996 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			996 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * $Id$
 | 
						|
 *
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#ifndef WIN32
 | 
						|
#include <unistd.h>
 | 
						|
#else
 | 
						|
#include <io.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_screen_types.h"
 | 
						|
#include "DNA_space_types.h"
 | 
						|
#include "DNA_view3d_types.h"
 | 
						|
 | 
						|
#include "BIF_gl.h"
 | 
						|
#include "BIF_glutil.h"
 | 
						|
 | 
						|
#include "BKE_context.h"
 | 
						|
#include "BKE_utildefines.h"
 | 
						|
 | 
						|
#include "ED_image.h"
 | 
						|
#include "ED_view3d.h"
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
 | 
						|
//#include "blendef.h"
 | 
						|
//
 | 
						|
//#include "mydevice.h"
 | 
						|
 | 
						|
#include "UI_resources.h"
 | 
						|
 | 
						|
 | 
						|
#include "transform.h"
 | 
						|
 | 
						|
static void drawObjectConstraint(TransInfo *t);
 | 
						|
 | 
						|
/* ************************** CONSTRAINTS ************************* */
 | 
						|
void constraintAutoValues(TransInfo *t, float vec[3])
 | 
						|
{
 | 
						|
	int mode = t->con.mode;
 | 
						|
	if (mode & CON_APPLY)
 | 
						|
	{
 | 
						|
		float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f;
 | 
						|
 | 
						|
		if ((mode & CON_AXIS0) == 0)
 | 
						|
		{
 | 
						|
			vec[0] = nval;
 | 
						|
		}
 | 
						|
		if ((mode & CON_AXIS1) == 0)
 | 
						|
		{
 | 
						|
			vec[1] = nval;
 | 
						|
		}
 | 
						|
		if ((mode & CON_AXIS2) == 0)
 | 
						|
		{
 | 
						|
			vec[2] = nval;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void constraintNumInput(TransInfo *t, float vec[3])
 | 
						|
{
 | 
						|
	int mode = t->con.mode;
 | 
						|
	if (mode & CON_APPLY) {
 | 
						|
		float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f;
 | 
						|
 | 
						|
		if (getConstraintSpaceDimension(t) == 2) {
 | 
						|
			int axis = mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | 
						|
			if (axis == (CON_AXIS0|CON_AXIS1)) {
 | 
						|
				vec[0] = vec[0];
 | 
						|
				vec[1] = vec[1];
 | 
						|
				vec[2] = nval;
 | 
						|
			}
 | 
						|
			else if (axis == (CON_AXIS1|CON_AXIS2)) {
 | 
						|
				vec[2] = vec[1];
 | 
						|
				vec[1] = vec[0];
 | 
						|
				vec[0] = nval;
 | 
						|
			}
 | 
						|
			else if (axis == (CON_AXIS0|CON_AXIS2)) {
 | 
						|
				vec[0] = vec[0];
 | 
						|
				vec[2] = vec[1];
 | 
						|
				vec[1] = nval;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (getConstraintSpaceDimension(t) == 1) {
 | 
						|
			if (mode & CON_AXIS0) {
 | 
						|
				vec[0] = vec[0];
 | 
						|
				vec[1] = nval;
 | 
						|
				vec[2] = nval;
 | 
						|
			}
 | 
						|
			else if (mode & CON_AXIS1) {
 | 
						|
				vec[1] = vec[0];
 | 
						|
				vec[0] = nval;
 | 
						|
				vec[2] = nval;
 | 
						|
			}
 | 
						|
			else if (mode & CON_AXIS2) {
 | 
						|
				vec[2] = vec[0];
 | 
						|
				vec[0] = nval;
 | 
						|
				vec[1] = nval;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) {
 | 
						|
	int i = 0;
 | 
						|
 | 
						|
	mul_m3_v3(t->con.imtx, vec);
 | 
						|
 | 
						|
	snapGrid(t, vec);
 | 
						|
 | 
						|
	if (t->num.flag & T_NULL_ONE) {
 | 
						|
		if (!(t->con.mode & CON_AXIS0))
 | 
						|
			vec[0] = 1.0f;
 | 
						|
 | 
						|
		if (!(t->con.mode & CON_AXIS1))
 | 
						|
			vec[1] = 1.0f;
 | 
						|
 | 
						|
		if (!(t->con.mode & CON_AXIS2))
 | 
						|
			vec[2] = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (hasNumInput(&t->num)) {
 | 
						|
		applyNumInput(&t->num, vec);
 | 
						|
		constraintNumInput(t, vec);
 | 
						|
	}
 | 
						|
 | 
						|
	/* autovalues is operator param, use that directly but not if snapping is forced */
