float vc_tan[3];/* tangential component of collision surface velocity */
float v0_dot, vc_dot;
float damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
float frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
float distance, nor[3], dot;
CLAMP(damp,0.0f, 1.0f);
CLAMP(frict,0.0f, 1.0f);
/* get exact velocity right before collision */
madd_v3_v3v3fl(v0, col->ve1, col->acc, dt1);
/* convert collider velocity from 1/framestep to 1/s TODO: here we assume 1 frame step for collision modifier */
mul_v3_fl(pce->vel, col->inv_timestep);
/* calculate tangential particle velocity */
v0_dot = dot_v3v3(pce->nor, v0);
madd_v3_v3v3fl(v0_tan, v0, pce->nor, -v0_dot);
/* calculate tangential collider velocity */
vc_dot = dot_v3v3(pce->nor, pce->vel);
madd_v3_v3v3fl(vc_tan, pce->vel, pce->nor, -vc_dot);
/* handle friction effects (tangential and angular velocity) */
if (frict > 0.0f) {
/* angular <-> linear velocity */
if (dynamic_rotation) {
float vr_tan[3], v1_tan[3], ave[3];
/* linear velocity of particle surface */
cross_v3_v3v3(vr_tan, pce->nor, pa->state.ave);
mul_v3_fl(vr_tan, pa->size);
/* change to coordinates that move with the collision plane */
sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
/* The resulting velocity is a weighted average of particle cm & surface
* velocity. This weight (related to particle's moment of inertia) could
* be made a parameter for angular <-> linear conversion.
*/
madd_v3_v3fl(v1_tan, vr_tan, -0.4);
mul_v3_fl(v1_tan, 1.0f/1.4f); /* 1/(1+0.4) */
/* rolling friction is around 0.01 of sliding friction (could be made a parameter) */
mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
/* surface_velocity is opposite to cm velocity */
negate_v3_v3(vr_tan, v1_tan);
/* get back to global coordinates */
add_v3_v3(v1_tan, vc_tan);
/* convert to angular velocity*/
cross_v3_v3v3(ave, vr_tan, pce->nor);
mul_v3_fl(ave, 1.0f/MAX2(pa->size, 0.001f));
/* only friction will cause change in linear & angular velocity */
interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
}
else {
/* just basic friction (unphysical due to the friction model used in Blender) */
interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
}
}
/* stickiness was possibly added before, so cancel that before calculating new normal velocity */
/* otherwise particles go flying out of the surface because of high reversed sticky velocity */
if (v0_dot < 0.0f) {
v0_dot += pd->pdef_stickness;
if (v0_dot > 0.0f)
v0_dot = 0.0f;
}
/* damping and flipping of velocity around normal */
v0_dot *= 1.0f - damp;
vc_dot *= through ? damp : 1.0f;
/* calculate normal particle velocity */
/* special case for object hitting the particle from behind */
if (through==0 && ((vc_dot>0.0f && v0_dot>0.0f && vc_dot>v0_dot) || (vc_dot<0.0f && v0_dot<0.0f && vc_dot<v0_dot)))
mul_v3_v3fl(v0_nor, pce->nor, vc_dot);
else if (v0_dot > 0.f)
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? -1.0f : 1.0f) * v0_dot);
else
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
/* combine components together again */
add_v3_v3v3(v0, v0_nor, v0_tan);
if (col->boid) {
/* keep boids above ground */
BoidParticle *bpa = pa->boid;
if (bpa->data.mode == eBoidMode_OnLand || co[2] <= col->boid_z) {
co[2] = col->boid_z;
v0[2] = 0.0f;
}
}
/* re-apply acceleration to final location and velocity */
madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
madd_v3_v3fl(pa->state.co, col->acc, 0.5f*dt2*dt2);
madd_v3_v3v3fl(pa->state.vel, v0, col->acc, dt2);
/* make sure particle stays on the right side of the surface */
if (!through) {
distance = collision_point_distance_with_normal(co, pce, -1.f, col, nor);
if (distance < col->radius + COLLISION_MIN_DISTANCE)
madd_v3_v3fl(co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
dot = dot_v3v3(nor, v0);
if (dot < 0.f)
madd_v3_v3fl(v0, nor, -dot);
distance = collision_point_distance_with_normal(pa->state.co, pce, 1.f, col, nor);
if (distance < col->radius + COLLISION_MIN_DISTANCE)
madd_v3_v3fl(pa->state.co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
dot = dot_v3v3(nor, pa->state.vel);
if (dot < 0.f)
madd_v3_v3fl(pa->state.vel, nor, -dot);
}
/* add stickiness to surface */
madd_v3_v3fl(pa->state.vel, pce->nor, -pd->pdef_stickness);
/* set coordinates for next iteration */
copy_v3_v3(col->co1, co);
copy_v3_v3(col->co2, pa->state.co);
copy_v3_v3(col->ve1, v0);
copy_v3_v3(col->ve2, pa->state.vel);
col->f = f;
}
