extracting params in split transform operators. work in progress still, but lots of fun with operator replay (F6)
1116 lines
26 KiB
C
1116 lines
26 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#ifndef WIN32
|
|
#include <unistd.h>
|
|
#else
|
|
#include <io.h>
|
|
#endif
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_action_types.h"
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_camera_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_effect_types.h"
|
|
#include "DNA_image_types.h"
|
|
#include "DNA_ipo_types.h"
|
|
#include "DNA_key_types.h"
|
|
#include "DNA_lamp_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_meta_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_screen_types.h"
|
|
#include "DNA_space_types.h"
|
|
#include "DNA_view3d_types.h"
|
|
|
|
//#include "BIF_screen.h"
|
|
//#include "BIF_resources.h"
|
|
//#include "BIF_mywindow.h"
|
|
#include "BIF_gl.h"
|
|
#include "BIF_glutil.h"
|
|
|
|
#include "BKE_global.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "ED_image.h"
|
|
#include "ED_view3d.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
|
|
//#include "blendef.h"
|
|
//
|
|
//#include "mydevice.h"
|
|
|
|
#include "WM_types.h"
|
|
#include "UI_resources.h"
|
|
|
|
|
|
#include "transform.h"
|
|
|
|
static void drawObjectConstraint(TransInfo *t);
|
|
|
|
/* ************************** CONSTRAINTS ************************* */
|
|
void constraintAutoValues(TransInfo *t, float vec[3])
|
|
{
|
|
int mode = t->con.mode;
|
|
if (mode & CON_APPLY)
|
|
{
|
|
float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f;
|
|
|
|
if ((mode & CON_AXIS0) == 0)
|
|
{
|
|
vec[0] = nval;
|
|
}
|
|
if ((mode & CON_AXIS1) == 0)
|
|
{
|
|
vec[1] = nval;
|
|
}
|
|
if ((mode & CON_AXIS2) == 0)
|
|
{
|
|
vec[2] = nval;
|
|
}
|
|
}
|
|
}
|
|
|
|
void constraintNumInput(TransInfo *t, float vec[3])
|
|
{
|
|
int mode = t->con.mode;
|
|
if (mode & CON_APPLY) {
|
|
float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f;
|
|
|
|
if (getConstraintSpaceDimension(t) == 2) {
|
|
int axis = mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
|
|
if (axis == (CON_AXIS0|CON_AXIS1)) {
|
|
vec[0] = vec[0];
|
|
vec[1] = vec[1];
|
|
vec[2] = nval;
|
|
}
|
|
else if (axis == (CON_AXIS1|CON_AXIS2)) {
|
|
vec[2] = vec[1];
|
|
vec[1] = vec[0];
|
|
vec[0] = nval;
|
|
}
|
|
else if (axis == (CON_AXIS0|CON_AXIS2)) {
|
|
vec[0] = vec[0];
|
|
vec[2] = vec[1];
|
|
vec[1] = nval;
|
|
}
|
|
}
|
|
else if (getConstraintSpaceDimension(t) == 1) {
|
|
if (mode & CON_AXIS0) {
|
|
vec[0] = vec[0];
|
|
vec[1] = nval;
|
|
vec[2] = nval;
|
|
}
|
|
else if (mode & CON_AXIS1) {
|
|
vec[1] = vec[0];
|
|
vec[0] = nval;
|
|
vec[2] = nval;
|
|
}
|
|
else if (mode & CON_AXIS2) {
|
|
vec[2] = vec[0];
|
|
vec[0] = nval;
|
|
vec[1] = nval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) {
|
|
int i = 0;
|
|
|
|
Mat3MulVecfl(t->con.imtx, vec);
|
|
|
|
snapGrid(t, vec);
|
|
|
|
if (t->num.flag & T_NULL_ONE) {
|
|
if (!(t->con.mode & CON_AXIS0))
|
|
vec[0] = 1.0f;
|
|
|
|
if (!(t->con.mode & CON_AXIS1))
|
|
vec[1] = 1.0f;
|
|
|
|
if (!(t->con.mode & CON_AXIS2))
|
|
vec[2] = 1.0f;
|
|
}
|
|
|
|
if (hasNumInput(&t->num)) {
|
|
applyNumInput(&t->num, vec);
|
|
constraintNumInput(t, vec);
|
|
}
|
|
|
|
if (t->flag & T_AUTOVALUES)
|
|
{
|
|
VECCOPY(vec, t->auto_values);
|
|
constraintAutoValues(t, vec);
|
|
}
|
|
|
|
if (t->con.mode & CON_AXIS0) {
|
|
pvec[i++] = vec[0];
|
|
}
|
|
if (t->con.mode & CON_AXIS1) {
|
|
