This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/pixelshading.c

682 lines
15 KiB
C

/*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): 2004-2006, Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/pixelshading.c
* \ingroup render
*/
#include <float.h>
#include <math.h>
#include <string.h>
#include "BLI_math.h"
#include "BLI_utildefines.h"
/* External modules: */
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "DNA_camera_types.h"
#include "DNA_group_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_image_types.h"
#include "DNA_texture_types.h"
#include "DNA_lamp_types.h"
#include "BKE_colortools.h"
#include "BKE_image.h"
#include "BKE_global.h"
#include "BKE_material.h"
#include "BKE_texture.h"
/* own module */
#include "render_types.h"
#include "renderpipeline.h"
#include "renderdatabase.h"
#include "texture.h"
#include "pixelblending.h"
#include "rendercore.h"
#include "shadbuf.h"
#include "pixelshading.h"
#include "shading.h"
#include "sunsky.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
extern float hashvectf[];
static void render_lighting_halo(HaloRen *har, float *colf)
{
GroupObject *go;
LampRen *lar;
float i, inp, inpr, rco[3], dco[3], lv[3], lampdist, ld, t, *vn;
float ir, ig, ib, shadfac, soft, lacol[3];
ir= ig= ib= 0.0;
VECCOPY(rco, har->co);
dco[0]=dco[1]=dco[2]= 1.0/har->rad;
vn= har->no;
for(go=R.lights.first; go; go= go->next) {
lar= go->lampren;
/* test for lamplayer */
if(lar->mode & LA_LAYER) if((lar->lay & har->lay)==0) continue;
/* lampdist cacluation */
if(lar->type==LA_SUN || lar->type==LA_HEMI) {
VECCOPY(lv, lar->vec);
lampdist= 1.0;
}
else {
lv[0]= rco[0]-lar->co[0];
lv[1]= rco[1]-lar->co[1];
lv[2]= rco[2]-lar->co[2];
ld= sqrt(lv[0]*lv[0]+lv[1]*lv[1]+lv[2]*lv[2]);
lv[0]/= ld;
lv[1]/= ld;
lv[2]/= ld;
/* ld is re-used further on (texco's) */
if(lar->mode & LA_QUAD) {
t= 1.0;
if(lar->ld1>0.0)
t= lar->dist/(lar->dist+lar->ld1*ld);
if(lar->ld2>0.0)
t*= lar->distkw/(lar->distkw+lar->ld2*ld*ld);
lampdist= t;
}
else {
lampdist= (lar->dist/(lar->dist+ld));
}
if(lar->mode & LA_SPHERE) {
t= lar->dist - ld;
if(t<0.0) continue;
t/= lar->dist;
lampdist*= (t);
}
}
lacol[0]= lar->r;
lacol[1]= lar->g;
lacol[2]= lar->b;
if(lar->mode & LA_TEXTURE) {
ShadeInput shi;
/* Warning, This is not that nice, and possibly a bit slow,
however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
memset(&shi, 0, sizeof(ShadeInput));
/* end warning! - Campbell */
VECCOPY(shi.co, rco);
shi.osatex= 0;
do_lamp_tex(lar, lv, &shi, lacol, LA_TEXTURE);
}
if(lar->type==LA_SPOT) {
if(lar->mode & LA_SQUARE) {
if(lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2]>0.0) {
float x, lvrot[3];
/* rotate view to lampspace */
VECCOPY(lvrot, lv);
mul_m3_v3(lar->imat, lvrot);
x= MAX2(fabs(lvrot[0]/lvrot[2]) , fabs(lvrot[1]/lvrot[2]));
/* 1.0/(sqrt(1+x*x)) is equivalent to cos(atan(x)) */
inpr= 1.0/(sqrt(1.0+x*x));
}
else inpr= 0.0;
}
else {
inpr= lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2];
}
t= lar->spotsi;
if(inpr<t) continue;
else {
t= inpr-t;
i= 1.0;
soft= 1.0;
if(t<lar->spotbl && lar->spotbl!=0.0) {
/* soft area */
i= t/lar->spotbl;
t= i*i;
soft= (3.0*t-2.0*t*i);
inpr*= soft;
}
if(lar->mode & LA_ONLYSHADOW) {
/* if(ma->mode & MA_SHADOW) { */
/* dot product positive: front side face! */