col->prev = col->hit;
col->prev_index = hit->index;
return 1;
}
static void collision_fail(ParticleData *pa, ParticleCollision *col)
{
/* final chance to prevent total failure, so stick to the surface and hope for the best */
collision_point_on_surface(col->co1, &col->pce, 1.f, col, pa->state.co);
copy_v3_v3(pa->state.vel, col->pce.vel);
mul_v3_fl(pa->state.vel, col->inv_timestep);
/* printf("max iterations\n"); */
}
/* Particle - Mesh collision detection and response
* Features:
* -friction and damping
* -angular momentum <-> linear momentum
* -high accuracy by re-applying particle acceleration after collision
* -handles moving, rotating and deforming meshes
* -uses Newton-Rhapson iteration to find the collisions
* -handles spherical particles and (nearly) point like particles
*/
static void collision_check(ParticleSimulationData *sim, int p, float dfra, float cfra)
{
ParticleSettings *part = sim->psys->part;
ParticleData *pa = sim->psys->particles + p;
ParticleCollision col;
BVHTreeRayHit hit;
int collision_count=0;
float timestep = psys_get_timestep(sim);
memset(&col, 0, sizeof(ParticleCollision));
col.total_time = timestep * dfra;
col.inv_timestep = 1.0f/timestep;
col.cfra = cfra;
col.old_cfra = sim->psys->cfra;
/* get acceleration (from gravity, forcefields etc. to be re-applied in collision response) */
sub_v3_v3v3(col.acc, pa->state.vel, pa->prev_state.vel);
mul_v3_fl(col.acc, 1.f/col.total_time);
/* set values for first iteration */
copy_v3_v3(col.co1, pa->prev_state.co);
copy_v3_v3(col.co2, pa->state.co);
copy_v3_v3(col.ve1, pa->prev_state.vel);
copy_v3_v3(col.ve2, pa->state.vel);
col.f = 0.0f;
col.radius = ((part->flag & PART_SIZE_DEFL) || (part->phystype == PART_PHYS_BOIDS)) ? pa->size : COLLISION_MIN_RADIUS;
/* override for boids */
if (part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
col.boid = 1;
col.boid_z = pa->state.co[2];
col.skip = pa->boid->ground;
}
/* 10 iterations to catch multiple collisions */
while (collision_count < COLLISION_MAX_COLLISIONS) {
if (collision_detect(pa, &col, &hit, sim->colliders)) {
collision_count++;
if (collision_count == COLLISION_MAX_COLLISIONS)
collision_fail(pa, &col);
else if (collision_response(pa, &col, &hit, part->flag & PART_DIE_ON_COL, part->flag & PART_ROT_DYN)==0)
return;
}
else
return;
}
}
/************************************************/
/* Hair */
/************************************************/
/* check if path cache or children need updating and do it if needed */
static void psys_update_path_cache(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
Base *base;
int distr=0, alloc=0, skip=0;
if ((psys->part->childtype && psys->totchild != get_psys_tot_child(sim->scene, psys)) || psys->recalc&PSYS_RECALC_RESET)
alloc=1;
if (alloc || psys->recalc&PSYS_RECALC_CHILD || (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT)))
distr=1;
if (distr) {
if (alloc)
realloc_particles(sim, sim->psys->totpart);
if (get_psys_tot_child(sim->scene, psys)) {
/* don't generate children while computing the hair keys */
if (!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
distribute_particles(sim, PART_FROM_CHILD);
if (part->childtype==PART_CHILD_FACES && part->parents != 0.0f)
psys_find_parents(sim);
}
}
else
psys_free_children(psys);
}
if ((part->type==PART_HAIR || psys->flag&PSYS_KEYED || psys->pointcache->flag & PTCACHE_BAKED)==0)
skip = 1; /* only hair, keyed and baked stuff can have paths */
else if (part->ren_as != PART_DRAW_PATH && !(part->type==PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)))
skip = 1; /* particle visualization must be set as path */
else if (!psys->renderdata) {
if (part->draw_as != PART_DRAW_REND)
skip = 1; /* draw visualization */
else if (psys->pointcache->flag & PTCACHE_BAKING)
skip = 1; /* no need to cache paths while baking dynamics */
else if (psys_in_edit_mode(sim->scene, psys)) {
if ((pset->flag & PE_DRAW_PART)==0)
skip = 1;
else if (part->childtype==0 && (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED)==0)
skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
}
}
/* particle instance modifier with "path" option need cached paths even if particle system doesn't */
for (base = sim->scene->base.first; base; base= base->next) {
ModifierData *md = modifiers_findByType(base->object, eModifierType_ParticleInstance);
if (md) {
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
