added in place operations. Vector_iadd vec1+=vec2 Vector_isub vec1-=vec2 Vector_imul vec1*=float or vec1*=mat Vector_idiv vec1/=float length is now writable vec.length= float
		
			
				
	
	
		
			1765 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1765 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version. The Blender
 | |
|  * Foundation also sells licenses for use in proprietary software under
 | |
|  * the Blender License.  See http://www.blender.org/BL/ for information
 | |
|  * about this.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA	02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This is a new part of Blender.
 | |
|  *
 | |
|  * Contributor(s): Joseph Gilbert, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_arithb.h"
 | |
| #include "PIL_time.h"
 | |
| #include "BLI_rand.h"
 | |
| #include "BKE_utildefines.h"
 | |
| 
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
 | |
| static char M_Mathutils_Vector_doc[] = "() - create a new vector object from a list of floats";
 | |
| static char M_Mathutils_Matrix_doc[] = "() - create a new matrix object from a list of floats";
 | |
| static char M_Mathutils_Quaternion_doc[] = "() - create a quaternion from a list or an axis of rotation and an angle";
 | |
| static char M_Mathutils_Euler_doc[] = "() - create and return a new euler object";
 | |
| static char M_Mathutils_Rand_doc[] = "() - return a random number";
 | |
| static char M_Mathutils_CrossVecs_doc[] = "() - returns a vector perpedicular to the 2 vectors crossed";
 | |
| static char M_Mathutils_CopyVec_doc[] = "() - create a copy of vector";
 | |
| static char M_Mathutils_DotVecs_doc[] = "() - return the dot product of two vectors";
 | |
| static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
 | |
| static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
 | |
| static char M_Mathutils_MatMultVec_doc[] = "() - multiplies a matrix by a column vector";
 | |
| static char M_Mathutils_VecMultMat_doc[] = "() - multiplies a row vector by a matrix";
 | |
| static char M_Mathutils_ProjectVecs_doc[] =	"() - returns the projection vector from the projection of vecA onto vecB";
 | |
| static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
 | |
| static char M_Mathutils_ScaleMatrix_doc[] =	"() - construct a scaling matrix from a scaling factor";
 | |
| static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
 | |
| static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
 | |
| static char M_Mathutils_CopyMat_doc[] = "() - create a copy of a matrix";
 | |
| static char M_Mathutils_TranslationMatrix_doc[] = "() - create a translation matrix from a vector";
 | |
| static char M_Mathutils_CopyQuat_doc[] = "() - copy quatB to quatA";
 | |
| static char M_Mathutils_CopyEuler_doc[] = "() - copy eulB to eultA";
 | |
| static char M_Mathutils_CrossQuats_doc[] = "() - return the mutliplication of two quaternions";
 | |
| static char M_Mathutils_DotQuats_doc[] = "() - return the dot product of two quaternions";
 | |
| static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
 | |
| static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
 | |
| static char M_Mathutils_RotateEuler_doc[] = "() - rotate euler by an axis and angle";
 | |
| static char M_Mathutils_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
 | |
| static char M_Mathutils_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
 | |
| static char M_Mathutils_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
 | |
| static char M_Mathutils_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
 | |
| static char M_Mathutils_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
 | |
| static char M_Mathutils_Point_doc[] = "Creates a 2d or 3d point object";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| struct PyMethodDef M_Mathutils_methods[] = {
 | |
| 	{"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
 | |
| 	{"Vector", (PyCFunction) M_Mathutils_Vector, METH_VARARGS, M_Mathutils_Vector_doc},
 | |
| 	{"CrossVecs", (PyCFunction) M_Mathutils_CrossVecs, METH_VARARGS, M_Mathutils_CrossVecs_doc},
 | |
| 	{"DotVecs", (PyCFunction) M_Mathutils_DotVecs, METH_VARARGS, M_Mathutils_DotVecs_doc},
 | |
| 	{"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
 | |
| 	{"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
 | |
| 	{"VecMultMat", (PyCFunction) M_Mathutils_VecMultMat, METH_VARARGS, M_Mathutils_VecMultMat_doc},
 | |
| 	{"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
 | |
| 	{"CopyVec", (PyCFunction) M_Mathutils_CopyVec, METH_VARARGS, M_Mathutils_CopyVec_doc},
 | |
| 	{"Matrix", (PyCFunction) M_Mathutils_Matrix, METH_VARARGS, M_Mathutils_Matrix_doc},
 | |
| 	{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
 | |
| 	{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
 | |
| 	{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
 | |
| 	{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_VARARGS, M_Mathutils_TranslationMatrix_doc},
 | |
| 	{"CopyMat", (PyCFunction) M_Mathutils_CopyMat, METH_VARARGS, M_Mathutils_CopyMat_doc},
 | |
| 	{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix,  METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
 | |
| 	{"MatMultVec", (PyCFunction) M_Mathutils_MatMultVec, METH_VARARGS, M_Mathutils_MatMultVec_doc},
 | |
| 	{"Quaternion", (PyCFunction) M_Mathutils_Quaternion, METH_VARARGS, M_Mathutils_Quaternion_doc},
 | |
| 	{"CopyQuat", (PyCFunction) M_Mathutils_CopyQuat, METH_VARARGS, M_Mathutils_CopyQuat_doc},
 | |
| 	{"CrossQuats", (PyCFunction) M_Mathutils_CrossQuats, METH_VARARGS, M_Mathutils_CrossQuats_doc},
 | |
| 	{"DotQuats", (PyCFunction) M_Mathutils_DotQuats, METH_VARARGS, M_Mathutils_DotQuats_doc},
 | |
| 	{"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
 | |
| 	{"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
 | |
| 	{"Euler", (PyCFunction) M_Mathutils_Euler, METH_VARARGS, M_Mathutils_Euler_doc},
 | |
| 	{"CopyEuler", (PyCFunction) M_Mathutils_CopyEuler, METH_VARARGS, M_Mathutils_CopyEuler_doc},
 | |
| 	{"RotateEuler", (PyCFunction) M_Mathutils_RotateEuler, METH_VARARGS, M_Mathutils_RotateEuler_doc},
 | |
| 	{"Intersect", ( PyCFunction ) M_Mathutils_Intersect, METH_VARARGS, M_Mathutils_Intersect_doc},
 | |
| 	{"TriangleArea", ( PyCFunction ) M_Mathutils_TriangleArea, METH_VARARGS, M_Mathutils_TriangleArea_doc},
 | |
| 	{"TriangleNormal", ( PyCFunction ) M_Mathutils_TriangleNormal, METH_VARARGS, M_Mathutils_TriangleNormal_doc},
 | |
| 	{"QuadNormal", ( PyCFunction ) M_Mathutils_QuadNormal, METH_VARARGS, M_Mathutils_QuadNormal_doc},
 | |
| 	{"LineIntersect", ( PyCFunction ) M_Mathutils_LineIntersect, METH_VARARGS, M_Mathutils_LineIntersect_doc},
 | |
| 	{"Point", (PyCFunction) M_Mathutils_Point, METH_VARARGS, M_Mathutils_Point_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| //----------------------------MODULE INIT-------------------------
 | |
| PyObject *Mathutils_Init(void)
 | |
| {
 | |
| 	PyObject *submodule;