pvec[i++] = vec[1];
|
|
}
|
|
if (t->con.mode & CON_AXIS2) {
|
|
pvec[i++] = vec[2];
|
|
}
|
|
|
|
Mat3MulVecfl(t->con.mtx, vec);
|
|
}
|
|
|
|
static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) {
|
|
float norm[3], vec[3], factor;
|
|
|
|
if(in[0]==0.0f && in[1]==0.0f && in[2]==0.0f)
|
|
return;
|
|
|
|
/* For when view is parallel to constraint... will cause NaNs otherwise
|
|
So we take vertical motion in 3D space and apply it to the
|
|
constraint axis. Nice for camera grab + MMB */
|
|
if(1.0f - fabs(Inpf(axis, t->viewinv[2])) < 0.000001f) {
|
|
Projf(vec, in, t->viewinv[1]);
|
|
factor = Inpf(t->viewinv[1], vec) * 2.0f;
|
|
/* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */
|
|
if(factor<0.0f) factor*= -factor;
|
|
else factor*= factor;
|
|
|
|
VECCOPY(out, axis);
|
|
Normalize(out);
|
|
VecMulf(out, -factor); /* -factor makes move down going backwards */
|
|
}
|
|
else {
|
|
float cb[3], ab[3];
|
|
|
|
VECCOPY(out, axis);
|
|
|
|
/* Get view vector on axis to define a plane */
|
|
VecAddf(vec, t->con.center, in);
|
|
getViewVector(t, vec, norm);
|
|
|
|
Crossf(vec, norm, axis);
|
|
|
|
/* Project input vector on the plane passing on axis */
|
|
Projf(vec, in, vec);
|
|
VecSubf(vec, in, vec);
|
|
|
|
/* intersect the two lines: axis and norm */
|
|
Crossf(cb, vec, norm);
|
|
Crossf(ab, axis, norm);
|
|
|
|
VecMulf(out, Inpf(cb, ab) / Inpf(ab, ab));
|
|
}
|
|
}
|
|
|
|
static void planeProjection(TransInfo *t, float in[3], float out[3]) {
|
|
float vec[3], factor, norm[3];
|
|
|
|
VecAddf(vec, in, t->con.center);
|
|
getViewVector(t, vec, norm);
|
|
|
|
VecSubf(vec, out, in);
|
|
|
|
factor = Inpf(vec, norm);
|
|
if (fabs(factor) <= 0.001) {
|
|
return; /* prevent divide by zero */
|
|
}
|
|
factor = Inpf(vec, vec) / factor;
|
|
|
|
VECCOPY(vec, norm);
|
|
VecMulf(vec, factor);
|
|
|
|
VecAddf(out, in, vec);
|
|
}
|
|
|
|
/*
|
|
* Generic callback for constant spacial constraints applied to linear motion
|
|
*
|
|
* The IN vector in projected into the constrained space and then further
|
|
* projected along the view vector.
|
|
* (in perspective mode, the view vector is relative to the position on screen)
|
|
*
|
|
*/
|
|
|
|
static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
|
|
{
|
|
VECCOPY(out, in);
|
|
if (!td && t->con.mode & CON_APPLY) {
|
|
Mat3MulVecfl(t->con.pmtx, out);
|
|
|
|
// With snap, a projection is alright, no need to correct for view alignment
|
|
if ((t->tsnap.status & SNAP_ON) == 0) {
|
|
if (getConstraintSpaceDimension(t) == 2) {
|
|
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
|
|
planeProjection(t, in, out);
|
|
}
|
|
}
|
|
else if (getConstraintSpaceDimension(t) == 1) {
|
|
float c[3];
|
|
|
|
if (t->con.mode & CON_AXIS0) {
|
|
VECCOPY(c, t->con.mtx[0]);
|
|
}
|
|
else if (t->con.mode & CON_AXIS1) {
|
|
VECCOPY(c, t->con.mtx[1]);
|
|
}
|
|
else if (t->con.mode & CON_AXIS2) {
|
|
VECCOPY(c, t->con.mtx[2]);
|
|
}
|
|
axisProjection(t, c, in, out);
|
|
}
|
|
}
|
|
postConstraintChecks(t, out, pvec);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generic callback for object based spacial constraints applied to linear motion
|
|
*
|
|
* At first, the following is applied to the first data in the array
|
|
* The IN vector in projected into the constrained space and then further
|
|
* projected along the view vector.
|
|
* (in perspective mode, the view vector is relative to the position on screen)
|
|
*
|
|
* Further down, that vector is mapped to each data's space.