inp= vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2];
if(inp>0.0) {
/* testshadowbuf==0.0 : 100% shadow */
shadfac = testshadowbuf(&R, lar->shb, rco, dco, dco, inp, 0.0f);
if( shadfac>0.0 ) {
shadfac*= inp*soft*lar->energy;
ir -= shadfac;
ig -= shadfac;
ib -= shadfac;
continue;
}
}
/* } */
}
lampdist*=inpr;
}
if(lar->mode & LA_ONLYSHADOW) continue;
}
/* dot product and reflectivity*/
inp= 1.0-fabs(vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2]);
/* inp= cos(0.5*M_PI-acos(inp)); */
i= inp;
if(lar->type==LA_HEMI) {
i= 0.5*i+0.5;
}
if(i>0.0) {
i*= lampdist;
}
/* shadow */
if(i> -0.41) { /* heuristic valua! */
shadfac= 1.0;
if(lar->shb) {
shadfac = testshadowbuf(&R, lar->shb, rco, dco, dco, inp, 0.0f);
if(shadfac==0.0) continue;
i*= shadfac;
}
}
if(i>0.0) {
ir+= i*lacol[0];
ig+= i*lacol[1];
ib+= i*lacol[2];
}
}
if(ir<0.0) ir= 0.0;
if(ig<0.0) ig= 0.0;
if(ib<0.0) ib= 0.0;
colf[0]*= ir;
colf[1]*= ig;
colf[2]*= ib;
}
/**
* Converts a halo z-buffer value to distance from the camera's near plane
* @param z The z-buffer value to convert
* @return a distance from the camera's near plane in blender units
*/
static float haloZtoDist(int z)
{
float zco = 0;
if(z >= 0x7FFFFF)
return 10e10;
else {
zco = (float)z/(float)0x7FFFFF;
if(R.r.mode & R_ORTHO)
return (R.winmat[3][2] - zco*R.winmat[3][3])/(R.winmat[2][2]);
else
return (R.winmat[3][2])/(R.winmat[2][2] - R.winmat[2][3]*zco);
}
}
/**
* @param col (float[4]) Store the rgb color here (with alpha)
* The alpha is used to blend the color to the background
* color_new = (1-alpha)*color_background + color
* @param zz The current zbuffer value at the place of this pixel
* @param dist Distance of the pixel from the center of the halo squared. Given in pixels
* @param xn The x coordinate of the pixel relaticve to the center of the halo. given in pixels
* @param yn The y coordinate of the pixel relaticve to the center of the halo. given in pixels
*/
int shadeHaloFloat(HaloRen *har, float *col, int zz,
float dist, float xn, float yn, short flarec)
{
/* fill in col */
float t, zn, radist, ringf=0.0f, linef=0.0f, alpha, si, co;
int a;
if(R.wrld.mode & WO_MIST) {
if(har->type & HA_ONLYSKY) {
/* stars but no mist */
alpha= har->alfa;
}
else {
/* a bit patchy... */
alpha= mistfactor(-har->co[2], har->co)*har->alfa;
}
}
else alpha= har->alfa;
if(alpha==0.0)
return 0;
/* soften the halo if it intersects geometry */
if(har->mat && har->mat->mode & MA_HALO_SOFT) {
float segment_length, halo_depth, distance_from_z, visible_depth, soften;
/* calculate halo depth */
segment_length= har->hasize*sasqrt(1.0f - dist/(har->rad*har->rad));
halo_depth= 2.0f*segment_length;
if(halo_depth < FLT_EPSILON)
return 0;
/* calculate how much of this depth is visible */
distance_from_z = haloZtoDist(zz) - haloZtoDist(har->zs);
visible_depth = halo_depth;
if(distance_from_z < segment_length) {
soften= (segment_length + distance_from_z)/halo_depth;
/* apply softening to alpha */
if(soften < 1.0f)
alpha *= soften;
if(alpha <= 0.0f)
return 0;
}
}
else {
/* not a soft halo. use the old softening code */
/* halo being intersected? */
if(har->zs> zz-har->zd) {
t= ((float)(zz-har->zs))/(float)har->zd;
alpha*= sqrt(sqrt(t));
}
}
radist= sqrt(dist);
/* watch it: not used nicely: flarec is set at zero in pixstruct */