 | |
| 
 | |
| 	//seed the generator for the rand function
 | |
| 	BLI_srand((unsigned int) (PIL_check_seconds_timer() *
 | |
| 				      0x7FFFFFFF));
 | |
| 	
 | |
| 	/* needed for getseters */
 | |
| 	if( PyType_Ready( &vector_Type ) < 0 )
 | |
| 		return NULL;
 | |
| 	
 | |
| 	submodule = Py_InitModule3("Blender.Mathutils",
 | |
| 				    M_Mathutils_methods, M_Mathutils_doc);
 | |
| 	return (submodule);
 | |
| }
 | |
| //-----------------------------METHODS----------------------------
 | |
| //----------------column_vector_multiplication (internal)---------
 | |
| //COLUMN VECTOR Multiplication (Matrix X Vector)
 | |
| // [1][2][3]   [a]
 | |
| // [4][5][6] * [b]
 | |
| // [7][8][9]   [c]
 | |
| //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | |
| PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
 | |
| {
 | |
| 	float vecNew[4], vecCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0;
 | |
| 
 | |
| 	if(mat->rowSize != vec->size){
 | |
| 		if(mat->rowSize == 4 && vec->size != 3){
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"matrix * vector: matrix row size and vector size must be the same");
 | |
| 		}else{
 | |
| 			vecCopy[3] = 1.0f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < vec->size; x++){
 | |
| 		vecCopy[x] = vec->vec[x];
 | |
| 		}
 | |
| 
 | |
| 	for(x = 0; x < mat->rowSize; x++) {
 | |
| 		for(y = 0; y < mat->colSize; y++) {
 | |
| 			dot += mat->matrix[x][y] * vecCopy[y];
 | |
| 		}
 | |
| 		vecNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newVectorObject(vecNew, vec->size, Py_NEW);
 | |
| }
 | |
| //This is a helper for point/matrix translation 
 | |
| 
 | |
| PyObject *column_point_multiplication(MatrixObject * mat, PointObject* pt)
 | |
| {
 | |
| 	float ptNew[4], ptCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0;
 | |
| 
 | |
| 	if(mat->rowSize != pt->size){
 | |
| 		if(mat->rowSize == 4 && pt->size != 3){
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"matrix * point: matrix row size and point size must be the same\n");
 | |
| 		}else{
 | |
| 			ptCopy[3] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < pt->size; x++){
 | |
| 		ptCopy[x] = pt->coord[x];
 | |
| 		}
 | |
| 
 | |
| 	for(x = 0; x < mat->rowSize; x++) {
 | |
| 		for(y = 0; y < mat->colSize; y++) {
 | |
| 			dot += mat->matrix[x][y] * ptCopy[y];
 | |
| 		}
 | |
| 		ptNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newPointObject(ptNew, pt->size, Py_NEW);
 | |
| }
 | |
| //-----------------row_vector_multiplication (internal)-----------
 | |
| //ROW VECTOR Multiplication - Vector X Matrix
 | |
| //[x][y][z] *  [1][2][3]
 | |
| //             [4][5][6]
 | |
| //             [7][8][9]
 | |
| //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | |
| PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
 | |
| {
 | |
| 	float vecNew[4], vecCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0, vec_size = vec->size;
 | |
| 
 | |
| 	if(mat->colSize != vec_size){
 | |
| 		if(mat->rowSize == 4 && vec_size != 3){
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 				"vector * matrix: matrix column size and the vector size must be the same");
 | |
| 		}else{
 | |
| 			vecCopy[3] = 1.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	for(x = 0; x < vec_size; x++){
 | |
| 		vecCopy[x] = vec->vec[x];
 | |
| 	}
 | |
| 
 | |
| 	//muliplication
 | |
| 	for(x = 0; x < mat->colSize; x++) {
 | |
| 		for(y = 0; y < mat->rowSize; y++) {
 | |
| 			dot += mat->matrix[y][x] * vecCopy[y];
 | |
| 		}
 | |
| 		vecNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newVectorObject(vecNew, vec_size, Py_NEW);
 | |
| }
 | |
| //This is a helper for the point class
 | |
| PyObject *row_point_multiplication(PointObject* pt, MatrixObject * mat)
 | |
| {
 | |
| 	float ptNew[4], ptCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0, size;
 | |
| 
 | |
| 	if(mat->colSize != pt->size){
 | |
| 		if(mat->rowSize == 4 && pt->size != 3){
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 				"point * matrix: matrix column size and the point size must be the same\n");
 | |
| 		}else{
 | |
| 			ptCopy[3] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	size = pt->size;
 | |
| 	for(x = 0; x < pt->size; x++){
 | |
| 		ptCopy[x] = pt->coord[x];
 | |
| 	}
 | |
| 
 | |
| 	//muliplication
 | |
| 	for(x = 0; x < mat->colSize; x++) {
 | |
| 		for(y = 0; y < mat->rowSize; y++) {
 | |
| 			dot += mat->matrix[y][x] * ptCopy[y];
 | |
| 		}
 | |
| 		ptNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newPointObject(ptNew, size, Py_NEW);
 | |
| }
 | |
| //-----------------quat_rotation (internal)-----------
 | |
| //This function multiplies a vector/point * quat or vice versa
 | |
| //to rotate the point/vector by the quaternion
 | |
| //arguments should all be 3D
 | |
| PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
 | |
| {
 | |
| 	float rot[3];
 | |
| 	QuaternionObject *quat = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 	PointObject *pt = NULL;
 | |
| 
 | |
| 	if(QuaternionObject_Check(arg1)){
 | |
| 		quat = (QuaternionObject*)arg1;
 | |
| 		if(VectorObject_Check(arg2)){
 | |
| 			vec = (VectorObject*)arg2;
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
 | |
| 			return newVectorObject(rot, 3, Py_NEW);
 | |
| 		}else if(PointObject_Check(arg2)){
 | |
| 			pt = (PointObject*)arg2;
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
 | |
| 			return newPointObject(rot, 3, Py_NEW);
 | |
| 		}
 | |
| 	}else if(VectorObject_Check(arg1)){
 | |
| 		vec = (VectorObject*)arg1;
 | |
| 		if(QuaternionObject_Check(arg2)){
 | |
| 			quat = (QuaternionObject*)arg2;
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
 | |
| 			return newVectorObject(rot, 3, Py_NEW);
 | |
| 		}
 | |
| 	}else if(PointObject_Check(arg1)){
 | |
| 		pt = (PointObject*)arg1;
 | |
| 		if(QuaternionObject_Check(arg2)){
 | |
| 			quat = (QuaternionObject*)arg2;
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
 | |
| 			return newPointObject(rot, 3, Py_NEW);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (EXPP_ReturnPyObjError(PyExc_RuntimeError,
 | |
| 		"quat_rotation(internal): internal problem rotating vector/point\n"));
 | |
| }
 | |
| 
 | |
| //----------------------------------Mathutils.Rand() --------------------
 | |
| //returns a random number between a high and low value
 | |
| PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	float high, low, range;
 | |
| 	double rand;
 | |
| 	//initializers
 | |
| 	high = 1.0;
 | |
| 	low = 0.0;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "|ff", &low, &high))
 | |
| 		return (EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"Mathutils.Rand(): expected nothing or optional (float, float)\n"));
 | |
| 
 | |
| 	if((high < low) || (high < 0 && low > 0))
 | |
| 		return (EXPP_ReturnPyObjError(PyExc_ValueError,
 | |
| 			"Mathutils.Rand(): high value should be larger than low value\n"));
 | |
| 
 | |
| 	//get the random number 0 - 1
 | |