 | 
						|
	if (t->flag & T_AUTOVALUES && (t->tsnap.status & SNAP_FORCED) == 0)
 | 
						|
	{
 | 
						|
		VECCOPY(vec, t->auto_values);
 | 
						|
		constraintAutoValues(t, vec);
 | 
						|
	}
 | 
						|
 | 
						|
	if (t->con.mode & CON_AXIS0) {
 | 
						|
		pvec[i++] = vec[0];
 | 
						|
	}
 | 
						|
	if (t->con.mode & CON_AXIS1) {
 | 
						|
		pvec[i++] = vec[1];
 | 
						|
	}
 | 
						|
	if (t->con.mode & CON_AXIS2) {
 | 
						|
		pvec[i++] = vec[2];
 | 
						|
	}
 | 
						|
 | 
						|
	mul_m3_v3(t->con.mtx, vec);
 | 
						|
}
 | 
						|
 | 
						|
static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) {
 | 
						|
	float norm[3], vec[3], factor, angle;
 | 
						|
 | 
						|
	if(in[0]==0.0f && in[1]==0.0f && in[2]==0.0f)
 | 
						|
		return;
 | 
						|
 | 
						|
	angle = fabs(angle_v3v3(axis, t->viewinv[2]));
 | 
						|
	if (angle > M_PI / 2) {
 | 
						|
		angle = M_PI - angle;
 | 
						|
	}
 | 
						|
	angle = 180.0f * angle / M_PI;
 | 
						|
 | 
						|
	/* For when view is parallel to constraint... will cause NaNs otherwise
 | 
						|
	   So we take vertical motion in 3D space and apply it to the
 | 
						|
	   constraint axis. Nice for camera grab + MMB */
 | 
						|
	if(angle < 5.0f) {
 | 
						|
		project_v3_v3v3(vec, in, t->viewinv[1]);
 | 
						|
		factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
 | 
						|
		/* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */
 | 
						|
		if(factor<0.0f) factor*= -factor;
 | 
						|
		else factor*= factor;
 | 
						|
 | 
						|
		VECCOPY(out, axis);
 | 
						|
		normalize_v3(out);
 | 
						|
		mul_v3_fl(out, -factor);	/* -factor makes move down going backwards */
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float v[3], i1[3], i2[3];
 | 
						|
		float v2[3], v4[3];
 | 
						|
		float norm_center[3];
 | 
						|
		float plane[3];
 | 
						|
 | 
						|
		getViewVector(t, t->con.center, norm_center);
 | 
						|
		cross_v3_v3v3(plane, norm_center, axis);
 | 
						|
 | 
						|
		project_v3_v3v3(vec, in, plane);
 | 
						|
		sub_v3_v3v3(vec, in, vec);
 | 
						|
		
 | 
						|
		add_v3_v3v3(v, vec, t->con.center);
 | 
						|
		getViewVector(t, v, norm);
 | 
						|
 | 
						|
		/* give arbitrary large value if projection is impossible */
 | 
						|
		factor = dot_v3v3(axis, norm);
 | 
						|
		if (1 - fabs(factor) < 0.0002f) {
 | 
						|
			VECCOPY(out, axis);
 | 
						|
			if (factor > 0) {
 | 
						|
				mul_v3_fl(out, 1000000000);
 | 
						|
			} else {
 | 
						|
				mul_v3_fl(out, -1000000000);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			add_v3_v3v3(v2, t->con.center, axis);
 | 
						|
			add_v3_v3v3(v4, v, norm);
 | 
						|
			
 | 
						|
			isect_line_line_v3(t->con.center, v2, v, v4, i1, i2);
 | 
						|
			
 | 
						|
			sub_v3_v3v3(v, i2, v);
 | 
						|
	
 | 
						|
			sub_v3_v3v3(out, i1, t->con.center);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void planeProjection(TransInfo *t, float in[3], float out[3]) {
 | 
						|
	float vec[3], factor, norm[3];
 | 
						|
 | 
						|
	add_v3_v3v3(vec, in, t->con.center);
 | 
						|
	getViewVector(t, vec, norm);
 | 
						|
 | 
						|
	sub_v3_v3v3(vec, out, in);
 | 
						|
 | 
						|
	factor = dot_v3v3(vec, norm);
 | 
						|
	if (fabs(factor) <= 0.001) {
 | 
						|
		return; /* prevent divide by zero */
 | 
						|
	}
 | 
						|
	factor = dot_v3v3(vec, vec) / factor;
 | 
						|
 | 
						|
	VECCOPY(vec, norm);
 | 
						|
	mul_v3_fl(vec, factor);
 | 
						|
 | 
						|
	add_v3_v3v3(out, in, vec);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spacial constraints applied to linear motion
 | 
						|
 *
 | 
						|
 * The IN vector in projected into the constrained space and then further
 | 
						|
 * projected along the view vector.