|
|
*/
|
|
|
|
static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
|
|
{
|
|
VECCOPY(out, in);
|
|
if (t->con.mode & CON_APPLY) {
|
|
if (!td) {
|
|
Mat3MulVecfl(t->con.pmtx, out);
|
|
if (getConstraintSpaceDimension(t) == 2) {
|
|
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
|
|
planeProjection(t, in, out);
|
|
}
|
|
}
|
|
else if (getConstraintSpaceDimension(t) == 1) {
|
|
float c[3];
|
|
|
|
if (t->con.mode & CON_AXIS0) {
|
|
VECCOPY(c, t->con.mtx[0]);
|
|
}
|
|
else if (t->con.mode & CON_AXIS1) {
|
|
VECCOPY(c, t->con.mtx[1]);
|
|
}
|
|
else if (t->con.mode & CON_AXIS2) {
|
|
VECCOPY(c, t->con.mtx[2]);
|
|
}
|
|
axisProjection(t, c, in, out);
|
|
}
|
|
postConstraintChecks(t, out, pvec);
|
|
VECCOPY(out, pvec);
|
|
}
|
|
else {
|
|
int i=0;
|
|
|
|
out[0] = out[1] = out[2] = 0.0f;
|
|
if (t->con.mode & CON_AXIS0) {
|
|
out[0] = in[i++];
|
|
}
|
|
if (t->con.mode & CON_AXIS1) {
|
|
out[1] = in[i++];
|
|
}
|
|
if (t->con.mode & CON_AXIS2) {
|
|
out[2] = in[i++];
|
|
}
|
|
Mat3MulVecfl(td->axismtx, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generic callback for constant spacial constraints applied to resize motion
|
|
*
|
|
*
|
|
*/
|
|
|
|
static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
|
|
{
|
|
if (!td && t->con.mode & CON_APPLY) {
|
|
float tmat[3][3];
|
|
|
|
if (!(t->con.mode & CON_AXIS0)) {
|
|
smat[0][0] = 1.0f;
|
|
}
|
|
if (!(t->con.mode & CON_AXIS1)) {
|
|
smat[1][1] = 1.0f;
|
|
}
|
|
if (!(t->con.mode & CON_AXIS2)) {
|
|
smat[2][2] = 1.0f;
|
|
}
|
|
|
|
Mat3MulMat3(tmat, smat, t->con.imtx);
|
|
Mat3MulMat3(smat, t->con.mtx, tmat);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Callback for object based spacial constraints applied to resize motion
|
|
*
|
|
*
|
|
*/
|
|
|
|
static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
|
|
{
|
|
if (td && t->con.mode & CON_APPLY) {
|
|
float tmat[3][3];
|
|
float imat[3][3];
|
|
|
|
Mat3Inv(imat, td->axismtx);
|
|
|
|
if (!(t->con.mode & CON_AXIS0)) {
|
|
smat[0][0] = 1.0f;
|
|
}
|
|
if (!(t->con.mode & CON_AXIS1)) {
|
|
smat[1][1] = 1.0f;
|
|
}
|
|
if (!(t->con.mode & CON_AXIS2)) {
|
|
smat[2][2] = 1.0f;
|
|
}
|
|
|
|
Mat3MulMat3(tmat, smat, imat);
|
|
Mat3MulMat3(smat, td->axismtx, tmat);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generic callback for constant spacial constraints applied to rotations
|
|
*
|
|
* The rotation axis is copied into VEC.
|
|
*
|
|
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
|
|
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
|
|
*
|
|
* The following only applies when CON_NOFLIP is not set.
|
|
* The vector is then modified to always point away from the screen (in global space)
|
|
* This insures that the rotation is always logically following the mouse.
|
|
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
|
|
*/
|
|
|
|
static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
|
|
{
|
|
if (!td && t->con.mode & CON_APPLY) {
|
|
int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
|
|
|
|
switch(mode) {
|
|
case CON_AXIS0:
|
|
case (CON_AXIS1|CON_AXIS2):
|
|
VECCOPY(vec, t->con.mtx[0]);
|
|
break;
|
|
case CON_AXIS1:
|
|
case (CON_AXIS0|CON_AXIS2):
|
|
VECCOPY(vec, t->con.mtx[1]);
|
|
break;
|
|
case CON_AXIS2:
|
|
case (CON_AXIS0|CON_AXIS1):
|
|
VECCOPY(vec, t->con.mtx[2]);
|
|
break;
|
|
}
|
|
/* don't flip axis if asked to or if num input */
|
|
if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
|
|
if (Inpf(vec, t->viewinv[2]) > 0.0f) {
|
|
*angle = -(*angle);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Callback for object based spacial constraints applied to rotations
|
|
*
|
|
* The rotation axis is copied into VEC.
|
|
*
|
|
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
|
|
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
|
|
*
|
|
* The following only applies when CON_NOFLIP is not set.
|
|
* The vector is then modified to always point away from the screen (in global space)
|
|
* This insures that the rotation is always logically following the mouse.