if (pimd->flag & eParticleInstanceFlag_Path && pimd->ob == sim->ob && pimd->psys == (psys - (ParticleSystem*)sim->ob->particlesystem.first)) {
skip = 0;
break;
}
}
}
if (!skip) {
psys_cache_paths(sim, cfra);
/* for render, child particle paths are computed on the fly */
if (part->childtype) {
if (!psys->totchild)
skip = 1;
else if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)==0)
skip = 1;
if (!skip)
psys_cache_child_paths(sim, cfra, 0);
}
}
else if (psys->pathcache)
psys_free_path_cache(psys, NULL);
}
static void do_hair_dynamics(ParticleSimulationData *sim)
{
ParticleSystem *psys = sim->psys;
DerivedMesh *dm = psys->hair_in_dm;
MVert *mvert = NULL;
MEdge *medge = NULL;
MDeformVert *dvert = NULL;
HairKey *key;
PARTICLE_P;
int totpoint = 0;
int totedge;
int k;
float hairmat[4][4];
float (*deformedVerts)[3];
if (!psys->clmd) {
psys->clmd = (ClothModifierData*)modifier_new(eModifierType_Cloth);
psys->clmd->sim_parms->goalspring = 0.0f;
psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_GOAL|CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
}
/* create a dm from hair vertices */
LOOP_PARTICLES
totpoint += pa->totkey;
totedge = totpoint;
totpoint += psys->totpart;
if (dm && (totpoint != dm->getNumVerts(dm) || totedge != dm->getNumEdges(dm))) {
dm->release(dm);
dm = psys->hair_in_dm = NULL;
}
if (!dm) {
dm = psys->hair_in_dm = CDDM_new(totpoint, totedge, 0, 0, 0);
DM_add_vert_layer(dm, CD_MDEFORMVERT, CD_CALLOC, NULL);
}
mvert = CDDM_get_verts(dm);
medge = CDDM_get_edges(dm);
dvert = DM_get_vert_data_layer(dm, CD_MDEFORMVERT);
psys->clmd->sim_parms->vgroup_mass = 1;
/* make vgroup for pin roots etc.. */
psys->particles->hair_index = 1;
LOOP_PARTICLES {
if (p)
pa->hair_index = (pa-1)->hair_index + (pa-1)->totkey + 1;
psys_mat_hair_to_object(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
for (k=0, key=pa->hair; k<pa->totkey; k++,key++) {
/* create fake root before actual root to resist bending */
if (k==0) {
float temp[3];
sub_v3_v3v3(temp, key->co, (key+1)->co);
copy_v3_v3(mvert->co, key->co);
add_v3_v3v3(mvert->co, mvert->co, temp);
mul_m4_v3(hairmat, mvert->co);
mvert++;
medge->v1 = pa->hair_index - 1;
medge->v2 = pa->hair_index;
medge++;
if (dvert) {
if (!dvert->totweight) {
dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
dvert->totweight = 1;
}
dvert->dw->weight = 1.0f;
dvert++;
}
}
copy_v3_v3(mvert->co, key->co);
mul_m4_v3(hairmat, mvert->co);
mvert++;
if (k) {
medge->v1 = pa->hair_index + k - 1;
medge->v2 = pa->hair_index + k;
medge++;
}
if (dvert) {
if (!dvert->totweight) {
dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
dvert->totweight = 1;
}
/* roots should be 1.0, the rest can be anything from 0.0 to 1.0 */
dvert->dw->weight = key->weight;
dvert++;
}
}
}
if (psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->clmd->point_cache = psys->pointcache;
psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
deformedVerts = MEM_callocN(sizeof(*deformedVerts)*dm->getNumVerts(dm), "do_hair_dynamics vertexCos");
psys->hair_out_dm = CDDM_copy(dm);
psys->hair_out_dm->getVertCos(psys->hair_out_dm, deformedVerts);
clothModifier_do(psys->clmd, sim->scene, sim->ob, dm, deformedVerts);
CDDM_apply_vert_coords(psys->hair_out_dm, deformedVerts);
MEM_freeN(deformedVerts);
psys->clmd->sim_parms->effector_weights = NULL;
}
static void hair_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PARTICLE_P;
float disp = (float)psys_get_current_display_percentage(psys)/100.0f;
LOOP_PARTICLES {
pa->size = part->size;
if (part->randsize > 0.0f)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
if (PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if (psys->recalc & PSYS_RECALC_RESET) {
/* need this for changing subsurf levels */
psys_calc_dmcache(sim->ob, sim->psmd->dm, psys);
if (psys->clmd)
cloth_free_modifier(psys->clmd);
}
/* dynamics with cloth simulation, psys->particles can be NULL with 0 particles [#25519] */
if (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS && psys->particles)
do_hair_dynamics(sim);
/* following lines were removed r29079 but cause bug [#22811], see report for details */
psys_update_effectors(sim);
psys_update_path_cache(sim, cfra);
psys->flag |= PSYS_HAIR_UPDATED;
}
static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
HairKey *key, *root;
PARTICLE_P;
invert_m4_m4(ob->imat, ob->obmat);
psys->lattice= psys_get_lattice(sim);
if (psys->totpart==0) return;
/* save new keys for elements if needed */