| 	rand = BLI_drand();
 | |
| 
 | |
| 	//set it to range
 | |
| 	range = high - low;
 | |
| 	rand = rand * range;
 | |
| 	rand = rand + low;
 | |
| 
 | |
| 	return PyFloat_FromDouble(rand);
 | |
| }
 | |
| //----------------------------------VECTOR FUNCTIONS---------------------
 | |
| //----------------------------------Mathutils.Vector() ------------------
 | |
| // Supports 2D, 3D, and 4D vector objects both int and float values
 | |
| // accepted. Mixed float and int values accepted. Ints are parsed to float 
 | |
| PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *listObject = NULL;
 | |
| 	int size, i;
 | |
| 	float vec[4];
 | |
| 	PyObject *v, *f;
 | |
| 
 | |
| 	size = PySequence_Length(args);
 | |
| 	if (size == 1) {
 | |
| 		listObject = PySequence_GetItem(args, 0);
 | |
| 		if (PySequence_Check(listObject)) {
 | |
| 			size = PySequence_Length(listObject);
 | |
| 		} else { // Single argument was not a sequence
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 	} else if (size == 0) {
 | |
| 		//returns a new empty 3d vector
 | |
| 		return newVectorObject(NULL, 3, Py_NEW); 
 | |
| 	} else {
 | |
| 		listObject = EXPP_incr_ret(args);
 | |
| 	}
 | |
| 
 | |
| 	if (size<2 || size>4) { // Invalid vector size
 | |
| 		Py_XDECREF(listObject);
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<size; i++) {
 | |
| 		v=PySequence_GetItem(listObject, i);
 | |
| 		if (v==NULL) { // Failed to read sequence
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 
 | |
| 		f=PyNumber_Float(v);
 | |
| 		if(f==NULL) { // parsed item not a number
 | |
| 			Py_DECREF(v);
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 
 | |
| 		vec[i]=(float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,v);
 | |
| 	}
 | |
| 	Py_DECREF(listObject);
 | |
| 	return newVectorObject(vec, size, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.CrossVecs() ---------------
 | |
| //finds perpendicular vector - only 3D is supported
 | |
| PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *vecCross = NULL;
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
 | |
| 	if(vec1->size != 3 || vec2->size != 3)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.CrossVecs(): expects (2) 3D vector objects\n");
 | |
| 
 | |
| 	vecCross = newVectorObject(NULL, 3, Py_NEW);
 | |
| 	Crossf(((VectorObject*)vecCross)->vec, vec1->vec, vec2->vec);
 | |
| 	return vecCross;
 | |
| }
 | |
| //----------------------------------Mathutils.DotVec() -------------------
 | |
| //calculates the dot product of two vectors
 | |
| PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	double dot = 0.0f;
 | |
| 	int x;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.DotVec(): expects (2) vector objects of the same size\n");
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.DotVec(): expects (2) vector objects of the same size\n");
 | |
| 
 | |
| 	for(x = 0; x < vec1->size; x++) {
 | |
| 		dot += vec1->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(dot);
 | |
| }
 | |
| //----------------------------------Mathutils.AngleBetweenVecs() ---------
 | |
| //calculates the angle between 2 vectors
 | |
| PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f;
 | |
| 	int x, size;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		goto AttributeError1; //not vectors
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		goto AttributeError1; //bad sizes
 | |
| 
 | |
| 	//since size is the same....
 | |
| 	size = vec1->size;
 | |
| 
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		test_v1 += vec1->vec[x] * vec1->vec[x];
 | |
| 		test_v2 += vec2->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	if (!test_v1 || !test_v2){
 | |
| 		goto AttributeError2; //zero-length vector
 | |
| 	}
 | |
| 
 | |
| 	//dot product
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		dot += vec1->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	dot /= (sqrt(test_v1) * sqrt(test_v2));
 | |
| 
 | |
| 	if (dot < -1.0f || dot > 1.0f) {
 | |
| 		CLAMP(dot,-1.0f,1.0f);
 | |
| 	}
 | |
| 	angleRads = (double)acos(dot);
 | |
| 
 | |
| 	return PyFloat_FromDouble(angleRads * (180/ Py_PI));
 | |
| 
 | |
| AttributeError1:
 | |
| 	return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 		"Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n");
 | |
| 
 | |
| AttributeError2:
 | |
| 	return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 		"Mathutils.AngleBetweenVecs(): zero length vectors are not acceptable arguments\n");
 | |
| }
 | |
| //----------------------------------Mathutils.MidpointVecs() -------------
 | |
| //calculates the midpoint between 2 vectors
 | |
| PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	float vec[4];
 | |
| 	int x;
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
 | |
| 
 | |
| 	for(x = 0; x < vec1->size; x++) {
 | |
| 		vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
 | |
| 	}
 | |
| 	return newVectorObject(vec, vec1->size, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ProjectVecs() -------------
 | |
| //projects vector 1 onto vector 2
 | |
| PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	float vec[4]; 
 | |
| 	double dot = 0.0f, dot2 = 0.0f;
 | |
| 	int x, size;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
 | |
| 
 | |
| 	//since they are the same size...
 | |
| 	size = vec1->size;
 | |
| 
 | |
| 	//get dot products
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		dot += vec1->vec[x] * vec2->vec[x];
 | |
| 		dot2 += vec2->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	//projection
 | |
| 	dot /= dot2;
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		vec[x] = (float)(dot * vec2->vec[x]);
 | |
| 	}
 | |
| 	return newVectorObject(vec, size, Py_NEW);
 | |
| }
 | |
| //----------------------------------MATRIX FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.Matrix() -----------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //create a new matrix type
 | |
| PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *listObject = NULL;
 | |
| 	PyObject *argObject, *m, *s, *f;
 | |
| 	MatrixObject *mat;
 | |
| 	int argSize, seqSize = 0, i, j;
 | |
| 	float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	argSize = PySequence_Length(args);
 | |
| 	if(argSize > 4){	//bad arg nums
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 	} else if (argSize == 0) { //return empty 4D matrix
 | |
| 		return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
 | |
| 	}else if (argSize == 1){
 | |
| 		//copy constructor for matrix objects
 | |
| 		argObject = PySequence_GetItem(args, 0);
 | |
| 		if(MatrixObject_Check(argObject)){
 | |
| 			mat = (MatrixObject*)argObject;
 | |
| 
 | |
| 			argSize = mat->rowSize; //rows
 | |
| 			seqSize = mat->colSize; //col
 | |
| 			for(i = 0; i < (seqSize * argSize); i++){
 | |
| 				matrix[i] = mat->contigPtr[i];
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(argObject);
 | |
| 	}else{ //2-4 arguments (all seqs? all same size?)
