This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/euler.c
Campbell Barton c1cd33e166 examples for autogenerated docs are now implicit and used when available.
This means adding the file "bpy.props.py" in the examples dir will automatically be used when generating docs, unused examples give warnings.
2010-02-28 13:45:08 +00:00

668 lines
18 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_math.h"
#include "BKE_utildefines.h"
#include "BLI_blenlib.h"
#include "BLO_sys_types.h"
//----------------------------------Mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
{
PyObject *listObject = NULL;
int size, i;
float eul[3];
PyObject *e;
short order= 0; // TODO, add order option
size = PyTuple_GET_SIZE(args);
if (size == 1) {
listObject = PyTuple_GET_ITEM(args, 0);
if (PySequence_Check(listObject)) {
size = PySequence_Length(listObject);
} else { // Single argument was not a sequence
PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
} else if (size == 0) {
//returns a new empty 3d euler
return newEulerObject(NULL, order, Py_NEW, NULL);
} else {
listObject = args;
}
if (size != 3) { // Invalid euler size
PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
for (i=0; i<size; i++) {
e = PySequence_GetItem(listObject, i);
if (e == NULL) { // Failed to read sequence
Py_DECREF(listObject);
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
eul[i]= (float)PyFloat_AsDouble(e);
Py_DECREF(e);
if(eul[i]==-1 && PyErr_Occurred()) { // parsed item is not a number
PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
return NULL;
}
}
return newEulerObject(eul, order, Py_NEW, NULL);
}
short euler_order_from_string(const char *str, const char *error_prefix)
{
if((str[0] && str[1] && str[2] && str[3]=='\0')) {
switch(*((int32_t *)str)) {
case 'X'|'Y'<<8|'Z'<<16: return 0;
case 'X'|'Z'<<8|'Y'<<16: return 1;
case 'Y'|'X'<<8|'Z'<<16: return 2;
case 'Y'|'Z'<<8|'X'<<16: return 3;
case 'Z'|'X'<<8|'Y'<<16: return 4;
case 'Z'|'Y'<<8|'X'<<16: return 5;
}
}
PyErr_Format(PyExc_TypeError, "%s: invalid euler order '%s'", error_prefix, str);
return -1;
}
//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
static char Euler_ToQuat_doc[] =
".. method:: to_quat()\n"
"\n"
" Return a quaternion representation of the euler.\n"
"\n"
" :return: Quaternion representation of the euler.\n"
" :rtype: :class:`Quaternion`\n";
static PyObject *Euler_ToQuat(EulerObject * self)
{
float quat[4];
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order==0) eul_to_quat(quat, self->eul);
else eulO_to_quat(quat, self->eul, self->order);
return newQuaternionObject(quat, Py_NEW, NULL);
}
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler
static char Euler_ToMatrix_doc[] =
".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the euler.\n"
"\n"
" :return: A 3x3 roation matrix representation of the euler.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *Euler_ToMatrix(EulerObject * self)
{
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order==0) eul_to_mat3((float (*)[3])mat, self->eul);
else eulO_to_mat3((float (*)[3])mat, self->eul, self->order);
return newMatrixObject(mat, 3, 3 , Py_NEW, NULL);
}
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation
// TODO, check if this works with rotation order!!!