|
|
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
|
|
*/
|
|
|
|
static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
|
|
{
|
|
if (t->con.mode & CON_APPLY) {
|
|
int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
|
|
|
|
/* on setup call, use first object */
|
|
if (td == NULL) {
|
|
td= t->data;
|
|
}
|
|
|
|
switch(mode) {
|
|
case CON_AXIS0:
|
|
case (CON_AXIS1|CON_AXIS2):
|
|
VECCOPY(vec, td->axismtx[0]);
|
|
break;
|
|
case CON_AXIS1:
|
|
case (CON_AXIS0|CON_AXIS2):
|
|
VECCOPY(vec, td->axismtx[1]);
|
|
break;
|
|
case CON_AXIS2:
|
|
case (CON_AXIS0|CON_AXIS1):
|
|
VECCOPY(vec, td->axismtx[2]);
|
|
break;
|
|
}
|
|
if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
|
|
if (Inpf(vec, t->viewinv[2]) > 0.0f) {
|
|
*angle = -(*angle);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*--------------------- INTERNAL SETUP CALLS ------------------*/
|
|
|
|
void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) {
|
|
strncpy(t->con.text + 1, text, 48);
|
|
Mat3CpyMat3(t->con.mtx, space);
|
|
t->con.mode = mode;
|
|
getConstraintMatrix(t);
|
|
|
|
startConstraint(t);
|
|
|
|
t->con.drawExtra = NULL;
|
|
t->con.applyVec = applyAxisConstraintVec;
|
|
t->con.applySize = applyAxisConstraintSize;
|
|
t->con.applyRot = applyAxisConstraintRot;
|
|
t->redraw = 1;
|
|
}
|
|
|
|
void setLocalConstraint(TransInfo *t, int mode, const char text[]) {
|
|
if (t->flag & T_EDIT) {
|
|
float obmat[3][3];
|
|
Mat3CpyMat4(obmat, t->scene->obedit->obmat);
|
|
setConstraint(t, obmat, mode, text);
|
|
}
|
|
else {
|
|
if (t->total == 1) {
|
|
setConstraint(t, t->data->axismtx, mode, text);
|
|
}
|
|
else {
|
|
strncpy(t->con.text + 1, text, 48);
|
|
Mat3CpyMat3(t->con.mtx, t->data->axismtx);
|
|
t->con.mode = mode;
|
|
getConstraintMatrix(t);
|
|
|
|
startConstraint(t);
|
|
|
|
t->con.drawExtra = drawObjectConstraint;
|
|
t->con.applyVec = applyObjectConstraintVec;
|
|
t->con.applySize = applyObjectConstraintSize;
|
|
t->con.applyRot = applyObjectConstraintRot;
|
|
t->redraw = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Set the constraint according to the user defined orientation
|
|
|
|
ftext is a format string passed to sprintf. It will add the name of
|
|
the orientation where %s is (logically).
|
|
*/
|
|
void setUserConstraint(TransInfo *t, int mode, const char ftext[]) {
|
|
char text[40];
|
|
//short twmode= (t->spacetype==SPACE_VIEW3D)? ((View3D*)t->view)->twmode: V3D_MANIP_GLOBAL;
|
|
|
|
switch(t->current_orientation) {
|
|
case V3D_MANIP_GLOBAL:
|
|
{
|
|
float mtx[3][3];
|
|
sprintf(text, ftext, "global");
|
|
Mat3One(mtx);
|
|
setConstraint(t, mtx, mode, text);
|
|
}
|
|
break;
|
|
case V3D_MANIP_LOCAL:
|
|
sprintf(text, ftext, "local");
|
|
setLocalConstraint(t, mode, text);
|
|
break;
|
|
case V3D_MANIP_NORMAL:
|
|
sprintf(text, ftext, "normal");
|
|
setConstraint(t, t->spacemtx, mode, text);
|
|
break;
|
|
case V3D_MANIP_VIEW:
|
|
sprintf(text, ftext, "view");
|
|
setConstraint(t, t->spacemtx, mode, text);
|
|
break;
|
|
default: /* V3D_MANIP_CUSTOM */
|
|
sprintf(text, ftext, t->spacename);
|
