This commit removes all EEVEE specific code from the `gpu_shader_material*.glsl` files. It defines a clear interface to evaluate the closure nodes leaving more flexibility to the render engine. Some of the long standing workaround are fixed: - bump mapping support is no longer duplicating a lot of node and is instead compiled into a function call. - bump rewiring to Normal socket is no longer needed as we now use a global `g_data.N` for that. Closure sampling with upstread weight eval is now supported if the engine needs it. This also makes all the material GLSL sources use `GPUSource` for better debugging experience. The `GPUFunction` parsing now happens in `GPUSource` creation. The whole `GPUCodegen` now uses the `ShaderCreateInfo` and is object type agnostic. Is has also been rewritten in C++. This patch changes a view behavior for EEVEE: - Mix shader node factor imput is now clamped. - Tangent Vector displacement behavior is now matching cycles. - The chosen BSDF used for SSR might change. - Hair shading may have very small changes on very large hairs when using hair polygon stripes. - ShaderToRGB node will remove any SSR and SSS form a shader. - SSS radius input now is no longer a scaling factor but defines an average radius. The SSS kernel "shape" (radii) are still defined by the socket default values. Appart from the listed changes no other regressions are expected.
271 lines
5.6 KiB
GLSL
271 lines
5.6 KiB
GLSL
|
|
vec3 calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2)
|
|
{
|
|
vec3 edge21 = pos2 - pos1;
|
|
vec3 edge10 = pos1 - pos0;
|
|
vec3 edge02 = pos0 - pos2;
|
|
vec3 d21 = normalize(edge21);
|
|
vec3 d10 = normalize(edge10);
|
|
vec3 d02 = normalize(edge02);
|
|
|
|
vec3 dists;
|
|
float d = dot(d21, edge02);
|
|
dists.x = sqrt(dot(edge02, edge02) - d * d);
|
|
d = dot(d02, edge10);
|
|
dists.y = sqrt(dot(edge10, edge10) - d * d);
|
|
d = dot(d10, edge21);
|
|
dists.z = sqrt(dot(edge21, edge21) - d * d);
|
|
return dists;
|
|
}
|
|
|
|
vec2 calc_barycentric_co(int vertid)
|
|
{
|
|
vec2 bary;
|
|
bary.x = float((vertid % 3) == 0);
|
|
bary.y = float((vertid % 3) == 1);
|
|
return bary;
|
|
}
|
|
|
|
#ifdef HAIR_SHADER
|
|
|
|
/* Hairs uv and col attributes are passed by bufferTextures. */
|
|
# define DEFINE_ATTR(type, attr) uniform samplerBuffer attr
|
|
# define GET_ATTR(type, attr) hair_get_customdata_##type(attr)
|
|
|
|
# define barycentric_get() hair_get_barycentric()
|
|
# define barycentric_resolve(bary) hair_resolve_barycentric(bary)
|
|
|
|
vec3 orco_get(vec3 local_pos, mat4 modelmatinv, vec4 orco_madd[2], const samplerBuffer orco_samp)
|
|
{
|
|
/* TODO: fix ORCO with modifiers. */
|
|
vec3 orco = (modelmatinv * vec4(local_pos, 1.0)).xyz;
|
|
return orco_madd[0].xyz + orco * orco_madd[1].xyz;
|
|
}
|
|
|
|
float hair_len_get(int id, const samplerBuffer len)
|
|
{
|
|
return texelFetch(len, id).x;
|
|
}
|
|
|
|
vec4 tangent_get(const samplerBuffer attr, mat3 normalmat)
|
|
{
|
|
/* Unsupported */
|
|
return vec4(0.0);
|
|
}
|
|
|
|
#else /* MESH_SHADER */
|
|
|
|
# define DEFINE_ATTR(type, attr) in type attr
|
|
# define GET_ATTR(type, attr) attr
|
|
|
|
/* Calculated in geom shader later with calc_barycentric_co. */
|
|
# define barycentric_get() vec2(0)
|
|
# define barycentric_resolve(bary) bary
|
|
|
|
vec3 orco_get(vec3 local_pos, mat4 modelmatinv, vec4 orco_madd[2], vec4 orco)
|
|
{
|
|
/* If the object does not have any deformation, the orco layer calculation is done on the fly
|
|
* using the orco_madd factors.