 | 
						|
 * (in perspective mode, the view vector is relative to the position on screen)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
 | 
						|
{
 | 
						|
	VECCOPY(out, in);
 | 
						|
	if (!td && t->con.mode & CON_APPLY) {
 | 
						|
		mul_m3_v3(t->con.pmtx, out);
 | 
						|
 | 
						|
		// With snap, a projection is alright, no need to correct for view alignment
 | 
						|
		if (!(t->tsnap.mode != SCE_SNAP_MODE_INCREMENT && activeSnap(t))) {
 | 
						|
			if (getConstraintSpaceDimension(t) == 2) {
 | 
						|
				if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
 | 
						|
					planeProjection(t, in, out);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (getConstraintSpaceDimension(t) == 1) {
 | 
						|
				float c[3];
 | 
						|
 | 
						|
				if (t->con.mode & CON_AXIS0) {
 | 
						|
					VECCOPY(c, t->con.mtx[0]);
 | 
						|
				}
 | 
						|
				else if (t->con.mode & CON_AXIS1) {
 | 
						|
					VECCOPY(c, t->con.mtx[1]);
 | 
						|
				}
 | 
						|
				else if (t->con.mode & CON_AXIS2) {
 | 
						|
					VECCOPY(c, t->con.mtx[2]);
 | 
						|
				}
 | 
						|
				axisProjection(t, c, in, out);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		postConstraintChecks(t, out, pvec);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for object based spatial constraints applied to linear motion
 | 
						|
 *
 | 
						|
 * At first, the following is applied to the first data in the array
 | 
						|
 * The IN vector in projected into the constrained space and then further
 | 
						|
 * projected along the view vector.
 | 
						|
 * (in perspective mode, the view vector is relative to the position on screen)
 | 
						|
 *
 | 
						|
 * Further down, that vector is mapped to each data's space.
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3])
 | 
						|
{
 | 
						|
	VECCOPY(out, in);
 | 
						|
	if (t->con.mode & CON_APPLY) {
 | 
						|
		if (!td) {
 | 
						|
			mul_m3_v3(t->con.pmtx, out);
 | 
						|
			if (getConstraintSpaceDimension(t) == 2) {
 | 
						|
				if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
 | 
						|
					planeProjection(t, in, out);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (getConstraintSpaceDimension(t) == 1) {
 | 
						|
				float c[3];
 | 
						|
 | 
						|
				if (t->con.mode & CON_AXIS0) {
 | 
						|
					VECCOPY(c, t->con.mtx[0]);
 | 
						|
				}
 | 
						|
				else if (t->con.mode & CON_AXIS1) {
 | 
						|
					VECCOPY(c, t->con.mtx[1]);
 | 
						|
				}
 | 
						|
				else if (t->con.mode & CON_AXIS2) {
 | 
						|
					VECCOPY(c, t->con.mtx[2]);
 | 
						|
				}
 | 
						|
				axisProjection(t, c, in, out);
 | 
						|
			}
 | 
						|
			postConstraintChecks(t, out, pvec);
 | 
						|
			VECCOPY(out, pvec);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			int i=0;
 | 
						|
 | 
						|
			out[0] = out[1] = out[2] = 0.0f;
 | 
						|
			if (t->con.mode & CON_AXIS0) {
 | 
						|
				out[0] = in[i++];
 | 
						|
			}
 | 
						|
			if (t->con.mode & CON_AXIS1) {
 | 
						|
				out[1] = in[i++];
 | 
						|
			}
 | 
						|
			if (t->con.mode & CON_AXIS2) {
 | 
						|
				out[2] = in[i++];
 | 
						|
			}
 | 
						|
			mul_m3_v3(td->axismtx, out);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spacial constraints applied to resize motion
 | 
						|
 *
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
 | 
						|
{
 | 
						|
	if (!td && t->con.mode & CON_APPLY) {
 | 
						|
		float tmat[3][3];
 | 
						|
 | 
						|
		if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
			smat[0][0] = 1.0f;
 | 
						|
		}
 | 
						|
		if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
			smat[1][1] = 1.0f;
 | 
						|
		}
 | 
						|
		if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
			smat[2][2] = 1.0f;
 | 
						|
		}
 | 
						|
 | 
						|
		mul_m3_m3m3(tmat, smat, t->con.imtx);
 | 
						|
		mul_m3_m3m3(smat, t->con.mtx, tmat);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Callback for object based spacial constraints applied to resize motion
 | 
						|
 *
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
 | 
						|
{
 | 
						|
	if (td && t->con.mode & CON_APPLY) {
 | 
						|
		float tmat[3][3];
 | 
						|
		float imat[3][3];
 | 
						|
 | 
						|
		invert_m3_m3(imat, td->axismtx);
 | 
						|
 | 
						|
		if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
			smat[0][0] = 1.0f;
 | 
						|
		}
 | 
						|
		if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
			smat[1][1] = 1.0f;
 | 
						|
		}
 | 
						|
		if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
			smat[2][2] = 1.0f;
 | 
						|
		}
 | 
						|
 | 
						|
		mul_m3_m3m3(tmat, smat, imat);
 | 
						|
		mul_m3_m3m3(smat, td->axismtx, tmat);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic callback for constant spacial constraints applied to rotations
 | 
						|
 *
 | 
						|
 * The rotation axis is copied into VEC.