|
setConstraint(t, t->spacemtx, mode, text);
|
|
break;
|
|
}
|
|
|
|
t->con.mode |= CON_USER;
|
|
}
|
|
|
|
/*--------------------- EXTERNAL SETUP CALLS ------------------*/
|
|
|
|
void BIF_setLocalLockConstraint(char axis, char *text) {
|
|
TransInfo *t = BIF_GetTransInfo();
|
|
|
|
if (t->total == 0) {
|
|
return;
|
|
}
|
|
|
|
switch (axis) {
|
|
case 'x':
|
|
setLocalConstraint(t, (CON_AXIS1|CON_AXIS2), text);
|
|
break;
|
|
case 'y':
|
|
setLocalConstraint(t, (CON_AXIS0|CON_AXIS2), text);
|
|
break;
|
|
case 'z':
|
|
setLocalConstraint(t, (CON_AXIS0|CON_AXIS1), text);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BIF_setLocalAxisConstraint(char axis, char *text) {
|
|
TransInfo *t = BIF_GetTransInfo();
|
|
|
|
if (t->total == 0) {
|
|
return;
|
|
}
|
|
|
|
switch (axis) {
|
|
case 'X':
|
|
setLocalConstraint(t, CON_AXIS0, text);
|
|
break;
|
|
case 'Y':
|
|
setLocalConstraint(t, CON_AXIS1, text);
|
|
break;
|
|
case 'Z':
|
|
setLocalConstraint(t, CON_AXIS2, text);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* text is optional, for header print */
|
|
void BIF_setSingleAxisConstraint(float vec[3], char *text) {
|
|
TransInfo *t = BIF_GetTransInfo();
|
|
float space[3][3], v[3];
|
|
|
|
if (t->total == 0) {
|
|
return;
|
|
}
|
|
|
|
VECCOPY(space[0], vec);
|
|
|
|
v[0] = vec[2];
|
|
v[1] = vec[0];
|
|
v[2] = vec[1];
|
|
|
|
Crossf(space[1], vec, v);
|
|
Crossf(space[2], vec, space[1]);
|
|
Mat3Ortho(space);
|
|
|
|
Mat3CpyMat3(t->con.mtx, space);
|
|
t->con.mode = CON_AXIS0;
|
|
|
|
getConstraintMatrix(t);
|
|
|
|
startConstraint(t);
|
|
|
|
/* start copying with an offset of 1, to reserve a spot for the SPACE char */
|
|
if(text)
|
|
{
|
|
strncpy(t->con.text+1, text, 48); /* 50 in struct */
|
|
}
|
|
else
|
|
{
|
|
t->con.text[1] = '\0'; /* No text */
|
|
}
|
|
|
|
t->con.drawExtra = NULL;
|
|
t->con.applyVec = applyAxisConstraintVec;
|
|
t->con.applySize = applyAxisConstraintSize;
|
|
t->con.applyRot = applyAxisConstraintRot;
|
|
t->redraw = 1;
|
|
}
|
|
|
|
void BIF_setDualAxisConstraint(float vec1[3], float vec2[3], char *text) {
|
|
TransInfo *t = BIF_GetTransInfo();
|
|
float space[3][3];
|
|
|
|
if (t->total == 0) {
|
|
return;
|
|
}
|
|
|
|
VECCOPY(space[0], vec1);
|
|
VECCOPY(space[1], vec2);
|
|
Crossf(space[2], space[0], space[1]);
|
|
Mat3Ortho(space);
|
|
|
|
Mat3CpyMat3(t->con.mtx, space);
|
|
t->con.mode = CON_AXIS0|CON_AXIS1;
|
|
|
|
getConstraintMatrix(t);
|
|
|
|
startConstraint(t);
|
|
|
|
/* start copying with an offset of 1, to reserve a spot for the SPACE char */
|
|
if(text)
|
|
{
|
|
strncpy(t->con.text+1, text, 48); /* 50 in struct */
|
|
}
|
|
else
|
|
{
|
|
t->con.text[1] = '\0'; /* No text */
|
|
}
|
|
|
|
t->con.drawExtra = NULL;
|
|
t->con.applyVec = applyAxisConstraintVec;
|
|
t->con.applySize = applyAxisConstraintSize;
|
|
t->con.applyRot = applyAxisConstraintRot;
|
|
t->redraw = 1;
|
|
}
|
|
|
|
/*----------------- DRAWING CONSTRAINTS -------------------*/
|
|
|
|
void drawConstraint(TransInfo *t)
|
|
{
|
|
TransCon *tc = &(t->con);
|
|
|
|
if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE))