|
|
* We know when there is no orco layer when orco.w is 1.0 because it uses the generic vertex
|
|
* attrib (which is [0,0,0,1]). */
|
|
if (orco.w == 0.0) {
|
|
return orco.xyz * 0.5 + 0.5;
|
|
}
|
|
else {
|
|
return orco_madd[0].xyz + local_pos * orco_madd[1].xyz;
|
|
}
|
|
}
|
|
|
|
float hair_len_get(int id, const float len)
|
|
{
|
|
return len;
|
|
}
|
|
|
|
vec4 tangent_get(vec4 attr, mat3 normalmat)
|
|
{
|
|
vec4 tangent;
|
|
tangent.xyz = normalmat * attr.xyz;
|
|
tangent.w = attr.w;
|
|
float len_sqr = dot(tangent.xyz, tangent.xyz);
|
|
/* Normalize only if vector is not null. */
|
|
if (len_sqr > 0.0) {
|
|
tangent.xyz *= inversesqrt(len_sqr);
|
|
}
|
|
return tangent;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Assumes GPU_VEC4 is color data. So converting to luminance like cycles. */
|
|
#define float_from_vec4(v) dot(v.rgb, vec3(0.2126, 0.7152, 0.0722))
|
|
#define float_from_vec3(v) avg(v.rgb)
|
|
#define float_from_vec2(v) v.r
|
|
|
|
#define vec2_from_vec4(v) vec2(avg(v.rgb), v.a)
|
|
#define vec2_from_vec3(v) vec2(avg(v.rgb), 1.0)
|
|
#define vec2_from_float(v) vec2(v)
|
|
|
|
#define vec3_from_vec4(v) v.rgb
|
|
#define vec3_from_vec2(v) v.rrr
|
|
#define vec3_from_float(v) vec3(v)
|
|
|
|
#define vec4_from_vec3(v) vec4(v, 1.0)
|
|
#define vec4_from_vec2(v) v.rrrg
|
|
#define vec4_from_float(v) vec4(vec3(v), 1.0)
|
|
|
|
/* TODO: Move to shader_shared. */
|
|
#define RAY_TYPE_CAMERA 0
|
|
#define RAY_TYPE_SHADOW 1
|
|
#define RAY_TYPE_DIFFUSE 2
|
|
#define RAY_TYPE_GLOSSY 3
|
|
|
|
#ifdef GPU_FRAGMENT_SHADER
|
|
# define FrontFacing gl_FrontFacing
|
|
#else
|
|
# define FrontFacing true
|
|
#endif
|
|
|
|
struct ClosureDiffuse {
|
|
float weight;
|
|
vec3 color;
|
|
vec3 N;
|
|
vec3 sss_radius;
|
|
uint sss_id;
|
|
};
|
|
|
|
struct ClosureTranslucent {
|
|
float weight;
|
|
vec3 color;
|
|
vec3 N;
|
|
};
|
|
|
|
struct ClosureReflection {
|
|
float weight;
|
|
vec3 color;
|
|
vec3 N;
|
|
float roughness;
|
|
};
|
|
|
|
struct ClosureRefraction {
|
|
float weight;
|
|
vec3 color;
|
|
vec3 N;
|
|
float roughness;
|
|
float ior;
|
|
};
|
|
|
|
struct ClosureHair {
|
|
float weight;
|
|
vec3 color;
|
|
float offset;
|
|
vec2 roughness;
|
|
vec3 T;
|
|
};
|
|
|
|
struct ClosureVolumeScatter {
|
|
float weight;
|
|
vec3 scattering;
|
|
float anisotropy;
|
|
};
|
|
|
|
struct ClosureVolumeAbsorption {
|
|
float weight;
|
|
vec3 absorption;
|
|
};
|
|
|
|
struct ClosureEmission {
|
|
float weight;
|
|
vec3 emission;
|
|
};
|
|
|
|
struct ClosureTransparency {
|
|
float weight;
|
|
vec3 transmittance;
|
|
float holdout;
|
|
};
|
|
|
|
struct GlobalData {
|
|
/** World position. */
|
|
vec3 P;
|
|
/** Surface Normal. */
|
|
vec3 N;
|
|
/** Geometric Normal. */
|
|
vec3 Ng;
|
|
/** Surface default Tangent. */
|
|
vec3 T;
|
|
/** Barycentric coordinates. */
|
|
vec2 barycentric_coords;
|
|
vec3 barycentric_dists;
|
|
/** Ray properties (approximation). */
|
|
int ray_type;
|
|
float ray_depth;
|
|
float ray_length;
|
|
/** Hair time along hair length. 0 at base 1 at tip. */
|
|
float hair_time;
|
|
/** Hair time along width of the hair. */
|
|
float hair_time_width;
|
|
/** Hair thickness in world space. */
|
|
float hair_thickness;
|
|
/** Index of the strand for per strand effects. */
|
|
int hair_strand_id;
|
|
/** Is hair. */
|
|
bool is_strand;
|
|
};
|
|
|
|
GlobalData g_data;
|
|
|
|
#ifndef GPU_FRAGMENT_SHADER
|
|
/* Stubs. */
|
|
vec3 dF_impl(vec3 v)
|
|
{
|
|
return vec3(0.0);
|
|
}
|
|
|
|
void dF_branch(float fn, out vec2 result)
|
|
{
|
|
result = vec2(0.0);
|
|
}
|
|
|
|
#elif 0 /* TODO(@fclem): User Option? */
|
|
/* Fast derivatives */
|
|
vec3 dF_impl(vec3 v)
|
|
{
|
|
return vec3(0.0);
|
|
}
|
|
|
|
void dF_branch(float fn, out vec2 result)
|
|
{
|
|
result.x = DFDX_SIGN * dFdx(fn);
|
|
result.y = DFDY_SIGN * dFdy(fn);
|
|
}
|
|
|
|
#else
|
|
/* Precise derivatives */
|
|
int g_derivative_flag = 0;
|
|
|
|
vec3 dF_impl(vec3 v)
|
|
{
|
|
if (g_derivative_flag > 0) {
|
|
return DFDX_SIGN * dFdx(v);
|
|
}
|
|
else if (g_derivative_flag < 0) {
|
|
return DFDY_SIGN * dFdy(v);
|
|
}
|
|
return vec3(0.0);
|
|
}
|
|
|
|
# define dF_branch(fn, result) \
|
|
if (true) { \
|
|
g_derivative_flag = 1; \
|
|
result.x = (fn); \
|
|
g_derivative_flag = -1; \
|
|
result.y = (fn); \
|
|
g_derivative_flag = 0; \
|
|
result -= vec2((fn)); \
|
|
}
|
|
|
|
#endif
|
|
|
|
/* TODO(fclem): Remove. */
|
|
#define CODEGEN_LIB
|