 | 
						|
 *
 | 
						|
 * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | 
						|
 * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | 
						|
 *
 | 
						|
 * The following only applies when CON_NOFLIP is not set.
 | 
						|
 * The vector is then modified to always point away from the screen (in global space)
 | 
						|
 * This insures that the rotation is always logically following the mouse.
 | 
						|
 * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | 
						|
 */
 | 
						|
 | 
						|
static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
 | 
						|
{
 | 
						|
	if (!td && t->con.mode & CON_APPLY) {
 | 
						|
		int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | 
						|
 | 
						|
		switch(mode) {
 | 
						|
		case CON_AXIS0:
 | 
						|
		case (CON_AXIS1|CON_AXIS2):
 | 
						|
			VECCOPY(vec, t->con.mtx[0]);
 | 
						|
			break;
 | 
						|
		case CON_AXIS1:
 | 
						|
		case (CON_AXIS0|CON_AXIS2):
 | 
						|
			VECCOPY(vec, t->con.mtx[1]);
 | 
						|
			break;
 | 
						|
		case CON_AXIS2:
 | 
						|
		case (CON_AXIS0|CON_AXIS1):
 | 
						|
			VECCOPY(vec, t->con.mtx[2]);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* don't flip axis if asked to or if num input */
 | 
						|
		if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | 
						|
			if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | 
						|
				*angle = -(*angle);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Callback for object based spacial constraints applied to rotations
 | 
						|
 *
 | 
						|
 * The rotation axis is copied into VEC.
 | 
						|
 *
 | 
						|
 * In the case of single axis constraints, the rotation axis is directly the one constrained to.
 | 
						|
 * For planar constraints (2 axis), the rotation axis is the normal of the plane.
 | 
						|
 *
 | 
						|
 * The following only applies when CON_NOFLIP is not set.
 | 
						|
 * The vector is then modified to always point away from the screen (in global space)
 | 
						|
 * This insures that the rotation is always logically following the mouse.
 | 
						|
 * (ie: not doing counterclockwise rotations when the mouse moves clockwise).
 | 
						|
 */
 | 
						|
 | 
						|
static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
 | 
						|
{
 | 
						|
	if (t->con.mode & CON_APPLY) {
 | 
						|
		int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | 
						|
 | 
						|
		/* on setup call, use first object */
 | 
						|
		if (td == NULL) {
 | 
						|
			td= t->data;
 | 
						|
		}
 | 
						|
 | 
						|
		switch(mode) {
 | 
						|
		case CON_AXIS0:
 | 
						|
		case (CON_AXIS1|CON_AXIS2):
 | 
						|
			VECCOPY(vec, td->axismtx[0]);
 | 
						|
			break;
 | 
						|
		case CON_AXIS1:
 | 
						|
		case (CON_AXIS0|CON_AXIS2):
 | 
						|
			VECCOPY(vec, td->axismtx[1]);
 | 
						|
			break;
 | 
						|
		case CON_AXIS2:
 | 
						|
		case (CON_AXIS0|CON_AXIS1):
 | 
						|
			VECCOPY(vec, td->axismtx[2]);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
 | 
						|
			if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
 | 
						|
				*angle = -(*angle);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*--------------------- INTERNAL SETUP CALLS ------------------*/
 | 
						|
 | 
						|
void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) {
 | 
						|
	strncpy(t->con.text + 1, text, 48);
 | 
						|
	copy_m3_m3(t->con.mtx, space);
 | 
						|
	t->con.mode = mode;
 | 
						|
	getConstraintMatrix(t);
 | 
						|
 | 
						|
	startConstraint(t);
 | 
						|
 | 
						|
	t->con.drawExtra = NULL;
 | 
						|
	t->con.applyVec = applyAxisConstraintVec;
 | 
						|
	t->con.applySize = applyAxisConstraintSize;
 | 
						|
	t->con.applyRot = applyAxisConstraintRot;
 | 
						|
	t->redraw = 1;
 | 
						|
}
 | 
						|
 | 
						|
void setLocalConstraint(TransInfo *t, int mode, const char text[]) {
 | 
						|
	if (t->flag & T_EDIT) {
 | 
						|
		float obmat[3][3];
 | 
						|
		copy_m3_m4(obmat, t->scene->obedit->obmat);
 | 
						|
		normalize_m3(obmat);
 | 
						|
		setConstraint(t, obmat, mode, text);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (t->total == 1) {
 | 
						|
			setConstraint(t, t->data->axismtx, mode, text);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			strncpy(t->con.text + 1, text, 48);
 | 
						|
			copy_m3_m3(t->con.mtx, t->data->axismtx);
 | 
						|
			t->con.mode = mode;
 | 
						|
			getConstraintMatrix(t);
 | 
						|
 | 
						|
			startConstraint(t);
 | 
						|
 | 
						|
			t->con.drawExtra = drawObjectConstraint;
 | 
						|
			t->con.applyVec = applyObjectConstraintVec;
 | 
						|
			t->con.applySize = applyObjectConstraintSize;
 | 
						|
			t->con.applyRot = applyObjectConstraintRot;
 | 
						|
			t->redraw = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
	Set the constraint according to the user defined orientation
 | 
						|
 | 
						|
	ftext is a format string passed to sprintf. It will add the name of
 | 
						|
	the orientation where %s is (logically).