LOOP_PARTICLES {
/* first time alloc */
if (pa->totkey==0 || pa->hair==NULL) {
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
pa->totkey = 0;
}
key = root = pa->hair;
key += pa->totkey;
/* convert from global to geometry space */
copy_v3_v3(key->co, pa->state.co);
mul_m4_v3(ob->imat, key->co);
if (pa->totkey) {
sub_v3_v3(key->co, root->co);
psys_vec_rot_to_face(sim->psmd->dm, pa, key->co);
}
key->time = pa->state.time;
key->weight = 1.0f - key->time / 100.0f;
pa->totkey++;
/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
if (pa->totkey == psys->part->hair_step + 1) {
zero_v3(root->co);
}
}
}
/* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
* condition. */
#define MIN_TIMESTEP 1.0f / 101.0f
/* Tolerance of 1.5 means the last subframe neither favors growing nor
* shrinking (e.g if it were 1.3, the last subframe would tend to be too
* small). */
#define TIMESTEP_EXPANSION_TOLERANCE 1.5f
/* Calculate the speed of the particle relative to the local scale of the
* simulation. This should be called once per particle during a simulation
* step, after the velocity has been updated. element_size defines the scale of
* the simulation, and is typically the distance to neighboring particles. */
static void update_courant_num(ParticleSimulationData *sim, ParticleData *pa,
float dtime, SPHData *sphdata)
{
float relative_vel[3];
float speed;
sub_v3_v3v3(relative_vel, pa->prev_state.vel, sphdata->flow);
speed = len_v3(relative_vel);
if (sim->courant_num < speed * dtime / sphdata->element_size)
sim->courant_num = speed * dtime / sphdata->element_size;
}
/* Update time step size to suit current conditions. */
static float update_timestep(ParticleSystem *psys, ParticleSimulationData *sim, float t_frac)
{
if (sim->courant_num == 0.0f)
psys->dt_frac = 1.0f;
else
psys->dt_frac *= (psys->part->courant_target / sim->courant_num);
CLAMP(psys->dt_frac, MIN_TIMESTEP, 1.0f);
/* Sync with frame end if it's close. */
if (t_frac == 1.0f)
return psys->dt_frac;
else if (t_frac + (psys->dt_frac * TIMESTEP_EXPANSION_TOLERANCE) >= 1.0f)
return 1.0f - t_frac;
else
return psys->dt_frac;
}
/************************************************/
/* System Core */
/************************************************/
/* unbaked particles are calculated dynamically */
static void dynamics_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part=psys->part;
BoidBrainData bbd;
ParticleTexture ptex;
PARTICLE_P;
float timestep;
/* frame & time changes */
float dfra, dtime;
float birthtime, dietime;
/* where have we gone in time since last time */
dfra= cfra - psys->cfra;
timestep = psys_get_timestep(sim);
dtime= dfra*timestep;
if (dfra < 0.0f) {
LOOP_EXISTING_PARTICLES {
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size*ptex.size;
if (part->randsize > 0.0f)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
reset_particle(sim, pa, dtime, cfra);
}
return;
}
BLI_srandom(31415926 + (int)cfra + psys->seed);
psys_update_effectors(sim);
if (part->type != PART_HAIR)
sim->colliders = get_collider_cache(sim->scene, sim->ob, NULL);
/* initialize physics type specific stuff */
switch (part->phystype) {
case PART_PHYS_BOIDS:
{
ParticleTarget *pt = psys->targets.first;
bbd.sim = sim;
bbd.part = part;
bbd.cfra = cfra;
bbd.dfra = dfra;
bbd.timestep = timestep;
psys_update_particle_tree(psys, cfra);
boids_precalc_rules(part, cfra);
for (; pt; pt=pt->next) {
if (pt->ob)
psys_update_particle_tree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
}
break;
}
case PART_PHYS_FLUID:
{
ParticleTarget *pt = psys->targets.first;
psys_update_particle_bvhtree(psys, cfra);
for (; pt; pt=pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
if (pt->ob)
psys_update_particle_bvhtree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
}
break;
}
}
/* initialize all particles for dynamics */
LOOP_SHOWN_PARTICLES {
copy_particle_key(&pa->prev_state,&pa->state,1);
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size*ptex.size;
if (part->randsize > 0.0f)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
birthtime = pa->time;
dietime = pa->dietime;
/* store this, so we can do multiple loops over particles */
pa->state.time = dfra;
if (dietime <= cfra && psys->cfra < dietime) {
/* particle dies some time between this and last step */
pa->state.time = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
pa->alive = PARS_DYING;
}
else if (birthtime <= cfra && birthtime >= psys->cfra) {