 | |
| 		for(i =0; i < argSize; i++){
 | |
| 			argObject = PySequence_GetItem(args, i);
 | |
| 			if (PySequence_Check(argObject)) { //seq?
 | |
| 				if(seqSize){ //0 at first
 | |
| 					if(PySequence_Length(argObject) != seqSize){ //seq size not same
 | |
| 						Py_DECREF(argObject);
 | |
| 						return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 						"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 					}
 | |
| 				}
 | |
| 				seqSize = PySequence_Length(argObject);
 | |
| 			}else{ //arg not a sequence
 | |
| 				Py_XDECREF(argObject);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 					"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 			}
 | |
| 			Py_DECREF(argObject);
 | |
| 		}
 | |
| 		//all is well... let's continue parsing
 | |
| 		listObject = args;
 | |
| 		for (i = 0; i < argSize; i++){
 | |
| 			m = PySequence_GetItem(listObject, i);
 | |
| 			if (m == NULL) { // Failed to read sequence
 | |
| 				return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 					"Mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 			}
 | |
| 
 | |
| 			for (j = 0; j < seqSize; j++) {
 | |
| 				s = PySequence_GetItem(m, j);
 | |
| 					if (s == NULL) { // Failed to read sequence
 | |
| 					Py_DECREF(m);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 						"Mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 				}
 | |
| 
 | |
| 				f = PyNumber_Float(s);
 | |
| 				if(f == NULL) { // parsed item is not a number
 | |
| 					EXPP_decr2(m,s);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 						"Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 				}
 | |
| 
 | |
| 				matrix[(seqSize*i)+j]=(float)PyFloat_AS_DOUBLE(f);
 | |
| 				EXPP_decr2(f,s);
 | |
| 			}
 | |
| 			Py_DECREF(m);
 | |
| 		}
 | |
| 	}
 | |
| 	return newMatrixObject(matrix, argSize, seqSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.RotationMatrix() ----------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates a rotation matrix
 | |
| PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	char *axis = NULL;
 | |
| 	int matSize;
 | |
| 	float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple
 | |
| 	    (args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
 | |
| 		return EXPP_ReturnPyObjError (PyExc_TypeError, 
 | |
| 			"Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
 | |
| 	}
 | |
| 	
 | |
| 	/* Clamp to -360:360 */
 | |
| 	while (angle<-360.0f)
 | |
| 		angle+=360.0;
 | |
| 	while (angle>360.0f)
 | |
| 		angle-=360.0;
 | |
| 	
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 	if(matSize == 2 && (axis != NULL || vec != NULL))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
 | |
| 	if((matSize == 3 || matSize == 4) && axis == NULL)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
 | |
| 	if(axis) {
 | |
| 		if(((strcmp(axis, "r") == 0) ||
 | |
| 		      (strcmp(axis, "R") == 0)) && vec == NULL)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size != 3)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 						      "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
 | |
| 	}
 | |
| 	//convert to radians
 | |
| 	angle = angle * (float) (Py_PI / 180);
 | |
| 	if(axis == NULL && matSize == 2) {
 | |
| 		//2D rotation matrix
 | |
| 		mat[0] = (float) cos (angle);
 | |
| 		mat[1] = (float) sin (angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[3] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
 | |
| 		//rotation around X
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[5] = (float) sin(angle);
 | |
| 		mat[7] = -((float) sin(angle));
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
 | |
| 		//rotation around Y
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = (float) sin(angle);
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
 | |
| 		//rotation around Z
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[1] = (float) sin(angle);
 | |
| 		mat[3] = -((float) sin(angle));
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
 | |
| 		//arbitrary rotation
 | |
| 		//normalize arbitrary axis
 | |
| 		norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
 | |
| 				       vec->vec[1] * vec->vec[1] +
 | |
| 				       vec->vec[2] * vec->vec[2]);
 | |
| 		vec->vec[0] /= norm;
 | |
| 		vec->vec[1] /= norm;
 | |
| 		vec->vec[2] /= norm;
 | |
| 
 | |
| 		//create matrix
 | |
| 		cosAngle = (float) cos(angle);
 | |
| 		sinAngle = (float) sin(angle);
 | |
| 		mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
 | |
| 			cosAngle;
 | |
| 		mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
 | |
| 			(vec->vec[2] * sinAngle);
 | |
| 		mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
 | |
| 			(vec->vec[1] * sinAngle);
 | |
| 		mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
 | |
| 			(vec->vec[2] * sinAngle);
 | |
| 		mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
 | |
| 			cosAngle;
 | |
| 		mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 			(vec->vec[0] * sinAngle);
 | |
| 		mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 			(vec->vec[1] * sinAngle);
 | |
| 		mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
 | |
| 			(vec->vec[0] * sinAngle);
 | |
| 		mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 			cosAngle;
 | |
| 	} else {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.TranslationMatrix() -------
 | |
| //creates a translation matrix
 | |
| PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!", &vector_Type, &vec)) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 						"Mathutils.TranslationMatrix(): expected vector\n");
 | |
| 	}
 | |
| 	if(vec->size != 3 && vec->size != 4) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 					      "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
 | |
| 	}
 | |
| 	//create a identity matrix and add translation
 | |
| 	Mat4One((float(*)[4]) mat);
 | |
| 	mat[12] = vec->vec[0];
 | |
| 	mat[13] = vec->vec[1];
 | |
| 	mat[14] = vec->vec[2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 4, 4, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ScaleMatrix() -------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates a scaling matrix
 | |
| PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	float norm = 0.0f, factor;
 | |
| 	int matSize, x;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple
 | |
| 	    (args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"Mathutils.ScaleMatrix(): expected float int and optional vector\n");
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 	}
 | |
| 	if(vec == NULL) {	//scaling along axis
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = factor;
 | |
| 			mat[3] = factor;
 | |
| 		} else {
 | |
| 			mat[0] = factor;
 | |
| 			mat[4] = factor;
 | |
| 			mat[8] = factor;
 | |
| 		}
 | |
| 	} else { //scaling in arbitrary direction