if(flarec) har->pixels+= (int)(har->rad-radist);
if(har->ringc) {
float *rc, fac;
int ofs;
/* per ring an antialised circle */
ofs= har->seed;
for(a= har->ringc; a>0; a--, ofs+=2) {
rc= hashvectf + (ofs % 768);
fac= fabs( rc[1]*(har->rad*fabs(rc[0]) - radist) );
if(fac< 1.0) {
ringf+= (1.0-fac);
}
}
}
if(har->type & HA_VECT) {
dist= fabs( har->cos*(yn) - har->sin*(xn) )/har->rad;
if(dist>1.0) dist= 1.0;
if(har->tex) {
zn= har->sin*xn - har->cos*yn;
yn= har->cos*xn + har->sin*yn;
xn= zn;
}
}
else dist= dist/har->radsq;
if(har->type & HA_FLARECIRC) {
dist= 0.5+fabs(dist-0.5);
}
if(har->hard>=30) {
dist= sqrt(dist);
if(har->hard>=40) {
dist= sin(dist*M_PI_2);
if(har->hard>=50) {
dist= sqrt(dist);
}
}
}
else if(har->hard<20) dist*=dist;
if(dist < 1.0f)
dist= (1.0f-dist);
else
dist= 0.0f;
if(har->linec) {
float *rc, fac;
int ofs;
/* per starpoint an antialiased line */
ofs= har->seed;
for(a= har->linec; a>0; a--, ofs+=3) {
rc= hashvectf + (ofs % 768);
fac= fabs( (xn)*rc[0]+(yn)*rc[1]);
if(fac< 1.0f )
linef+= (1.0f-fac);
}
linef*= dist;
}
if(har->starpoints) {
float ster, angle;
/* rotation */
angle= atan2(yn, xn);
angle*= (1.0+0.25*har->starpoints);
co= cos(angle);
si= sin(angle);
angle= (co*xn+si*yn)*(co*yn-si*xn);
ster= fabs(angle);
if(ster>1.0) {
ster= (har->rad)/(ster);
if(ster<1.0) dist*= sqrt(ster);
}
}
/* disputable optimize... (ton) */
if(dist<=0.00001)
return 0;
dist*= alpha;
ringf*= dist;
linef*= alpha;
/* The color is either the rgb spec-ed by the user, or extracted from */
/* the texture */
if(har->tex) {
col[0]= har->r;
col[1]= har->g;
col[2]= har->b;
col[3]= dist;
do_halo_tex(har, xn, yn, col);
col[0]*= col[3];
col[1]*= col[3];
col[2]*= col[3];
}
else {
col[0]= dist*har->r;
col[1]= dist*har->g;
col[2]= dist*har->b;
if(har->type & HA_XALPHA) col[3]= dist*dist;
else col[3]= dist;
}
if(har->mat) {
if(har->mat->mode & MA_HALO_SHADE) {
/* we test for lights because of preview... */
if(R.lights.first) render_lighting_halo(har, col);
}
/* Next, we do the line and ring factor modifications. */
if(linef!=0.0) {
Material *ma= har->mat;
col[0]+= linef * ma->specr;
col[1]+= linef * ma->specg;
col[2]+= linef * ma->specb;
if(har->type & HA_XALPHA) col[3]+= linef*linef;
else col[3]+= linef;
}
if(ringf!=0.0) {
Material *ma= har->mat;
col[0]+= ringf * ma->mirr;
col[1]+= ringf * ma->mirg;
col[2]+= ringf * ma->mirb;
if(har->type & HA_XALPHA) col[3]+= ringf*ringf;
else col[3]+= ringf;
}
}
/* alpha requires clip, gives black dots */
if(col[3] > 1.0f)
col[3]= 1.0f;
return 1;
}
/* ------------------------------------------------------------------------- */
static void fillBackgroundImage(float *collector, float fx, float fy)
{
collector[0] = 0.0;
collector[1] = 0.0;
collector[2] = 0.0;
collector[3] = 0.0;
if(R.backbuf) {
float dx= 1.0f/(float)R.winx;
float dy= 1.0f/(float)R.winy;
image_sample(R.backbuf, fx*dx, fy*dy, dx, dy, collector);
}
}
/* Only view vector is important here. Result goes to colf[3] */
void shadeSkyView(float *colf, float *rco, float *view, float *dxyview, short thread)
{
float lo[3], zen[3], hor[3], blend, blendm;
int skyflag;
/* flag indicating if we render the top hemisphere */
skyflag = WO_ZENUP;
/* Some view vector stuff. */
if(R.wrld.skytype & WO_SKYREAL) {