/* particle is born some time between this and last step*/
reset_particle(sim, pa, dfra*timestep, cfra);
pa->alive = PARS_ALIVE;
pa->state.time = cfra - birthtime;
}
else if (dietime < cfra) {
/* nothing to be done when particle is dead */
}
/* only reset unborn particles if they're shown or if the particle is born soon*/
if (pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN || (cfra + psys->pointcache->step > pa->time))) {
reset_particle(sim, pa, dtime, cfra);
}
else if (part->phystype == PART_PHYS_NO) {
reset_particle(sim, pa, dtime, cfra);
}
if (ELEM(pa->alive, PARS_ALIVE, PARS_DYING)==0 || (pa->flag & (PARS_UNEXIST|PARS_NO_DISP)))
pa->state.time = -1.f;
}
switch (part->phystype) {
case PART_PHYS_NEWTON:
{
LOOP_DYNAMIC_PARTICLES {
/* do global forces & effectors */
basic_integrate(sim, p, pa->state.time, cfra);
/* deflection */
if (sim->colliders)
collision_check(sim, p, pa->state.time, cfra);
/* rotations */
basic_rotate(part, pa, pa->state.time, timestep);
}
break;
}
case PART_PHYS_BOIDS:
{
LOOP_DYNAMIC_PARTICLES {
bbd.goal_ob = NULL;
boid_brain(&bbd, p, pa);
if (pa->alive != PARS_DYING) {
boid_body(&bbd, pa);
/* deflection */
if (sim->colliders)
collision_check(sim, p, pa->state.time, cfra);
}
}
break;
}
case PART_PHYS_FLUID:
{
SPHData sphdata;
sph_solver_init(sim, &sphdata);
#pragma omp parallel for firstprivate (sphdata) private (pa) schedule(dynamic,5)
LOOP_DYNAMIC_PARTICLES {
/* do global forces & effectors */
basic_integrate(sim, p, pa->state.time, cfra);
/* actual fluids calculations */
sph_integrate(sim, pa, pa->state.time, &sphdata);
if (sim->colliders)
collision_check(sim, p, pa->state.time, cfra);
/* SPH particles are not physical particles, just interpolation
* particles, thus rotation has not a direct sense for them */
basic_rotate(part, pa, pa->state.time, timestep);
#pragma omp critical
if (part->time_flag & PART_TIME_AUTOSF)
update_courant_num(sim, pa, dtime, &sphdata);
}
sph_springs_modify(psys, timestep);
sph_solver_finalise(&sphdata);
break;
}
}
/* finalize particle state and time after dynamics */
LOOP_DYNAMIC_PARTICLES {
if (pa->alive == PARS_DYING) {
pa->alive=PARS_DEAD;
pa->state.time=pa->dietime;
}
else
pa->state.time=cfra;
}
free_collider_cache(&sim->colliders);
}
static void update_children(ParticleSimulationData *sim)
{
if ((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE)==0)
/* don't generate children while growing hair - waste of time */
psys_free_children(sim->psys);
else if (sim->psys->part->childtype) {
if (sim->psys->totchild != get_psys_tot_child(sim->scene, sim->psys))
distribute_particles(sim, PART_FROM_CHILD);
else {
/* Children are up to date, nothing to do. */
}
}
else
psys_free_children(sim->psys);
}
/* updates cached particles' alive & other flags etc..*/
static void cached_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleTexture ptex;
PARTICLE_P;
float disp, dietime;
psys_update_effectors(sim);
disp= (float)psys_get_current_display_percentage(psys)/100.0f;
LOOP_PARTICLES {
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
pa->size = part->size*ptex.size;
if (part->randsize > 0.0f)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
psys->lattice= psys_get_lattice(sim);
dietime = pa->dietime;
/* update alive status and push events */
if (pa->time > cfra) {
pa->alive = PARS_UNBORN;
if (part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0)
reset_particle(sim, pa, 0.0f, cfra);
}
else if (dietime <= cfra)
pa->alive = PARS_DEAD;
else
pa->alive = PARS_ALIVE;
if (psys->lattice) {
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if (PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
}
static void particles_fluid_step(ParticleSimulationData *sim, int UNUSED(cfra))
{
ParticleSystem *psys = sim->psys;
if (psys->particles) {
MEM_freeN(psys->particles);
psys->particles = 0;
psys->totpart = 0;
}
/* fluid sim particle import handling, actual loading of particles from file */
#ifdef WITH_MOD_FLUID
{
FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(sim->ob, eModifierType_Fluidsim);
if ( fluidmd && fluidmd->fss) {
FluidsimSettings *fss= fluidmd->fss;
ParticleSettings *part = psys->part;
ParticleData *pa=NULL;
char filename[256];
char debugStrBuffer[256];
int curFrame = sim->scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
int p, j, totpart;
int readMask, activeParts = 0, fileParts = 0;
gzFile gzf;
// XXX if (ob==G.obedit) // off...