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 		} else {
 | |
| 			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.OrthoProjectionMatrix() ---
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates an ortho projection matrix
 | |
| PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	char *plane;
 | |
| 	int matSize, x;
 | |
| 	float norm = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple
 | |
| 	    (args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2)
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 	}
 | |
| 	if(vec == NULL) {	//ortho projection onto cardinal plane
 | |
| 		if(((strcmp(plane, "x") == 0)
 | |
| 		      || (strcmp(plane, "X") == 0)) && matSize == 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "y") == 0) 
 | |
| 			|| (strcmp(plane, "Y") == 0))
 | |
| 			   && matSize == 2) {
 | |
| 			mat[3] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "xy") == 0)
 | |
| 			     || (strcmp(plane, "XY") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[4] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "xz") == 0)
 | |
| 			     || (strcmp(plane, "XZ") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "yz") == 0)
 | |
| 			     || (strcmp(plane, "YZ") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[4] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else {
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
 | |
| 		}
 | |
| 	} else { //arbitrary plane
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if(((strcmp(plane, "r") == 0)
 | |
| 		      || (strcmp(plane, "R") == 0)) && matSize == 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 		} else if(((strcmp(plane, "r") == 0)
 | |
| 			     || (strcmp(plane, "R") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[3] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 			mat[5] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[6] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[7] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
 | |
| 		} else {
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ShearMatrix() -------------
 | |
| //creates a shear matrix
 | |
| PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	int matSize;
 | |
| 	char *plane;
 | |
| 	float factor;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"Mathutils.ShearMatrix(): expected string float and int\n");
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 
 | |
| 	if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
 | |
| 	    && matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[2] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "y") == 0)
 | |
| 		     || (strcmp(plane, "Y") == 0)) && matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "xy") == 0)
 | |
| 		     || (strcmp(plane, "XY") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = factor;
 | |
| 		mat[7] = factor;
 | |
| 	} else if(((strcmp(plane, "xz") == 0)
 | |
| 		     || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[3] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[5] = factor;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "yz") == 0)
 | |
| 		     || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[2] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------QUATERNION FUNCTIONS-----------------
 | |
| //----------------------------------Mathutils.Quaternion() --------------
 | |
| PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *listObject = NULL, *n, *q, *f;
 | |
| 	int size, i;
 | |
| 	float quat[4];
 | |
| 	double norm = 0.0f, angle = 0.0f;
 | |
| 
 | |
| 	size = PySequence_Length(args);
 | |
| 	if (size == 1 || size == 2) { //seq?
 | |
| 		listObject = PySequence_GetItem(args, 0);
 | |
| 		if (PySequence_Check(listObject)) {
 | |
| 			size = PySequence_Length(listObject);
 | |
| 			if ((size == 4 && PySequence_Length(args) !=1) || 
 | |
| 				(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) { 
 | |
| 				// invalid args/size
 | |
| 				Py_DECREF(listObject);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 					"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 			}
 | |
| 	   		if(size == 3){ //get angle in axis/angle
 | |
| 				n = PyNumber_Float(PySequence_GetItem(args, 1));
 | |
| 				if(n == NULL) { // parsed item not a number or getItem fail
 | |
| 					Py_DECREF(listObject);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 				}
 | |
| 				angle = PyFloat_AS_DOUBLE(n);
 | |
| 				Py_DECREF(n);
 | |
| 			}
 | |
| 		}else{
 | |
| 			listObject = PySequence_GetItem(args, 1);
 | |
| 			if (PySequence_Check(listObject)) {
 | |
| 				size = PySequence_Length(listObject);
 | |
| 				if (size != 3) { 
 | |
| 					// invalid args/size
 | |
| 					Py_DECREF(listObject);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 				}
 | |
| 				n = PyNumber_Float(PySequence_GetItem(args, 0));
 | |
| 				if(n == NULL) { // parsed item not a number or getItem fail
 | |
| 					Py_DECREF(listObject);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 				}
 | |
| 				angle = PyFloat_AS_DOUBLE(n);
 | |
| 				Py_DECREF(n);
 | |
| 			} else { // argument was not a sequence
 | |
| 				Py_XDECREF(listObject);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 					"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (size == 0) { //returns a new empty quat
 | |
| 		return newQuaternionObject(NULL, Py_NEW); 
 | |
| 	} else {
 | |
| 		listObject = EXPP_incr_ret(args);
 | |
| 	}
 | |
| 
 | |
| 	if (size == 3) { // invalid quat size
 | |
| 		if(PySequence_Length(args) != 2){
 | |
| 			Py_DECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 		}
 | |
| 	}else{
 | |
| 		if(size != 4){
 | |
| 			Py_DECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<size; i++) { //parse
 | |
| 		q = PySequence_GetItem(listObject, i);
 | |
| 		if (q == NULL) { // Failed to read sequence
 | |
| 			Py_DECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 		}
 | |
| 
 | |
| 		f = PyNumber_Float(q);
 | |
| 		if(f == NULL) { // parsed item not a number
 | |
| 			EXPP_decr2(q, listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
 | |
| 		}
 | |
| 
 | |
| 		quat[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f, q);
 | |
| 	}
 | |
| 	if(size == 3){ //calculate the quat based on axis/angle
 | |
| 		norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
 | |
| 		quat[0] /= (float)norm;
 | |
| 		quat[1] /= (float)norm;
 | |
| 		quat[2] /= (float)norm;
 | |
| 
 | |
| 		angle = angle * (Py_PI / 180);
 | |
| 		quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
 | |
| 		quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
 | |
| 		quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
 | |
| 		quat[0] =(float) (cos(angle/ 2.0f));
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(listObject);