 | 
						|
*/
 | 
						|
void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[]) {
 | 
						|
	char text[40];
 | 
						|
 | 
						|
	switch(orientation) {
 | 
						|
	case V3D_MANIP_GLOBAL:
 | 
						|
		{
 | 
						|
			float mtx[3][3];
 | 
						|
			sprintf(text, ftext, "global");
 | 
						|
			unit_m3(mtx);
 | 
						|
			setConstraint(t, mtx, mode, text);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case V3D_MANIP_LOCAL:
 | 
						|
		sprintf(text, ftext, "local");
 | 
						|
		setLocalConstraint(t, mode, text);
 | 
						|
		break;
 | 
						|
	case V3D_MANIP_NORMAL:
 | 
						|
		sprintf(text, ftext, "normal");
 | 
						|
		setConstraint(t, t->spacemtx, mode, text);
 | 
						|
		break;
 | 
						|
	case V3D_MANIP_VIEW:
 | 
						|
		sprintf(text, ftext, "view");
 | 
						|
		setConstraint(t, t->spacemtx, mode, text);
 | 
						|
		break;
 | 
						|
	case V3D_MANIP_GIMBAL:
 | 
						|
		sprintf(text, ftext, "gimbal");
 | 
						|
		setConstraint(t, t->spacemtx, mode, text);
 | 
						|
		break;
 | 
						|
	default: /* V3D_MANIP_CUSTOM */
 | 
						|
		sprintf(text, ftext, t->spacename);
 | 
						|
		setConstraint(t, t->spacemtx, mode, text);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	t->con.orientation = orientation;
 | 
						|
 | 
						|
	t->con.mode |= CON_USER;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------- DRAWING CONSTRAINTS -------------------*/
 | 
						|
 | 
						|
void drawConstraint(const struct bContext *C, TransInfo *t)
 | 
						|
{
 | 
						|
	TransCon *tc = &(t->con);
 | 
						|
 | 
						|
	if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE))
 | 
						|
		return;
 | 
						|
	if (!(tc->mode & CON_APPLY))
 | 
						|
		return;
 | 
						|
	if (t->flag & T_USES_MANIPULATOR)
 | 
						|
		return;
 | 
						|
	if (t->flag & T_NO_CONSTRAINT)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* nasty exception for Z constraint in camera view */
 | 
						|
	// TRANSFORM_FIX_ME
 | 
						|
//	if((t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp==V3D_CAMOB)
 | 
						|
//		return;
 | 
						|
 | 
						|
	if (tc->drawExtra) {
 | 
						|
		tc->drawExtra(t);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (tc->mode & CON_SELECT) {
 | 
						|
			float vec[3];
 | 
						|
			char col2[3] = {255,255,255};
 | 
						|
			int depth_test_enabled;
 | 
						|
 | 
						|
			convertViewVec(t, vec, (short)(t->mval[0] - t->con.imval[0]), (short)(t->mval[1] - t->con.imval[1]));
 | 
						|
			add_v3_v3(vec, tc->center);
 | 
						|
 | 
						|
			drawLine(t, tc->center, tc->mtx[0], 'x', 0);
 | 
						|
			drawLine(t, tc->center, tc->mtx[1], 'y', 0);
 | 
						|
			drawLine(t, tc->center, tc->mtx[2], 'z', 0);
 | 
						|
 | 
						|
			glColor3ubv((GLubyte *)col2);
 | 
						|
 | 
						|
			depth_test_enabled = glIsEnabled(GL_DEPTH_TEST);
 | 
						|
			if(depth_test_enabled)
 | 
						|
				glDisable(GL_DEPTH_TEST);
 | 
						|
 | 
						|
			setlinestyle(1);
 | 
						|
			glBegin(GL_LINE_STRIP);
 | 
						|
				glVertex3fv(tc->center);
 | 
						|
				glVertex3fv(vec);
 | 
						|
			glEnd();
 | 
						|
			setlinestyle(0);
 | 
						|
 | 
						|
			if(depth_test_enabled)
 | 
						|
				glEnable(GL_DEPTH_TEST);
 | 
						|
		}
 | 
						|
 | 
						|
		if (tc->mode & CON_AXIS0) {
 | 
						|
			drawLine(t, tc->center, tc->mtx[0], 'x', DRAWLIGHT);
 | 
						|
		}
 | 
						|
		if (tc->mode & CON_AXIS1) {
 | 
						|
			drawLine(t, tc->center, tc->mtx[1], 'y', DRAWLIGHT);
 | 
						|
		}
 | 
						|