static char Euler_Unique_doc[] =
".. method:: unique()\n"
"\n"
" Calculate a unique rotation for this euler. Avoids gimble lock.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Euler`\n";
static PyObject *Euler_Unique(EulerObject * self)
{
#define PI_2 (Py_PI * 2.0)
#define PI_HALF (Py_PI / 2.0)
#define PI_INV (1.0 / Py_PI)
double heading, pitch, bank;
if(!BaseMath_ReadCallback(self))
return NULL;
heading = self->eul[0];
pitch = self->eul[1];
bank = self->eul[2];
//wrap heading in +180 / -180
pitch += Py_PI;
pitch -= floor(pitch * PI_INV) * PI_2;
pitch -= Py_PI;
if(pitch < -PI_HALF) {
pitch = -Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
} else if(pitch > PI_HALF) {
pitch = Py_PI - pitch;
heading += Py_PI;
bank += Py_PI;
}
//gimbal lock test
if(fabs(pitch) > PI_HALF - 1e-4) {
heading += bank;
bank = 0.0f;
} else {
bank += Py_PI;
bank -= (floor(bank * PI_INV)) * PI_2;
bank -= Py_PI;
}
heading += Py_PI;
heading -= (floor(heading * PI_INV)) * PI_2;
heading -= Py_PI;
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0
static char Euler_Zero_doc[] =
".. method:: zero()\n"
"\n"
" Set all values to zero.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Euler`\n";
static PyObject *Euler_Zero(EulerObject * self)
{
self->eul[0] = 0.0;
self->eul[1] = 0.0;
self->eul[2] = 0.0;
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result
//should return a unique euler rotation (i.e. no 720 degree pitches :)
static PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)");
return NULL;
}
if(ELEM3(*axis, 'x', 'y', 'z') && axis[1]=='\0'){
PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
return NULL;
}
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->order == 0) rotate_eul(self->eul, *axis, angle);
else rotate_eulO(self->eul, self->order, *axis, angle);
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
static char Euler_MakeCompatible_doc[] =
".. method:: make_compatible(other)\n"
"\n"
" Make this euler compatible with another, so interpolating between them works as intended.\n"
"\n"
" :arg other: make compatible with this rotation.\n"
" :type other: :class:`Euler`\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Euler`\n"
"\n"
" .. note:: the order of eulers must match or an exception is raised.\n";
static PyObject *Euler_MakeCompatible(EulerObject * self, EulerObject *value)
{
if(!EulerObject_Check(value)) {
PyErr_SetString(PyExc_TypeError, "euler.make_compatible(euler): expected a single euler argument.");
return NULL;
}
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
return NULL;
if(self->order != value->order) {
PyErr_SetString(PyExc_ValueError, "euler.make_compatible(euler): rotation orders don't match\n");
return NULL;
}
compatible_eul(self->eul, value->eul);
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
//----------------------------Euler.rotate()-----------------------
// return a copy of the euler
static char Euler_copy_doc[] =
".. function:: copy()\n"
"\n"
" Returns a copy of this euler.\n"
"\n"
" :return: A copy of the euler.\n"
" :rtype: :class:`Euler`\n"
"\n"
" .. note:: use this to get a copy of a wrapped euler with no reference to the original data.\n";
static PyObject *Euler_copy(EulerObject * self, PyObject *args)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return newEulerObject(self->eul, self->order, Py_NEW, Py_TYPE(self));
}
//----------------------------print object (internal)--------------
//print the object to screen
static PyObject *Euler_repr(EulerObject * self)
{
char str[64];
if(!BaseMath_ReadCallback(self))
return NULL;
sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]);
return PyUnicode_FromString(str);
}
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
EulerObject *eulA = NULL, *eulB = NULL;
int result = 0;
if(EulerObject_Check(objectA)) {
eulA = (EulerObject*)objectA;
if(!BaseMath_ReadCallback(eulA))
return NULL;
}
if(EulerObject_Check(objectB)) {
eulB = (EulerObject*)objectB;
if(!BaseMath_ReadCallback(eulB))
return NULL;
}
if (!eulA || !eulB){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
eulA = (EulerObject*)objectA;
eulB = (EulerObject*)objectB;
switch (comparison_type){
case Py_EQ:
result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
break;
case Py_NE:
result = !EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i<0) i= 3-i;
if(i < 0 || i >= 3) {
PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
return NULL;
}
if(!BaseMath_ReadIndexCallback(self, i))
return NULL;
return PyFloat_FromDouble(self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
{
float f = PyFloat_AsDouble(value);
if(f == -1 && PyErr_Occurred()) { // parsed item not a number
PyErr_SetString(PyExc_TypeError, "euler[attribute] = x: argument not a number");
return -1;
}
if(i<0) i= 3-i;
if(i < 0 || i >= 3){
PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
return -1;
}
self->eul[i] = f;
if(!BaseMath_WriteIndexCallback(self, i))