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.CrossQuats() ----------------
 | |
| //quaternion multiplication - associate not commutative
 | |
| PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	float quat[4];
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, 
 | |
| 		&quaternion_Type, &quatV))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,"Mathutils.CrossQuats(): expected Quaternion types");
 | |
| 	QuatMul(quat, quatU->quat, quatV->quat);
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.DotQuats() ----------------
 | |
| //returns the dot product of 2 quaternions
 | |
| PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	double dot = 0.0f;
 | |
| 	int x;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, 
 | |
| 		&quaternion_Type, &quatV))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DotQuats(): expected Quaternion types");
 | |
| 
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		dot += quatU->quat[x] * quatV->quat[x];
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(dot);
 | |
| }
 | |
| //----------------------------------Mathutils.DifferenceQuats() ---------
 | |
| //returns the difference between 2 quaternions
 | |
| PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	float quat[4], tempQuat[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, 
 | |
| 		&quatU, &quaternion_Type, &quatV))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
 | |
| 
 | |
| 	tempQuat[0] = quatU->quat[0];
 | |
| 	tempQuat[1] = -quatU->quat[1];
 | |
| 	tempQuat[2] = -quatU->quat[2];
 | |
| 	tempQuat[3] = -quatU->quat[3];
 | |
| 
 | |
| 	dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] *  tempQuat[1] +
 | |
| 			       tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
 | |
| 
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		tempQuat[x] /= (float)(dot * dot);
 | |
| 	}
 | |
| 	QuatMul(quat, tempQuat, quatV->quat);
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.Slerp() ------------------
 | |
| //attemps to interpolate 2 quaternions and return the result
 | |
| PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	float quat[4], quat_u[4], quat_v[4], param;
 | |
| 	double x, y, dot, sinT, angle, IsinT;
 | |
| 	int z;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type, 
 | |
| 		&quatU, &quaternion_Type, &quatV, ¶m))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.Slerp(): expected Quaternion types and float");
 | |
| 
 | |
| 	if(param > 1.0f || param < 0.0f)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 					"Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
 | |
| 
 | |
| 	//copy quats
 | |
| 	for(z = 0; z < 4; z++){
 | |
| 		quat_u[z] = quatU->quat[z];
 | |
| 		quat_v[z] = quatV->quat[z];
 | |
| 	}
 | |
| 
 | |
| 	//dot product
 | |
| 	dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
 | |
| 		quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
 | |
| 
 | |
| 	//if negative negate a quat (shortest arc)
 | |
| 	if(dot < 0.0f) {
 | |
| 		quat_v[0] = -quat_v[0];
 | |
| 		quat_v[1] = -quat_v[1];
 | |
| 		quat_v[2] = -quat_v[2];
 | |
| 		quat_v[3] = -quat_v[3];
 | |
| 		dot = -dot;
 | |
| 	}
 | |
| 	if(dot > .99999f) { //very close
 | |
| 		x = 1.0f - param;
 | |
| 		y = param;
 | |
| 	} else {
 | |
| 		//calculate sin of angle
 | |
| 		sinT = sqrt(1.0f - (dot * dot));
 | |
| 		//calculate angle
 | |
| 		angle = atan2(sinT, dot);
 | |
| 		//caluculate inverse of sin(theta)
 | |
| 		IsinT = 1.0f / sinT;
 | |
| 		x = sin((1.0f - param) * angle) * IsinT;
 | |
| 		y = sin(param * angle) * IsinT;
 | |
| 	}
 | |
| 	//interpolate
 | |
| 	quat[0] = (float)(quat_u[0] * x + quat_v[0] * y);
 | |
| 	quat[1] = (float)(quat_u[1] * x + quat_v[1] * y);
 | |
| 	quat[2] = (float)(quat_u[2] * x + quat_v[2] * y);
 | |
| 	quat[3] = (float)(quat_u[3] * x + quat_v[3] * y);
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------EULER FUNCTIONS----------------------
 | |
| //----------------------------------Mathutils.Euler() -------------------
 | |
| //makes a new euler for you to play with
 | |
| PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args)
 | |
| {
 | |
| 
 | |
| 	PyObject *listObject = NULL;
 | |
| 	int size, i;
 | |
| 	float eul[3];
 | |
| 	PyObject *e, *f;
 | |
| 
 | |
| 	size = PySequence_Length(args);
 | |
| 	if (size == 1) {
 | |
| 		listObject = PySequence_GetItem(args, 0);
 | |
| 		if (PySequence_Check(listObject)) {
 | |
| 			size = PySequence_Length(listObject);
 | |
| 		} else { // Single argument was not a sequence
 | |
| 			Py_DECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Euler(): 3d numeric sequence expected\n");
 | |
| 		}
 | |
| 	} else if (size == 0) {
 | |
| 		//returns a new empty 3d euler
 | |
| 		return newEulerObject(NULL, Py_NEW); 
 | |
| 	} else {
 | |
| 		listObject = EXPP_incr_ret(args);
 | |
| 	}
 | |
| 
 | |
| 	if (size != 3) { // Invalid euler size
 | |
| 		Py_DECREF(listObject);
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.Euler(): 3d numeric sequence expected\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<size; i++) {
 | |
| 		e = PySequence_GetItem(listObject, i);
 | |
| 		if (e == NULL) { // Failed to read sequence
 | |
| 			Py_DECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 				"Mathutils.Euler(): 3d numeric sequence expected\n");
 | |
| 		}
 | |
| 
 | |
| 		f = PyNumber_Float(e);
 | |
| 		if(f == NULL) { // parsed item not a number
 | |
| 			EXPP_decr2(e, listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Euler(): 3d numeric sequence expected\n");
 | |
| 		}
 | |
| 
 | |
| 		eul[i]=(float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,e);
 | |
| 	}
 | |
| 	Py_DECREF(listObject);
 | |
| 	return newEulerObject(eul, Py_NEW);
 | |
| }
 | |
| //----------------------------------POINT FUNCTIONS---------------------
 | |
| //----------------------------------Mathutils.Point() ------------------
 | |
| PyObject *M_Mathutils_Point(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *listObject = NULL;
 | |
| 	int size, i;
 | |
| 	float point[3];
 | |
| 	PyObject *v, *f;
 | |
| 
 | |
| 	size = PySequence_Length(args);
 | |
| 	if (size == 1) {
 | |
| 		listObject = PySequence_GetItem(args, 0);
 | |
| 		if (PySequence_Check(listObject)) {
 | |
| 			size = PySequence_Length(listObject);
 | |
| 		} else { // Single argument was not a sequence
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 	} else if (size == 0) {
 | |
| 		//returns a new empty 3d point
 | |
| 		return newPointObject(NULL, 3, Py_NEW); 
 | |
| 	} else {
 | |
| 		listObject = EXPP_incr_ret(args);
 | |
| 	}
 | |
| 
 | |
| 	if (size<2 || size>3) { // Invalid vector size
 | |
| 		Py_XDECREF(listObject);
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | |
| 			"Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<size; i++) {
 | |
| 		v=PySequence_GetItem(listObject, i);
 | |