// return;
// ok, start loading
BLI_join_dirfile(filename, sizeof(filename), fss->surfdataPath, OB_FLUIDSIM_SURF_PARTICLES_FNAME);
BLI_path_abs(filename, modifier_path_relbase(sim->ob));
BLI_path_frame(filename, curFrame, 0); // fixed #frame-no
gzf = BLI_gzopen(filename, "rb");
if (!gzf) {
BLI_snprintf(debugStrBuffer, sizeof(debugStrBuffer),"readFsPartData::error - Unable to open file for reading '%s'\n", filename);
// XXX bad level call elbeemDebugOut(debugStrBuffer);
return;
}
gzread(gzf, &totpart, sizeof(totpart));
totpart = (G.is_rendering)?totpart:(part->disp*totpart) / 100;
part->totpart= totpart;
part->sta=part->end = 1.0f;
part->lifetime = sim->scene->r.efra + 1;
/* allocate particles */
realloc_particles(sim, part->totpart);
// set up reading mask
readMask = fss->typeFlags;
for (p=0, pa=psys->particles; p<totpart; p++, pa++) {
int ptype=0;
gzread(gzf, &ptype, sizeof( ptype ));
if (ptype&readMask) {
activeParts++;
gzread(gzf, &(pa->size), sizeof(float));
pa->size /= 10.0f;
for (j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.co[j] = wrf;
//fprintf(stderr,"Rj%d ",j);
}
for (j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.vel[j] = wrf;
}
zero_v3(pa->state.ave);
unit_qt(pa->state.rot);
pa->time = 1.f;
pa->dietime = sim->scene->r.efra + 1;
pa->lifetime = sim->scene->r.efra;
pa->alive = PARS_ALIVE;
//if (a < 25) fprintf(stderr,"FSPARTICLE debug set %s, a%d = %f,%f,%f, life=%f\n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
}
else {
// skip...
for (j=0; j<2*3+1; j++) {
float wrf; gzread(gzf, &wrf, sizeof( wrf ));
}
}
fileParts++;
}
gzclose(gzf);
totpart = psys->totpart = activeParts;
BLI_snprintf(debugStrBuffer,sizeof(debugStrBuffer),"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d\n", psys->totpart,activeParts,fileParts,readMask);
// bad level call
// XXX elbeemDebugOut(debugStrBuffer);
} // fluid sim particles done
}
#endif // WITH_MOD_FLUID
}
static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
{
ParticleSystem *psys = sim->psys;
int oldtotpart = psys->totpart;
int totpart = tot_particles(psys, pid);
if (totpart != oldtotpart)
realloc_particles(sim, totpart);
return totpart - oldtotpart;
}
/* Calculates the next state for all particles of the system
* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)
* 1. Emit particles
* 2. Check cache (if used) and return if frame is cached
* 3. Do dynamics
* 4. Save to cache */
static void system_step(ParticleSimulationData *sim, float cfra)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
PointCache *cache = psys->pointcache;
PTCacheID ptcacheid, *pid = NULL;
PARTICLE_P;
float disp, cache_cfra = cfra; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
int startframe = 0, endframe = 100, oldtotpart = 0;
/* cache shouldn't be used for hair or "continue physics" */
if (part->type != PART_HAIR && BKE_ptcache_get_continue_physics() == 0) {
psys_clear_temp_pointcache(psys);
/* set suitable cache range automatically */
if ((cache->flag & (PTCACHE_BAKING|PTCACHE_BAKED))==0)
psys_get_pointcache_start_end(sim->scene, psys, &cache->startframe, &cache->endframe);
pid = &ptcacheid;
BKE_ptcache_id_from_particles(pid, sim->ob, psys);
BKE_ptcache_id_time(pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
/* clear everythin on start frame */
if (cfra == startframe) {
BKE_ptcache_id_reset(sim->scene, pid, PTCACHE_RESET_OUTDATED);
BKE_ptcache_validate(cache, startframe);
cache->flag &= ~PTCACHE_REDO_NEEDED;
}
CLAMP(cache_cfra, startframe, endframe);
}
/* 1. emit particles and redo particles if needed */
oldtotpart = psys->totpart;
if (emit_particles(sim, pid, cfra) || psys->recalc & PSYS_RECALC_RESET) {
distribute_particles(sim, part->from);
initialize_all_particles(sim);
/* reset only just created particles (on startframe all particles are recreated) */
reset_all_particles(sim, 0.0, cfra, oldtotpart);
if (psys->fluid_springs) {
MEM_freeN(psys->fluid_springs);
psys->fluid_springs = NULL;
}
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
/* flag for possible explode modifiers after this system */
sim->psmd->flag |= eParticleSystemFlag_Pars;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfra);
}
/* 2. try to read from the cache */
if (pid) {
int cache_result = BKE_ptcache_read(pid, cache_cfra);
if (ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
cached_step(sim, cfra);
update_children(sim);
psys_update_path_cache(sim, cfra);
BKE_ptcache_validate(cache, (int)cache_cfra);
if (cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_write(pid, (int)cache_cfra);
return;
}
/* Cache is supposed to be baked, but no data was found so bail out */
else if (cache->flag & PTCACHE_BAKED) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
return;
}
else if (cache_result == PTCACHE_READ_OLD) {
psys->cfra = (float)cache->simframe;
cached_step(sim, psys->cfra);
}
/* if on second frame, write cache for first frame */
if (psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0))
BKE_ptcache_write(pid, startframe);
}
else
BKE_ptcache_invalidate(cache);
/* 3. do dynamics */
/* set particles to be not calculated TODO: can't work with pointcache */
disp= (float)psys_get_current_display_percentage(psys)/100.0f;
LOOP_PARTICLES {
if (PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if (psys->totpart) {
int dframe, totframesback = 0;
float t_frac, dt_frac;
/* handle negative frame start at the first frame by doing
* all the steps before the first frame */
if ((int)cfra == startframe && part->sta < startframe)
totframesback = (startframe - (int)part->sta);
if (!(part->time_flag & PART_TIME_AUTOSF)) {
/* Constant time step */
psys->dt_frac = 1.0f / (float) (part->subframes + 1);
}
else if ((int)cfra == startframe) {
/* Variable time step; use a very conservative value at the start.