		if (tc->mode & CON_AXIS2) {
 | 
						|
			drawLine(t, tc->center, tc->mtx[2], 'z', DRAWLIGHT);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* called from drawview.c, as an extra per-window draw option */
 | 
						|
void drawPropCircle(const struct bContext *C, TransInfo *t)
 | 
						|
{
 | 
						|
	if (t->flag & T_PROP_EDIT) {
 | 
						|
		RegionView3D *rv3d = CTX_wm_region_view3d(C);
 | 
						|
		float tmat[4][4], imat[4][4];
 | 
						|
		float center[3];
 | 
						|
 | 
						|
		UI_ThemeColor(TH_GRID);
 | 
						|
 | 
						|
		if(t->spacetype == SPACE_VIEW3D && rv3d != NULL)
 | 
						|
		{
 | 
						|
			copy_m4_m4(tmat, rv3d->viewmat);
 | 
						|
			invert_m4_m4(imat, tmat);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			unit_m4(tmat);
 | 
						|
			unit_m4(imat);
 | 
						|
		}
 | 
						|
 | 
						|
		glPushMatrix();
 | 
						|
 | 
						|
		VECCOPY(center, t->center);
 | 
						|
 | 
						|
		if((t->spacetype == SPACE_VIEW3D) && t->obedit)
 | 
						|
		{
 | 
						|
			mul_m4_v3(t->obedit->obmat, center); /* because t->center is in local space */
 | 
						|
		}
 | 
						|
		else if(t->spacetype == SPACE_IMAGE)
 | 
						|
		{
 | 
						|
			float aspx, aspy;
 | 
						|
 | 
						|
			ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
 | 
						|
			glScalef(1.0f/aspx, 1.0f/aspy, 1.0);
 | 
						|
		}
 | 
						|
 | 
						|
		set_inverted_drawing(1);
 | 
						|
		drawcircball(GL_LINE_LOOP, center, t->prop_size, imat);
 | 
						|
		set_inverted_drawing(0);
 | 
						|
 | 
						|
		glPopMatrix();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void drawObjectConstraint(TransInfo *t) {
 | 
						|
	int i;
 | 
						|
	TransData * td = t->data;
 | 
						|
 | 
						|
	/* Draw the first one lighter because that's the one who controls the others.
 | 
						|
	   Meaning the transformation is projected on that one and just copied on the others
 | 
						|
	   constraint space.
 | 
						|
	   In a nutshell, the object with light axis is controlled by the user and the others follow.
 | 
						|
	   Without drawing the first light, users have little clue what they are doing.
 | 
						|
	 */
 | 
						|
	if (t->con.mode & CON_AXIS0) {
 | 
						|
		drawLine(t, td->ob->obmat[3], td->axismtx[0], 'x', DRAWLIGHT);
 | 
						|
	}
 | 
						|
	if (t->con.mode & CON_AXIS1) {
 | 
						|
		drawLine(t, td->ob->obmat[3], td->axismtx[1], 'y', DRAWLIGHT);
 | 
						|
	}
 | 
						|
	if (t->con.mode & CON_AXIS2) {
 | 
						|
		drawLine(t, td->ob->obmat[3], td->axismtx[2], 'z', DRAWLIGHT);
 | 
						|
	}
 | 
						|
 | 
						|
	td++;
 | 
						|
 | 
						|
	for(i=1;i<t->total;i++,td++) {
 | 
						|
		if (t->con.mode & CON_AXIS0) {
 | 
						|
			drawLine(t, td->ob->obmat[3], td->axismtx[0], 'x', 0);
 | 
						|
		}
 | 
						|
		if (t->con.mode & CON_AXIS1) {
 | 
						|
			drawLine(t, td->ob->obmat[3], td->axismtx[1], 'y', 0);
 | 
						|
		}
 | 
						|
		if (t->con.mode & CON_AXIS2) {
 | 
						|
			drawLine(t, td->ob->obmat[3], td->axismtx[2], 'z', 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*--------------------- START / STOP CONSTRAINTS ---------------------- */
 | 
						|
 | 
						|
void startConstraint(TransInfo *t) {
 | 
						|
	t->con.mode |= CON_APPLY;
 | 
						|
	*t->con.text = ' ';
 | 
						|
	t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max);
 | 
						|
}
 | 
						|
 | 
						|
void stopConstraint(TransInfo *t) {
 | 
						|
	t->con.mode &= ~(CON_APPLY|CON_SELECT);
 | 
						|
	*t->con.text = '\0';
 | 
						|
	t->num.idx_max = t->idx_max;