| 		if (v==NULL) { // Failed to read sequence
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_RuntimeError, 
 | |
| 				"Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 
 | |
| 		f=PyNumber_Float(v);
 | |
| 		if(f==NULL) { // parsed item not a number
 | |
| 			Py_DECREF(v);
 | |
| 			Py_XDECREF(listObject);
 | |
| 			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 				"Mathutils.Point(): 2-3 floats or ints expected (optionally in a sequence)\n");
 | |
| 		}
 | |
| 
 | |
| 		point[i]=(float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,v);
 | |
| 	}
 | |
| 	Py_DECREF(listObject);
 | |
| 	return newPointObject(point, size, Py_NEW);
 | |
| }
 | |
| //---------------------------------INTERSECTION FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.Intersect() -------------------
 | |
| PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
 | |
| 	float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
 | |
| 	float det, inv_det, u, v, t;
 | |
| 	int clip = 1;
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip) )
 | |
| 		return ( EXPP_ReturnPyObjError
 | |
| 			 ( PyExc_TypeError, "expected 5 vector types\n" ) );
 | |
| 	if( vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || 
 | |
| 		ray->size != 3 || ray_off->size != 3)
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"only 3D vectors for all parameters\n" ) );
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	VECCOPY(dir, ray->vec);
 | |
| 	Normalise(dir);
 | |
| 
 | |
| 	VECCOPY(orig, ray_off->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v1 */
 | |
| 	VecSubf(e1, v2, v1);
 | |
| 	VecSubf(e2, v3, v1);
 | |
| 
 | |
| 	/* begin calculating determinant - also used to calculated U parameter */
 | |
| 	Crossf(pvec, dir, e2);	
 | |
| 
 | |
| 	/* if determinant is near zero, ray lies in plane of triangle */
 | |
| 	det = Inpf(e1, pvec);
 | |
| 
 | |
| 	if (det > -0.000001 && det < 0.000001) {
 | |
| 		return EXPP_incr_ret( Py_None );
 | |
| 	}
 | |
| 
 | |
| 	inv_det = 1.0f / det;
 | |
| 
 | |
| 	/* calculate distance from v1 to ray origin */
 | |
| 	VecSubf(tvec, orig, v1);
 | |
| 
 | |
| 	/* calculate U parameter and test bounds */
 | |
| 	u = Inpf(tvec, pvec) * inv_det;
 | |
| 	if (clip && (u < 0.0f || u > 1.0f)) {
 | |
| 		return EXPP_incr_ret( Py_None );
 | |
| 	}
 | |
| 
 | |
| 	/* prepare to test the V parameter */
 | |
| 	Crossf(qvec, tvec, e1);
 | |
| 
 | |
| 	/* calculate V parameter and test bounds */
 | |
| 	v = Inpf(dir, qvec) * inv_det;
 | |
| 
 | |
| 	if (clip && (v < 0.0f || u + v > 1.0f)) {
 | |
| 		return EXPP_incr_ret( Py_None );
 | |
| 	}
 | |
| 
 | |
| 	/* calculate t, ray intersects triangle */
 | |
| 	t = Inpf(e2, qvec) * inv_det;
 | |
| 
 | |
| 	VecMulf(dir, t);
 | |
| 	VecAddf(pvec, orig, dir);
 | |
| 
 | |
| 	return newVectorObject(pvec, 3, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.LineIntersect() -------------------
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	PyObject * tuple;
 | |
| 	VectorObject *vec1, *vec2, *vec3, *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3, &vector_Type, &vec4 ) )
 | |
| 		return ( EXPP_ReturnPyObjError
 | |
| 			 ( PyExc_TypeError, "expected 4 vector types\n" ) );
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec2->size)
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"vectors must be of the same size\n" ) );
 | |
| 
 | |
| 	if( vec1->size == 3 || vec1->size == 2) {
 | |
| 		float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
 | |
| 		float d;
 | |
| 		if (vec1->size == 3) {
 | |
| 			VECCOPY(v1, vec1->vec);
 | |
| 			VECCOPY(v2, vec2->vec);
 | |
| 			VECCOPY(v3, vec3->vec);
 | |
| 			VECCOPY(v4, vec4->vec);
 | |
| 		}
 | |
| 		else {
 | |
| 			v1[0] = vec1->vec[0];
 | |
| 			v1[1] = vec1->vec[1];
 | |
| 			v1[2] = 0.0f;
 | |
| 
 | |
| 			v2[0] = vec2->vec[0];
 | |
| 			v2[1] = vec2->vec[1];
 | |
| 			v2[2] = 0.0f;
 | |
| 
 | |
| 			v3[0] = vec3->vec[0];
 | |
| 			v3[1] = vec3->vec[1];
 | |
| 			v3[2] = 0.0f;
 | |
| 
 | |
| 			v4[0] = vec4->vec[0];
 | |
| 			v4[1] = vec4->vec[1];
 | |
| 			v4[2] = 0.0f;
 | |
| 		}
 | |
| 
 | |
| 		VecSubf(c, v3, v1);
 | |
| 		VecSubf(a, v2, v1);
 | |
| 		VecSubf(b, v4, v3);
 | |
| 
 | |
| 		VECCOPY(dir1, a);
 | |
| 		Normalise(dir1);
 | |
| 		VECCOPY(dir2, b);
 | |
| 		Normalise(dir2);
 | |
| 		d = Inpf(dir1, dir2);
 | |
| 		if (d == 1.0f || d == -1.0f) {
 | |
| 			/* colinear */
 | |
| 			return EXPP_incr_ret( Py_None );
 | |
| 		}
 | |
| 
 | |
| 		Crossf(ab, a, b);
 | |
| 		d = Inpf(c, ab);
 | |
| 
 | |
| 		/* test if the two lines are coplanar */
 | |
| 		if (d > -0.000001f && d < 0.000001f) {
 | |
| 			Crossf(cb, c, b);
 | |
| 
 | |
| 			VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
 | |
| 			VecAddf(i1, v1, a);
 | |
| 			VECCOPY(i2, i1);
 | |
| 		}
 | |
| 		/* if not */
 | |
| 		else {
 | |
| 			float n[3], t[3];
 | |
| 			VecSubf(t, v1, v3);
 | |
| 
 | |
| 			/* offset between both plane where the lines lies */
 | |
| 			Crossf(n, a, b);
 | |
| 			Projf(t, t, n);
 | |
| 
 | |
| 			/* for the first line, offset the second line until it is coplanar */
 | |
| 			VecAddf(v3, v3, t);
 | |
| 			VecAddf(v4, v4, t);
 | |
| 			
 | |
| 			VecSubf(c, v3, v1);
 | |
| 			VecSubf(a, v2, v1);
 | |
| 			VecSubf(b, v4, v3);
 | |
| 
 | |
| 			Crossf(ab, a, b);
 | |
| 			Crossf(cb, c, b);
 | |
| 
 | |
| 			VecMulf(a, Inpf(cb, ab) / Inpf(ab, ab));
 | |
| 			VecAddf(i1, v1, a);
 | |
| 
 | |
| 			/* for the second line, just substract the offset from the first intersection point */
 | |
| 			VecSubf(i2, i1, t);
 | |
| 		}
 | |
| 
 | |
| 		tuple = PyTuple_New( 2 );
 | |
| 		PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) );
 | |
| 		PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) );
 | |
| 		return tuple;
 | |
| 	}
 | |
| 	else {
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"2D/3D vectors only\n" ) );
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---------------------------------NORMALS FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.QuadNormal() -------------------
 | |
| PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1;
 | |
| 	VectorObject *vec2;
 | |
| 	VectorObject *vec3;
 | |
| 	VectorObject *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3, &vector_Type, &vec4 ) )
 | |
| 		return ( EXPP_ReturnPyObjError
 | |
| 			 ( PyExc_TypeError, "expected 4 vector types\n" ) );
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size)
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"vectors must be of the same size\n" ) );
 | |
| 	if( vec1->size != 3 )
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"only 3D vectors\n" ) );
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 	VECCOPY(v4, vec4->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	VecSubf(e1, v1, v2);
 | |
| 	VecSubf(e2, v3, v2);
 | |
| 
 | |