* If it doesn't need to be so small, it will quickly grow. */
psys->dt_frac = 1.0;
}
else if (psys->dt_frac < MIN_TIMESTEP) {
psys->dt_frac = MIN_TIMESTEP;
}
for (dframe=-totframesback; dframe<=0; dframe++) {
/* simulate each subframe */
dt_frac = psys->dt_frac;
for (t_frac = dt_frac; t_frac <= 1.0f; t_frac += dt_frac) {
sim->courant_num = 0.0f;
dynamics_step(sim, cfra+dframe+t_frac - 1.f);
psys->cfra = cfra+dframe+t_frac - 1.f;
#if 0
printf("%f,%f,%f,%f\n", cfra+dframe+t_frac - 1.f, t_frac, dt_frac, sim->courant_num);
#endif
if (part->time_flag & PART_TIME_AUTOSF)
dt_frac = update_timestep(psys, sim, t_frac);
}
}
}
/* 4. only write cache starting from second frame */
if (pid) {
BKE_ptcache_validate(cache, (int)cache_cfra);
if ((int)cache_cfra != startframe)
BKE_ptcache_write(pid, (int)cache_cfra);
}
update_children(sim);
/* cleanup */
if (psys->lattice) {
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
}
/* system type has changed so set sensible defaults and clear non applicable flags */
static void psys_changed_type(ParticleSimulationData *sim)
{
ParticleSettings *part = sim->psys->part;
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
if (part->phystype != PART_PHYS_KEYED)
sim->psys->flag &= ~PSYS_KEYED;
if (part->type == PART_HAIR) {
if (ELEM4(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0)
part->ren_as = PART_DRAW_PATH;
if (part->distr == PART_DISTR_GRID)
part->distr = PART_DISTR_JIT;
if (ELEM3(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0)
part->draw_as = PART_DRAW_REND;
CLAMP(part->path_start, 0.0f, 100.0f);
CLAMP(part->path_end, 0.0f, 100.0f);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_hair(sim->ob, sim->psys, 1);
CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
}
psys_reset(sim->psys, PSYS_RESET_ALL);
}
void psys_check_boid_data(ParticleSystem *psys)
{
BoidParticle *bpa;
PARTICLE_P;
pa = psys->particles;
if (!pa)
return;
if (psys->part && psys->part->phystype==PART_PHYS_BOIDS) {
if (!pa->boid) {
bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
LOOP_PARTICLES
pa->boid = bpa++;
}
}
else if (pa->boid) {
MEM_freeN(pa->boid);
LOOP_PARTICLES
pa->boid = NULL;
}
}
static void fluid_default_settings(ParticleSettings *part)
{
SPHFluidSettings *fluid = part->fluid;
fluid->spring_k = 0.f;
fluid->plasticity_constant = 0.1f;
fluid->yield_ratio = 0.1f;
fluid->rest_length = 1.f;
fluid->viscosity_omega = 2.f;
fluid->viscosity_beta = 0.1f;
fluid->stiffness_k = 1.f;
fluid->stiffness_knear = 1.f;
fluid->rest_density = 1.f;
fluid->buoyancy = 0.f;
fluid->radius = 1.f;
fluid->flag |= SPH_FAC_REPULSION|SPH_FAC_DENSITY|SPH_FAC_RADIUS|SPH_FAC_VISCOSITY|SPH_FAC_REST_LENGTH;
}
static void psys_prepare_physics(ParticleSimulationData *sim)
{
ParticleSettings *part = sim->psys->part;
if (ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
PTCacheID pid;
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
}
else {
free_keyed_keys(sim->psys);
sim->psys->flag &= ~PSYS_KEYED;
}
if (part->phystype == PART_PHYS_BOIDS && part->boids == NULL) {
BoidState *state;
part->boids = MEM_callocN(sizeof(BoidSettings), "Boid Settings");
boid_default_settings(part->boids);
state = boid_new_state(part->boids);
BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Separate));
BLI_addtail(&state->rules, boid_new_rule(eBoidRuleType_Flock));
((BoidRule*)state->rules.first)->flag |= BOIDRULE_CURRENT;
state->flag |= BOIDSTATE_CURRENT;
BLI_addtail(&part->boids->states, state);
}
else if (part->phystype == PART_PHYS_FLUID && part->fluid == NULL) {
part->fluid = MEM_callocN(sizeof(SPHFluidSettings), "SPH Fluid Settings");
fluid_default_settings(part);
}
psys_check_boid_data(sim->psys);
}
static int hair_needs_recalc(ParticleSystem *psys)
{
if (!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_RESET || (psys->part->flag & PART_HAIR_REGROW && !psys->edit)))
{
return 1;
}
return 0;
}
/* main particle update call, checks that things are ok on the large scale and
* then advances in to actual particle calculations depending on particle type */