 | 
						|
}
 | 
						|
 | 
						|
void getConstraintMatrix(TransInfo *t)
 | 
						|
{
 | 
						|
	float mat[3][3];
 | 
						|
	invert_m3_m3(t->con.imtx, t->con.mtx);
 | 
						|
	unit_m3(t->con.pmtx);
 | 
						|
 | 
						|
	if (!(t->con.mode & CON_AXIS0)) {
 | 
						|
		t->con.pmtx[0][0]		=
 | 
						|
			t->con.pmtx[0][1]	=
 | 
						|
			t->con.pmtx[0][2]	= 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(t->con.mode & CON_AXIS1)) {
 | 
						|
		t->con.pmtx[1][0]		=
 | 
						|
			t->con.pmtx[1][1]	=
 | 
						|
			t->con.pmtx[1][2]	= 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(t->con.mode & CON_AXIS2)) {
 | 
						|
		t->con.pmtx[2][0]		=
 | 
						|
			t->con.pmtx[2][1]	=
 | 
						|
			t->con.pmtx[2][2]	= 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx);
 | 
						|
	mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat);
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------- MMB Select -------------------------------*/
 | 
						|
 | 
						|
void initSelectConstraint(TransInfo *t, float mtx[3][3])
 | 
						|
{
 | 
						|
	copy_m3_m3(t->con.mtx, mtx);
 | 
						|
	t->con.mode |= CON_APPLY;
 | 
						|
	t->con.mode |= CON_SELECT;
 | 
						|
 | 
						|
	setNearestAxis(t);
 | 
						|
	t->con.drawExtra = NULL;
 | 
						|
	t->con.applyVec = applyAxisConstraintVec;
 | 
						|
	t->con.applySize = applyAxisConstraintSize;
 | 
						|
	t->con.applyRot = applyAxisConstraintRot;
 | 
						|
}
 | 
						|
 | 
						|
void selectConstraint(TransInfo *t) {
 | 
						|
	if (t->con.mode & CON_SELECT) {
 | 
						|
		setNearestAxis(t);
 | 
						|
		startConstraint(t);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void postSelectConstraint(TransInfo *t)
 | 
						|
{
 | 
						|
	if (!(t->con.mode & CON_SELECT))
 | 
						|
		return;
 | 
						|
 | 
						|
	t->con.mode &= ~CON_AXIS0;
 | 
						|
	t->con.mode &= ~CON_AXIS1;
 | 
						|
	t->con.mode &= ~CON_AXIS2;
 | 
						|
	t->con.mode &= ~CON_SELECT;
 | 
						|
 | 
						|
	setNearestAxis(t);
 | 
						|
 | 
						|
	startConstraint(t);
 | 
						|
	t->redraw = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void setNearestAxis2d(TransInfo *t)
 | 
						|
{
 | 
						|
	/* no correction needed... just use whichever one is lower */
 | 
						|
	if ( abs(t->mval[0]-t->con.imval[0]) < abs(t->mval[1]-t->con.imval[1]) ) {
 | 
						|
		t->con.mode |= CON_AXIS1;
 | 
						|
		sprintf(t->con.text, " along Y axis");
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		t->con.mode |= CON_AXIS0;
 | 
						|
		sprintf(t->con.text, " along X axis");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void setNearestAxis3d(TransInfo *t)
 | 
						|
{
 | 
						|
	float zfac;
 | 
						|
	float mvec[3], axis[3], proj[3];
 | 
						|
	float len[3];
 | 
						|
	int i, icoord[2];
 | 
						|
 | 
						|
	/* calculate mouse movement */
 | 
						|
	mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
 | 
						|
	mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
 | 
						|
	mvec[2] = 0.0f;
 | 
						|
 | 
						|
	/* we need to correct axis length for the current zoomlevel of view,
 | 
						|
	   this to prevent projected values to be clipped behind the camera
 | 
						|
	   and to overflow the short integers.
 | 
						|
	   The formula used is a bit stupid, just a simplification of the substraction
 | 
						|
	   of two 2D points 30 pixels apart (that's the last factor in the formula) after
 | 
						|
	   projecting them with window_to_3d_delta and then get the length of that vector.