|
|
return;
|
|
if (!(tc->mode & CON_APPLY))
|
|
return;
|
|
if (t->flag & T_USES_MANIPULATOR)
|
|
return;
|
|
if (t->flag & T_NO_CONSTRAINT)
|
|
return;
|
|
|
|
/* nasty exception for Z constraint in camera view */
|
|
// TRANSFORM_FIX_ME
|
|
// if((t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp==V3D_CAMOB)
|
|
// return;
|
|
|
|
if (tc->drawExtra) {
|
|
tc->drawExtra(t);
|
|
}
|
|
else {
|
|
if (tc->mode & CON_SELECT) {
|
|
float vec[3];
|
|
char col2[3] = {255,255,255};
|
|
convertViewVec(t, vec, (short)(t->mval[0] - t->con.imval[0]), (short)(t->mval[1] - t->con.imval[1]));
|
|
VecAddf(vec, vec, tc->center);
|
|
|
|
drawLine(t, tc->center, tc->mtx[0], 'x', 0);
|
|
drawLine(t, tc->center, tc->mtx[1], 'y', 0);
|
|
drawLine(t, tc->center, tc->mtx[2], 'z', 0);
|
|
|
|
glColor3ubv((GLubyte *)col2);
|
|
|
|
glDisable(GL_DEPTH_TEST);
|
|
setlinestyle(1);
|
|
glBegin(GL_LINE_STRIP);
|
|
glVertex3fv(tc->center);
|
|
glVertex3fv(vec);
|
|
glEnd();
|
|
setlinestyle(0);
|
|
// TRANSFORM_FIX_ME
|
|
//if(G.vd->zbuf)
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
|
|
if (tc->mode & CON_AXIS0) {
|
|
drawLine(t, tc->center, tc->mtx[0], 'x', DRAWLIGHT);
|
|
}
|
|
if (tc->mode & CON_AXIS1) {
|
|
drawLine(t, tc->center, tc->mtx[1], 'y', DRAWLIGHT);
|
|
}
|
|
if (tc->mode & CON_AXIS2) {
|
|
drawLine(t, tc->center, tc->mtx[2], 'z', DRAWLIGHT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* called from drawview.c, as an extra per-window draw option */
|
|
void drawPropCircle(TransInfo *t)
|
|
{
|
|
if (t->flag & T_PROP_EDIT) {
|
|
float tmat[4][4], imat[4][4];
|
|
|
|
UI_ThemeColor(TH_GRID);
|
|
|
|
if(t->spacetype == SPACE_VIEW3D)
|
|
{
|
|
RegionView3D *rv3d = t->ar->regiondata;
|
|
|
|
Mat4CpyMat4(tmat, rv3d->viewmat);
|
|
Mat4Invert(imat, tmat);
|
|
}
|
|
else
|
|
{
|
|
Mat4One(tmat);
|
|
Mat4One(imat);
|
|
}
|
|
|
|
glPushMatrix();
|
|
|
|
if((t->spacetype == SPACE_VIEW3D) && t->obedit)
|
|
{
|
|
glMultMatrixf(t->obedit->obmat); /* because t->center is in local space */
|
|
}
|
|
else if(t->spacetype == SPACE_IMAGE)
|
|
{
|
|
float aspx, aspy;
|
|
|
|
ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
|
|
glScalef(1.0f/aspx, 1.0f/aspy, 1.0);
|
|
}
|
|
|
|
set_inverted_drawing(1);
|
|
drawcircball(GL_LINE_LOOP, t->center, t->prop_size, imat);
|
|
set_inverted_drawing(0);
|
|
|
|
glPopMatrix();
|
|
}
|
|
}
|
|
|
|
void BIF_getPropCenter(float *center)
|
|
{
|
|
TransInfo *t = BIF_GetTransInfo();
|
|
|
|
if (t && t->flag & T_PROP_EDIT) {
|
|
VECCOPY(center, t->center);
|
|
}
|
|
else
|
|
center[0] = center[1] = center[2] = 0.0f;
|
|
}
|
|
|
|
static void drawObjectConstraint(TransInfo *t) {
|
|
int i;
|
|
TransData * td = t->data;
|
|
|
|
/* Draw the first one lighter because that's the one who controls the others.
|
|
Meaning the transformation is projected on that one and just copied on the others
|
|
constraint space.
|
|
In a nutshell, the object with light axis is controlled by the user and the others follow.
|
|
Without drawing the first light, users have little clue what they are doing.