void particle_system_update(Scene *scene, Object *ob, ParticleSystem *psys)
{
ParticleSimulationData sim= {0};
ParticleSettings *part = psys->part;
float cfra;
/* drawdata is outdated after ANY change */
if (psys->pdd) psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
if (!psys_check_enabled(ob, psys))
return;
cfra= BKE_scene_frame_get(scene);
sim.scene= scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psys_get_modifier(ob, psys);
/* system was already updated from modifier stack */
if (sim.psmd->flag & eParticleSystemFlag_psys_updated) {
sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
/* make sure it really was updated to cfra */
if (psys->cfra == cfra)
return;
}
if (!sim.psmd->dm)
return;
if (part->from != PART_FROM_VERT) {
DM_ensure_tessface(sim.psmd->dm);
}
/* execute drivers only, as animation has already been done */
BKE_animsys_evaluate_animdata(scene, &part->id, part->adt, cfra, ADT_RECALC_DRIVERS);
/* to verify if we need to restore object afterwards */
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
if (psys->recalc & PSYS_RECALC_TYPE)
psys_changed_type(&sim);
if (psys->recalc & PSYS_RECALC_RESET)
psys->totunexist = 0;
/* setup necessary physics type dependent additional data if it doesn't yet exist */
psys_prepare_physics(&sim);
switch (part->type) {
case PART_HAIR:
{
/* nothing to do so bail out early */
if (psys->totpart == 0 && part->totpart == 0) {
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 0);
psys->flag |= PSYS_HAIR_DONE;
}
/* (re-)create hair */
else if (hair_needs_recalc(psys)) {
float hcfra=0.0f;
int i, recalc = psys->recalc;
free_hair(ob, psys, 0);
if (psys->edit && psys->free_edit) {
psys->free_edit(psys->edit);
psys->edit = NULL;
psys->free_edit = NULL;
}
/* first step is negative so particles get killed and reset */
psys->cfra= 1.0f;
for (i=0; i<=part->hair_step; i++) {
hcfra=100.0f*(float)i/(float)psys->part->hair_step;
if ((part->flag & PART_HAIR_REGROW)==0)
BKE_animsys_evaluate_animdata(scene, &part->id, part->adt, hcfra, ADT_RECALC_ANIM);
system_step(&sim, hcfra);
psys->cfra = hcfra;
psys->recalc = 0;
save_hair(&sim, hcfra);
}
psys->flag |= PSYS_HAIR_DONE;
psys->recalc = recalc;
}
else if (psys->flag & PSYS_EDITED)
psys->flag |= PSYS_HAIR_DONE;
if (psys->flag & PSYS_HAIR_DONE)
hair_step(&sim, cfra);
break;
}
case PART_FLUID:
{
particles_fluid_step(&sim, (int)cfra);
break;
}
default:
{
switch (part->phystype) {
case PART_PHYS_NO:
case PART_PHYS_KEYED:
{
PARTICLE_P;
float disp = (float)psys_get_current_display_percentage(psys)/100.0f;
/* Particles without dynamics haven't been reset yet because they don't use pointcache */
if (psys->recalc & PSYS_RECALC_RESET)
psys_reset(psys, PSYS_RESET_ALL);
if (emit_particles(&sim, NULL, cfra) || (psys->recalc & PSYS_RECALC_RESET)) {
free_keyed_keys(psys);
distribute_particles(&sim, part->from);
initialize_all_particles(&sim);
/* flag for possible explode modifiers after this system */
sim.psmd->flag |= eParticleSystemFlag_Pars;
}
LOOP_EXISTING_PARTICLES {
pa->size = part->size;
if (part->randsize > 0.0f)
pa->size *= 1.0f - part->randsize * PSYS_FRAND(p + 1);
reset_particle(&sim, pa, 0.0, cfra);
if (PSYS_FRAND(p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if (part->phystype == PART_PHYS_KEYED) {
psys_count_keyed_targets(&sim);
set_keyed_keys(&sim);
psys_update_path_cache(&sim,(int)cfra);
}
break;
}
default:
{
/* the main dynamic particle system step */
system_step(&sim, cfra);
break;
}
}
break;
}
}
/* make sure emitter is left at correct time (particle emission can change this) */
if (psys->flag & PSYS_OB_ANIM_RESTORE) {
while (ob) {
BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, cfra, ADT_RECALC_ANIM);
ob = ob->parent;
}
ob = sim.ob;
BKE_object_where_is_calc_time(scene, ob, cfra);
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
}
psys->cfra = cfra;
psys->recalc = 0;
/* save matrix for duplicators, at rendertime the actual dupliobject's matrix is used so don't update! */
if (psys->renderdata==0)
invert_m4_m4(psys->imat, ob->obmat);
}