| 	Crossf(n1, e2, e1);
 | |
| 	Normalise(n1);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v4 */
 | |
| 	VecSubf(e1, v3, v4);
 | |
| 	VecSubf(e2, v1, v4);
 | |
| 
 | |
| 	Crossf(n2, e2, e1);
 | |
| 	Normalise(n2);
 | |
| 
 | |
| 	/* adding and averaging the normals of both triangles */
 | |
| 	VecAddf(n1, n2, n1);
 | |
| 	Normalise(n1);
 | |
| 
 | |
| 	return newVectorObject(n1, 3, Py_NEW);
 | |
| }
 | |
| 
 | |
| //----------------------------Mathutils.TriangleNormal() -------------------
 | |
| PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3 ) )
 | |
| 		return ( EXPP_ReturnPyObjError
 | |
| 			 ( PyExc_TypeError, "expected 3 vector types\n" ) );
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size )
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"vectors must be of the same size\n" ) );
 | |
| 	if( vec1->size != 3 )
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"only 3D vectors\n" ) );
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	VecSubf(e1, v1, v2);
 | |
| 	VecSubf(e2, v3, v2);
 | |
| 
 | |
| 	Crossf(n, e2, e1);
 | |
| 	Normalise(n);
 | |
| 
 | |
| 	return newVectorObject(n, 3, Py_NEW);
 | |
| }
 | |
| 
 | |
| //--------------------------------- AREA FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.TriangleArea() -------------------
 | |
| PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3 ) )
 | |
| 		return ( EXPP_ReturnPyObjError
 | |
| 			 ( PyExc_TypeError, "expected 3 vector types\n" ) );
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size )
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"vectors must be of the same size\n" ) );
 | |
| 
 | |
| 	if (vec1->size == 3) {
 | |
| 		VECCOPY(v1, vec1->vec);
 | |
| 		VECCOPY(v2, vec2->vec);
 | |
| 		VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 		return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3) );
 | |
| 	}
 | |
| 	else if (vec1->size == 2) {
 | |
| 		v1[0] = vec1->vec[0];
 | |
| 		v1[1] = vec1->vec[1];
 | |
| 
 | |
| 		v2[0] = vec2->vec[0];
 | |
| 		v2[1] = vec2->vec[1];
 | |
| 
 | |
| 		v3[0] = vec3->vec[0];
 | |
| 		v3[1] = vec3->vec[1];
 | |
| 
 | |
| 		return PyFloat_FromDouble( AreaF2Dfl(v1, v2, v3) );
 | |
| 	}
 | |
| 	else {
 | |
| 		return ( EXPP_ReturnPyObjError( PyExc_TypeError,
 | |
| 						"only 2D,3D vectors are supported\n" ) );
 | |
| 	}
 | |
| }
 | |
| //#############################DEPRECATED################################
 | |
| //#######################################################################
 | |
| //----------------------------------Mathutils.CopyMat() -----------------
 | |
| //copies a matrix into a new matrix
 | |
| PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *matrix = NULL;
 | |
| 
 | |
| 	printf("Mathutils.CopyMat(): Deprecated :use Mathutils.Matrix() to copy matrices\n");
 | |
| 	matrix = M_Mathutils_Matrix(self, args);
 | |
| 	if(matrix == NULL)
 | |
| 		return NULL; //error string already set if we get here
 | |
| 	else
 | |
| 		return matrix;
 | |
| }
 | |
| //----------------------------------Mathutils.CopyVec() -----------------
 | |
| //makes a new vector that is a copy of the input
 | |
| PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *vec = NULL;
 | |
| 
 | |
| 	printf("Mathutils.CopyVec(): Deprecated: use Mathutils.Vector() to copy vectors\n");
 | |
| 	vec = M_Mathutils_Vector(self, args);
 | |
| 	if(vec == NULL)
 | |
| 		return NULL; //error string already set if we get here
 | |
| 	else
 | |
| 		return vec;
 | |
| }
 | |
| //----------------------------------Mathutils.CopyQuat() --------------
 | |
| //Copies a quaternion to a new quat
 | |
| PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *quat = NULL;
 | |
| 
 | |
| 	printf("Mathutils.CopyQuat(): Deprecated:use Mathutils.Quaternion() to copy vectors\n");
 | |
| 	quat = M_Mathutils_Quaternion(self, args);
 | |
| 	if(quat == NULL)
 | |
| 		return NULL; //error string already set if we get here
 | |
| 	else
 | |
| 		return quat;
 | |
| }
 | |
| //----------------------------------Mathutils.CopyEuler() ---------------
 | |
| //copies a euler to a new euler
 | |
| PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	PyObject *eul = NULL;
 | |
| 
 | |
| 	printf("Mathutils.CopyEuler(): Deprecated:use Mathutils.Euler() to copy vectors\n");
 | |
| 	eul = M_Mathutils_Euler(self, args);
 | |
| 	if(eul == NULL)
 | |
| 		return NULL; //error string already set if we get here
 | |
| 	else
 | |
| 		return eul;
 | |
| }
 | |
| //----------------------------------Mathutils.RotateEuler() ------------
 | |
| //rotates a euler a certain amount and returns the result
 | |
| //should return a unique euler rotation (i.e. no 720 degree pitches :)
 | |
| PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	EulerObject *Eul = NULL;
 | |
| 	float angle;
 | |
| 	char *axis;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!fs", &euler_Type, &Eul, &angle, &axis))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			   "Mathutils.RotateEuler(): expected euler type & float & string");
 | |
| 
 | |
| 	printf("Mathutils.RotateEuler(): Deprecated:use Euler.rotate() to rotate a euler\n");
 | |
| 	Euler_Rotate(Eul, Py_BuildValue("fs", angle, axis));
 | |
| 	return EXPP_incr_ret(Py_None);
 | |
| }
 | |
| //----------------------------------Mathutils.MatMultVec() --------------
 | |
| //COLUMN VECTOR Multiplication (Matrix X Vector)
 | |
| PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	MatrixObject *mat = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 
 | |
| 	//get pyObjects
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &matrix_Type, &mat, &vector_Type, &vec))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.MatMultVec(): MatMultVec() expects a matrix and a vector object - in that order\n");
 | |
| 
 | |
| 	printf("Mathutils.MatMultVec(): Deprecated: use matrix * vec to perform column vector multiplication\n");
 | |
| 	return column_vector_multiplication(mat, vec);
 | |
| }
 | |
| //----------------------------------Mathutils.VecMultMat() ---------------
 | |
| //ROW VECTOR Multiplication - Vector X Matrix
 | |
| PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	MatrixObject *mat = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 
 | |
| 	//get pyObjects
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec, &matrix_Type, &mat))
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 			"Mathutils.VecMultMat(): VecMultMat() expects a vector and matrix object - in that order\n");
 | |
| 
 | |
| 	printf("Mathutils.VecMultMat(): Deprecated: use vec * matrix to perform row vector multiplication\n");
 | |
| 	return row_vector_multiplication(vec, mat);
 | |
| }
 | |
| //#######################################################################
 | |
| //#############################DEPRECATED################################
 |