return -1;
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->eul[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Euler_ass_slice(EulerObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float eul[3];
PyObject *e;
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, 3);
if (end<0) end= 4+end;
CLAMP(end, 0, 3);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
return -1;
}
for (i = 0; i < size; i++) {
e = PySequence_GetItem(seq, i);
if (e == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence");
return -1;
}
eul[i] = (float)PyFloat_AsDouble(e);
Py_DECREF(e);
if(eul[i]==-1 && PyErr_Occurred()) { // parsed item not a number
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number");
return -1;
}
}
//parsed well - now set in vector
for(y = 0; y < 3; y++){
self->eul[begin + y] = eul[y];
}
BaseMath_WriteCallback(self);
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
(lenfunc) Euler_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(ssizeargfunc) 0, /* sq_repeat */
(ssizeargfunc) Euler_item, /* sq_item */
(ssizessizeargfunc) Euler_slice, /* sq_slice */
(ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) Euler_ass_slice, /* sq_ass_slice */
};
/*
* vector axis, vector.x/y/z/w
*/
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
return Euler_item(self, GET_INT_FROM_POINTER(type));
}
static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
{
return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
/* rotation order */
static PyObject *Euler_getOrder(EulerObject *self, void *type)
{
static char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"};
return PyUnicode_FromString(order[self->order]);
}
static int Euler_setOrder( EulerObject * self, PyObject * value, void * type )
{
char *order_str= _PyUnicode_AsString(value);
short order= euler_order_from_string(order_str, "euler.order");
if(order < 0)
return -1;
if(self->cb_user) {
PyErr_SetString(PyExc_TypeError, "euler.order: assignment is not allowed on eulers with an owner");
return -1;
}
self->order= order;
return 0;
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
{"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians. **type** float", (void *)0},
{"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians. **type** float", (void *)1},
{"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians. **type** float", (void *)2},
{"order", (getter)Euler_getOrder, (setter)Euler_setOrder, "Euler rotation order. **type** string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
{"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
//-----------------------METHOD DEFINITIONS ----------------------
static struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc},
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
{"to_matrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
{"to_quat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, NULL},
{"make_compatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{NULL, NULL, 0, NULL}
};
//------------------PY_OBECT DEFINITION--------------------------
static char euler_doc[] =
"This object gives access to Eulers in Blender.";
PyTypeObject euler_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"euler", //tp_name
sizeof(EulerObject), //tp_basicsize
0, //tp_itemsize
(destructor)BaseMathObject_dealloc, //tp_dealloc
0, //tp_print
0, //tp_getattr
0, //tp_setattr
0, //tp_compare
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
0, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
0, //tp_getattro
0, //tp_setattro
0, //tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
euler_doc, //tp_doc
0, //tp_traverse
0, //tp_clear
(richcmpfunc)Euler_richcmpr, //tp_richcompare
0, //tp_weaklistoffset
0, //tp_iter
0, //tp_iternext
Euler_methods, //tp_methods
0, //tp_members
Euler_getseters, //tp_getset
0, //tp_base
0, //tp_dict
0, //tp_descr_get
0, //tp_descr_set
0, //tp_dictoffset
0, //tp_init
0, //tp_alloc
Euler_new, //tp_new
0, //tp_free
0, //tp_is_gc
0, //tp_bases
0, //tp_mro
0, //tp_cache
0, //tp_subclasses
0, //tp_weaklist
0 //tp_del
};
//------------------------newEulerObject (internal)-------------
//creates a new euler object
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_type)
{
EulerObject *self;
int x;
if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(EulerObject, &euler_Type);
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
self->eul = eul;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->eul = PyMem_Malloc(3 * sizeof(float));
if(!eul) { //new empty
for(x = 0; x < 3; x++) {
self->eul[x] = 0.0f;
}
}else{
VECCOPY(self->eul, eul);
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
self->order= order;
return (PyObject *)self;
}
PyObject *newEulerObject_cb(PyObject *cb_user, short order, int cb_type, int cb_subtype)
{
EulerObject *self= (EulerObject *)newEulerObject(NULL, order, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *)self;
}