|
|
*/
|
|
if (t->con.mode & CON_AXIS0) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[0], 'x', DRAWLIGHT);
|
|
}
|
|
if (t->con.mode & CON_AXIS1) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[1], 'y', DRAWLIGHT);
|
|
}
|
|
if (t->con.mode & CON_AXIS2) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[2], 'z', DRAWLIGHT);
|
|
}
|
|
|
|
td++;
|
|
|
|
for(i=1;i<t->total;i++,td++) {
|
|
if (t->con.mode & CON_AXIS0) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[0], 'x', 0);
|
|
}
|
|
if (t->con.mode & CON_AXIS1) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[1], 'y', 0);
|
|
}
|
|
if (t->con.mode & CON_AXIS2) {
|
|
drawLine(t, td->ob->obmat[3], td->axismtx[2], 'z', 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*--------------------- START / STOP CONSTRAINTS ---------------------- */
|
|
|
|
void startConstraint(TransInfo *t) {
|
|
t->con.mode |= CON_APPLY;
|
|
*t->con.text = ' ';
|
|
t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max);
|
|
}
|
|
|
|
void stopConstraint(TransInfo *t) {
|
|
t->con.mode &= ~(CON_APPLY|CON_SELECT);
|
|
*t->con.text = '\0';
|
|
t->num.idx_max = t->idx_max;
|
|
}
|
|
|
|
void getConstraintMatrix(TransInfo *t)
|
|
{
|
|
float mat[3][3];
|
|
Mat3Inv(t->con.imtx, t->con.mtx);
|
|
Mat3One(t->con.pmtx);
|
|
|
|
if (!(t->con.mode & CON_AXIS0)) {
|
|
t->con.pmtx[0][0] =
|
|
t->con.pmtx[0][1] =
|
|
t->con.pmtx[0][2] = 0.0f;
|
|
}
|
|
|
|
if (!(t->con.mode & CON_AXIS1)) {
|
|
t->con.pmtx[1][0] =
|
|
t->con.pmtx[1][1] =
|
|
t->con.pmtx[1][2] = 0.0f;
|
|
}
|
|
|
|
if (!(t->con.mode & CON_AXIS2)) {
|
|
t->con.pmtx[2][0] =
|
|
t->con.pmtx[2][1] =
|
|
t->con.pmtx[2][2] = 0.0f;
|
|
}
|
|
|
|
Mat3MulMat3(mat, t->con.pmtx, t->con.imtx);
|
|
Mat3MulMat3(t->con.pmtx, t->con.mtx, mat);
|
|
}
|
|
|
|
/*------------------------- MMB Select -------------------------------*/
|
|
|
|
void initSelectConstraint(TransInfo *t, float mtx[3][3])
|
|
{
|
|
Mat3CpyMat3(t->con.mtx, mtx);
|
|
t->con.mode |= CON_APPLY;
|
|
t->con.mode |= CON_SELECT;
|
|
|
|
setNearestAxis(t);
|
|
t->con.drawExtra = NULL;
|
|
t->con.applyVec = applyAxisConstraintVec;
|
|
t->con.applySize = applyAxisConstraintSize;
|
|
t->con.applyRot = applyAxisConstraintRot;
|
|
}
|
|
|
|
void selectConstraint(TransInfo *t) {
|
|
if (t->con.mode & CON_SELECT) {
|
|
setNearestAxis(t);
|
|
startConstraint(t);
|
|
}
|
|
}
|
|
|
|
void postSelectConstraint(TransInfo *t)
|
|
{
|
|
if (!(t->con.mode & CON_SELECT))
|
|
return;
|
|
|
|
t->con.mode &= ~CON_AXIS0;
|
|
t->con.mode &= ~CON_AXIS1;
|
|
t->con.mode &= ~CON_AXIS2;
|
|
t->con.mode &= ~CON_SELECT;
|
|
|
|
setNearestAxis(t);
|
|
|
|
startConstraint(t);
|
|
t->redraw = 1;
|
|
}
|
|
|
|
static void setNearestAxis2d(TransInfo *t)
|
|
{
|
|
/* no correction needed... just use whichever one is lower */
|
|
if ( abs(t->mval[0]-t->con.imval[0]) < abs(t->mval[1]-t->con.imval[1]) ) {
|
|
t->con.mode |= CON_AXIS1;
|
|
sprintf(t->con.text, " along Y axis");
|
|
}
|
|
else {
|
|
t->con.mode |= CON_AXIS0;
|
|
sprintf(t->con.text, " along X axis");
|
|
}
|
|
}
|
|
|
|
static void setNearestAxis3d(TransInfo *t)
|
|
{
|
|
float zfac;
|
|
float mvec[3], axis[3], proj[3];
|
|
float len[3];
|
|
int i, icoord[2];
|
|
|
|
/* calculate mouse movement */
|
|
mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
|
|
mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
|
|
mvec[2] = 0.0f;
|
|
|
|
/* we need to correct axis length for the current zoomlevel of view,
|
|
this to prevent projected values to be clipped behind the camera
|
|
and to overflow the short integers.
|
|
The formula used is a bit stupid, just a simplification of the substraction
|
|
of two 2D points 30 pixels apart (that's the last factor in the formula) after
|
|
projecting them with window_to_3d_delta and then get the length of that vector.