blend= view[0]*R.grvec[0]+ view[1]*R.grvec[1]+ view[2]*R.grvec[2];
if(blend<0.0) skyflag= 0;
blend= fabs(blend);
}
else if(R.wrld.skytype & WO_SKYPAPER) {
blend= 0.5+ 0.5*view[1];
}
else {
/* the fraction of how far we are above the bottom of the screen */
blend= fabs(0.5+ view[1]);
}
VECCOPY(hor, &R.wrld.horr);
VECCOPY(zen, &R.wrld.zenr);
/* Careful: SKYTEX and SKYBLEND are NOT mutually exclusive! If */
/* SKYBLEND is active, the texture and color blend are added. */
if(R.wrld.skytype & WO_SKYTEX) {
VECCOPY(lo, view);
if(R.wrld.skytype & WO_SKYREAL) {
mul_m3_v3(R.imat, lo);
SWAP(float, lo[1], lo[2]);
}
do_sky_tex(rco, lo, dxyview, hor, zen, &blend, skyflag, thread);
}
if(blend>1.0) blend= 1.0;
blendm= 1.0-blend;
/* No clipping, no conversion! */
if(R.wrld.skytype & WO_SKYBLEND) {
colf[0] = (blendm*hor[0] + blend*zen[0]);
colf[1] = (blendm*hor[1] + blend*zen[1]);
colf[2] = (blendm*hor[2] + blend*zen[2]);
} else {
/* Done when a texture was grabbed. */
colf[0]= hor[0];
colf[1]= hor[1];
colf[2]= hor[2];
}
}
/* shade sky according to sun lamps, all parameters are like shadeSkyView except sunsky*/
void shadeSunView(float *colf, float *view)
{
GroupObject *go;
LampRen *lar;
float sview[3];
int do_init= 1;
for(go=R.lights.first; go; go= go->next) {
lar= go->lampren;
if(lar->type==LA_SUN && lar->sunsky && (lar->sunsky->effect_type & LA_SUN_EFFECT_SKY)){
float sun_collector[3];
float colorxyz[3];
if(do_init) {
VECCOPY(sview, view);
normalize_v3(sview);
mul_m3_v3(R.imat, sview);
if (sview[2] < 0.0)
sview[2] = 0.0;
normalize_v3(sview);
do_init= 0;
}
GetSkyXYZRadiancef(lar->sunsky, sview, colorxyz);
xyz_to_rgb(colorxyz[0], colorxyz[1], colorxyz[2], &sun_collector[0], &sun_collector[1], &sun_collector[2],
lar->sunsky->sky_colorspace);
ramp_blend(lar->sunsky->skyblendtype, colf, colf+1, colf+2, lar->sunsky->skyblendfac, sun_collector);
}
}
}
/*
Stuff the sky color into the collector.
*/
void shadeSkyPixel(float *collector, float fx, float fy, short thread)
{
float view[3], dxyview[2];
/*
The rules for sky:
1. Draw an image, if a background image was provided. Stop
2. get texture and color blend, and combine these.
*/
float fac;
/* 1. Do a backbuffer image: */
if(R.r.bufflag & 1) {
fillBackgroundImage(collector, fx, fy);
}
else if((R.wrld.skytype & (WO_SKYBLEND+WO_SKYTEX))==0) {
/* 2. solid color */
VECCOPY(collector, &R.wrld.horr);
collector[3] = 0.0f;
}
else {
/* 3. */
/* This one true because of the context of this routine */
if(R.wrld.skytype & WO_SKYPAPER) {
view[0]= -1.0f + 2.0f*(fx/(float)R.winx);
view[1]= -1.0f + 2.0f*(fy/(float)R.winy);
view[2]= 0.0;
dxyview[0]= 1.0f/(float)R.winx;
dxyview[1]= 1.0f/(float)R.winy;
}
else {
calc_view_vector(view, fx, fy);
fac= normalize_v3(view);
if(R.wrld.skytype & WO_SKYTEX) {
dxyview[0]= -R.viewdx/fac;
dxyview[1]= -R.viewdy/fac;
}
}
/* get sky color in the collector */
shadeSkyView(collector, NULL, view, dxyview, thread);
collector[3] = 0.0f;
}
calc_view_vector(view, fx, fy);
shadeSunView(collector, view);
}
/* aerial perspective */
void shadeAtmPixel(struct SunSky *sunsky, float *collector, float fx, float fy, float distance)
{
float view[3];
calc_view_vector(view, fx, fy);
normalize_v3(view);
/*mul_m3_v3(R.imat, view);*/
AtmospherePixleShader(sunsky, view, distance, collector);
}
/* eof */