 | 
						|
	*/
 | 
						|
	zfac= t->persmat[0][3]*t->center[0]+ t->persmat[1][3]*t->center[1]+ t->persmat[2][3]*t->center[2]+ t->persmat[3][3];
 | 
						|
	zfac = len_v3(t->persinv[0]) * 2.0f/t->ar->winx * zfac * 30.0f;
 | 
						|
 | 
						|
	for (i = 0; i<3; i++) {
 | 
						|
		VECCOPY(axis, t->con.mtx[i]);
 | 
						|
 | 
						|
		mul_v3_fl(axis, zfac);
 | 
						|
		/* now we can project to get window coordinate */
 | 
						|
		add_v3_v3(axis, t->con.center);
 | 
						|
		projectIntView(t, axis, icoord);
 | 
						|
 | 
						|
		axis[0] = (float)(icoord[0] - t->center2d[0]);
 | 
						|
		axis[1] = (float)(icoord[1] - t->center2d[1]);
 | 
						|
		axis[2] = 0.0f;
 | 
						|
 | 
						|
		 if (normalize_v3(axis) != 0.0f) {
 | 
						|
			project_v3_v3v3(proj, mvec, axis);
 | 
						|
			sub_v3_v3v3(axis, mvec, proj);
 | 
						|
			len[i] = normalize_v3(axis);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			len[i] = 10000000000.0f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (len[0] <= len[1] && len[0] <= len[2]) {
 | 
						|
		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
			t->con.mode |= (CON_AXIS1|CON_AXIS2);
 | 
						|
			sprintf(t->con.text, " locking %s X axis", t->spacename);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			t->con.mode |= CON_AXIS0;
 | 
						|
			sprintf(t->con.text, " along %s X axis", t->spacename);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (len[1] <= len[0] && len[1] <= len[2]) {
 | 
						|
		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
			t->con.mode |= (CON_AXIS0|CON_AXIS2);
 | 
						|
			sprintf(t->con.text, " locking %s Y axis", t->spacename);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			t->con.mode |= CON_AXIS1;
 | 
						|
			sprintf(t->con.text, " along %s Y axis", t->spacename);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (len[2] <= len[1] && len[2] <= len[0]) {
 | 
						|
		if (t->modifiers & MOD_CONSTRAINT_PLANE) {
 | 
						|
			t->con.mode |= (CON_AXIS0|CON_AXIS1);
 | 
						|
			sprintf(t->con.text, " locking %s Z axis", t->spacename);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			t->con.mode |= CON_AXIS2;
 | 
						|
			sprintf(t->con.text, " along %s Z axis", t->spacename);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void setNearestAxis(TransInfo *t)
 | 
						|
{
 | 
						|
	/* clear any prior constraint flags */
 | 
						|
	t->con.mode &= ~CON_AXIS0;
 | 
						|
	t->con.mode &= ~CON_AXIS1;
 | 
						|
	t->con.mode &= ~CON_AXIS2;
 | 
						|
 | 
						|
	/* constraint setting - depends on spacetype */
 | 
						|
	if (t->spacetype == SPACE_VIEW3D) {
 | 
						|
		/* 3d-view */
 | 
						|
		setNearestAxis3d(t);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* assume that this means a 2D-Editor */
 | 
						|
		setNearestAxis2d(t);
 | 
						|
	}
 | 
						|
 | 
						|
	getConstraintMatrix(t);
 | 
						|
}
 | 
						|
 | 
						|
/*-------------- HELPER FUNCTIONS ----------------*/
 | 
						|
 | 
						|
char constraintModeToChar(TransInfo *t) {
 | 
						|
	if ((t->con.mode & CON_APPLY)==0) {
 | 
						|
		return '\0';
 | 
						|
	}
 | 
						|
	switch (t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2)) {
 | 
						|
	case (CON_AXIS0):
 | 
						|
	case (CON_AXIS1|CON_AXIS2):
 | 
						|
		return 'X';
 | 
						|
	case (CON_AXIS1):
 | 
						|
	case (CON_AXIS0|CON_AXIS2):
 | 
						|
		return 'Y';
 | 
						|
	case (CON_AXIS2):
 | 
						|
	case (CON_AXIS0|CON_AXIS1):
 | 
						|
		return 'Z';
 | 
						|
	default:
 | 
						|
		return '\0';
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int isLockConstraint(TransInfo *t) {
 | 
						|
	int mode = t->con.mode;
 | 
						|
 | 
						|
	if ( (mode & (CON_AXIS0|CON_AXIS1)) == (CON_AXIS0|CON_AXIS1))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if ( (mode & (CON_AXIS1|CON_AXIS2)) == (CON_AXIS1|CON_AXIS2))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if ( (mode & (CON_AXIS0|CON_AXIS2)) == (CON_AXIS0|CON_AXIS2))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the dimension of the constraint space.
 | 
						|
 *
 | 
						|
 * For that reason, the flags always needs to be set to properly evaluate here,
 | 
						|
 * even if they aren't actually used in the callback function. (Which could happen
 | 
						|
 * for weird constraints not yet designed. Along a path for example.)
 | 
						|
 */
 | 
						|
 | 
						|
int getConstraintSpaceDimension(TransInfo *t)
 | 
						|
{
 | 
						|
	int n = 0;
 | 
						|
 | 
						|
	if (t->con.mode & CON_AXIS0)
 | 
						|
		n++;
 | 
						|
 | 
						|
	if (t->con.mode & CON_AXIS1)
 | 
						|
		n++;
 | 
						|
 | 
						|
	if (t->con.mode & CON_AXIS2)
 | 
						|
		n++;
 | 
						|
 | 
						|
	return n;
 | 
						|
/*
 | 
						|
  Someone willing to do it criptically could do the following instead:
 | 
						|
 | 
						|
  return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
 | 
						|
 | 
						|
  Based on the assumptions that the axis flags are one after the other and start at 1
 | 
						|
*/
 | 
						|
}
 |