|
|
*/
|
|
zfac= t->persmat[0][3]*t->center[0]+ t->persmat[1][3]*t->center[1]+ t->persmat[2][3]*t->center[2]+ t->persmat[3][3];
|
|
zfac = VecLength(t->persinv[0]) * 2.0f/t->ar->winx * zfac * 30.0f;
|
|
|
|
for (i = 0; i<3; i++) {
|
|
VECCOPY(axis, t->con.mtx[i]);
|
|
|
|
VecMulf(axis, zfac);
|
|
/* now we can project to get window coordinate */
|
|
VecAddf(axis, axis, t->con.center);
|
|
projectIntView(t, axis, icoord);
|
|
|
|
axis[0] = (float)(icoord[0] - t->center2d[0]);
|
|
axis[1] = (float)(icoord[1] - t->center2d[1]);
|
|
axis[2] = 0.0f;
|
|
|
|
if (Normalize(axis) != 0.0f) {
|
|
Projf(proj, mvec, axis);
|
|
VecSubf(axis, mvec, proj);
|
|
len[i] = Normalize(axis);
|
|
}
|
|
else {
|
|
len[i] = 10000000000.0f;
|
|
}
|
|
}
|
|
|
|
if (len[0] <= len[1] && len[0] <= len[2]) {
|
|
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
|
|
t->con.mode |= (CON_AXIS1|CON_AXIS2);
|
|
sprintf(t->con.text, " locking %s X axis", t->spacename);
|
|
}
|
|
else {
|
|
t->con.mode |= CON_AXIS0;
|
|
sprintf(t->con.text, " along %s X axis", t->spacename);
|
|
}
|
|
}
|
|
else if (len[1] <= len[0] && len[1] <= len[2]) {
|
|
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
|
|
t->con.mode |= (CON_AXIS0|CON_AXIS2);
|
|
sprintf(t->con.text, " locking %s Y axis", t->spacename);
|
|
}
|
|
else {
|
|
t->con.mode |= CON_AXIS1;
|
|
sprintf(t->con.text, " along %s Y axis", t->spacename);
|
|
}
|
|
}
|
|
else if (len[2] <= len[1] && len[2] <= len[0]) {
|
|
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
|
|
t->con.mode |= (CON_AXIS0|CON_AXIS1);
|
|
sprintf(t->con.text, " locking %s Z axis", t->spacename);
|
|
}
|
|
else {
|
|
t->con.mode |= CON_AXIS2;
|
|
sprintf(t->con.text, " along %s Z axis", t->spacename);
|
|
}
|
|
}
|
|
}
|
|
|
|
void setNearestAxis(TransInfo *t)
|
|
{
|
|
/* clear any prior constraint flags */
|
|
t->con.mode &= ~CON_AXIS0;
|
|
t->con.mode &= ~CON_AXIS1;
|
|
t->con.mode &= ~CON_AXIS2;
|
|
|
|
/* constraint setting - depends on spacetype */
|
|
if (t->spacetype == SPACE_VIEW3D) {
|
|
/* 3d-view */
|
|
setNearestAxis3d(t);
|
|
}
|
|
else {
|
|
/* assume that this means a 2D-Editor */
|
|
setNearestAxis2d(t);
|
|
}
|
|
|
|
getConstraintMatrix(t);
|
|
}
|
|
|
|
/*-------------- HELPER FUNCTIONS ----------------*/
|
|
|
|
char constraintModeToChar(TransInfo *t) {
|
|
if ((t->con.mode & CON_APPLY)==0) {
|
|
return '\0';
|
|
}
|
|
switch (t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2)) {
|
|
case (CON_AXIS0):
|
|
case (CON_AXIS1|CON_AXIS2):
|
|
return 'X';
|
|
case (CON_AXIS1):
|
|
case (CON_AXIS0|CON_AXIS2):
|
|
return 'Y';
|
|
case (CON_AXIS2):
|
|
case (CON_AXIS0|CON_AXIS1):
|
|
return 'Z';
|
|
default:
|
|
return '\0';
|
|
}
|
|
}
|
|
|
|
|
|
int isLockConstraint(TransInfo *t) {
|
|
int mode = t->con.mode;
|
|
|
|
if ( (mode & (CON_AXIS0|CON_AXIS1)) == (CON_AXIS0|CON_AXIS1))
|
|
return 1;
|
|
|
|
if ( (mode & (CON_AXIS1|CON_AXIS2)) == (CON_AXIS1|CON_AXIS2))
|
|
return 1;
|
|
|
|
if ( (mode & (CON_AXIS0|CON_AXIS2)) == (CON_AXIS0|CON_AXIS2))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the dimension of the constraint space.
|
|
*
|
|
* For that reason, the flags always needs to be set to properly evaluate here,
|
|
* even if they aren't actually used in the callback function. (Which could happen
|
|
* for weird constraints not yet designed. Along a path for example.)
|
|
*/
|
|
|
|
int getConstraintSpaceDimension(TransInfo *t)
|
|
{
|
|
int n = 0;
|
|
|
|
if (t->con.mode & CON_AXIS0)
|
|
n++;
|
|
|
|
if (t->con.mode & CON_AXIS1)
|
|
n++;
|
|
|
|
if (t->con.mode & CON_AXIS2)
|
|
n++;
|
|
|
|
return n;
|
|
/*
|
|
Someone willing to do it criptically could do the following instead:
|
|
|
|
return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
|
|
|
|
Based on the assumptions that the axis flags are one after the other and start at 1
|
|
*/
|
|
}
|