This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/gpu/shaders/material/gpu_shader_material_principled.glsl
2021-04-08 17:45:16 +02:00

207 lines
8.0 KiB
GLSL

#ifndef VOLUMETRICS
vec3 tint_from_color(vec3 color)
{
float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
return (lum > 0.0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
}
float principled_sheen(float NV)
{
float f = 1.0 - NV;
/* Empirical approximation (manual curve fitting). Can be refined. */
float sheen = f * f * f * 0.077 + f * 0.01 + 0.00026;
return sheen;
}
CLOSURE_EVAL_FUNCTION_DECLARE_4(node_bsdf_principled, Diffuse, Glossy, Glossy, Refraction)
void node_bsdf_principled(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float emission_strength,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
const float do_diffuse,
const float do_clearcoat,
const float do_refraction,
const float do_multiscatter,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
/* Match cycles. */
metallic = saturate(metallic);
transmission = saturate(transmission);
float diffuse_weight = (1.0 - transmission) * (1.0 - metallic);
transmission *= (1.0 - metallic);
float specular_weight = (1.0 - transmission);
clearcoat = max(clearcoat, 0.0);
transmission_roughness = 1.0 - (1.0 - roughness) * (1.0 - transmission_roughness);
specular = max(0.0, specular);
CLOSURE_VARS_DECLARE_4(Diffuse, Glossy, Glossy, Refraction);
in_Diffuse_0.N = N; /* Normalized during eval. */
in_Diffuse_0.albedo = mix(base_color.rgb, subsurface_color.rgb, subsurface);
in_Glossy_1.N = N; /* Normalized during eval. */
in_Glossy_1.roughness = roughness;
in_Glossy_2.N = CN; /* Normalized during eval. */
in_Glossy_2.roughness = clearcoat_roughness;
in_Refraction_3.N = N; /* Normalized during eval. */
in_Refraction_3.roughness = do_multiscatter != 0.0 ? roughness : transmission_roughness;
in_Refraction_3.ior = ior;
CLOSURE_EVAL_FUNCTION_4(node_bsdf_principled, Diffuse, Glossy, Glossy, Refraction);
result = CLOSURE_DEFAULT;
/* This will tag the whole eval for optimisation. */
if (do_diffuse == 0.0) {
out_Diffuse_0.radiance = vec3(0);
}
if (do_clearcoat == 0.0) {
out_Glossy_2.radiance = vec3(0);
}
if (do_refraction == 0.0) {
out_Refraction_3.radiance = vec3(0);
}
vec3 V = cameraVec(worldPosition);
/* Glossy_1 will always be evaluated. */
float NV = dot(in_Glossy_1.N, V);
vec3 base_color_tint = tint_from_color(base_color.rgb);
float fresnel = (do_multiscatter != 0.0) ?
btdf_lut(NV, in_Glossy_1.roughness, in_Refraction_3.ior).y :
F_eta(in_Refraction_3.ior, NV);
{
/* Glossy reflections.
* Separate Glass reflections and main specular reflections to match Cycles renderpasses. */
out_Glossy_1.radiance = closure_mask_ssr_radiance(out_Glossy_1.radiance, ssr_id);
vec2 split_sum = brdf_lut(NV, roughness);
vec3 glossy_radiance_final = vec3(0.0);
if (transmission > 1e-5) {
/* Glass Reflection: Reuse radiance from Glossy1. */
vec3 out_glass_refl_radiance = out_Glossy_1.radiance;
/* Poor approximation since we baked the LUT using a fixed IOR. */
vec3 f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
vec3 f90 = vec3(1);
vec3 brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
F_brdf_single_scatter(f0, f90, split_sum);
out_glass_refl_radiance *= brdf;
out_glass_refl_radiance = render_pass_glossy_mask(vec3(1), out_glass_refl_radiance);
out_glass_refl_radiance *= fresnel * transmission;
glossy_radiance_final += out_glass_refl_radiance;
}
if (specular_weight > 1e-5) {
vec3 dielectric_f0_color = mix(vec3(1.0), base_color_tint, specular_tint);
vec3 metallic_f0_color = base_color.rgb;
vec3 f0 = mix((0.08 * specular) * dielectric_f0_color, metallic_f0_color, metallic);
/* Cycles does this blending using the microfacet fresnel factor. However, our fresnel
* is already baked inside the split sum LUT. We approximate using by modifying the
* changing the f90 color directly in a non linear fashion. */
vec3 f90 = mix(f0, vec3(1), fast_sqrt(specular));
vec3 brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
F_brdf_single_scatter(f0, f90, split_sum);
out_Glossy_1.radiance *= brdf;
out_Glossy_1.radiance = render_pass_glossy_mask(vec3(1), out_Glossy_1.radiance);
out_Glossy_1.radiance *= specular_weight;
glossy_radiance_final += out_Glossy_1.radiance;
}
closure_load_ssr_data(
glossy_radiance_final, in_Glossy_1.roughness, in_Glossy_1.N, ssr_id, result);
}
if (diffuse_weight > 1e-5) {
/* Mask over all diffuse radiance. */
out_Diffuse_0.radiance *= diffuse_weight;
/* Sheen Coarse approximation: We reuse the diffuse radiance and just scale it. */
vec3 sheen_color = mix(vec3(1), base_color_tint, sheen_tint);
vec3 out_sheen_radiance = out_Diffuse_0.radiance * principled_sheen(NV);
out_sheen_radiance = render_pass_diffuse_mask(vec3(1), out_sheen_radiance);
out_sheen_radiance *= sheen * sheen_color;
result.radiance += out_sheen_radiance;
/* Diffuse / Subsurface. */
float scale = avg(sss_scale) * subsurface;
closure_load_sss_data(scale, out_Diffuse_0.radiance, in_Diffuse_0.albedo, int(sss_id), result);
}
if (transmission > 1e-5) {
float btdf = (do_multiscatter != 0.0) ?
1.0 :
btdf_lut(NV, in_Refraction_3.roughness, in_Refraction_3.ior).x;
/* TODO(fclem) This could be going to a transmission render pass instead. */
out_Refraction_3.radiance *= btdf;
out_Refraction_3.radiance = render_pass_glossy_mask(vec3(1), out_Refraction_3.radiance);
out_Refraction_3.radiance *= base_color.rgb;
/* Simulate 2nd transmission event. */
out_Refraction_3.radiance *= (refractionDepth > 0.0) ? base_color.rgb : vec3(1);
out_Refraction_3.radiance *= (1.0 - fresnel) * transmission;
result.radiance += out_Refraction_3.radiance;
}
if (clearcoat > 1e-5) {
float NV = dot(in_Glossy_2.N, V);
vec2 split_sum = brdf_lut(NV, in_Glossy_2.roughness);
vec3 brdf = F_brdf_single_scatter(vec3(0.04), vec3(1.0), split_sum);
out_Glossy_2.radiance *= brdf * clearcoat * 0.25;
out_Glossy_2.radiance = render_pass_glossy_mask(vec3(1), out_Glossy_2.radiance);
result.radiance += out_Glossy_2.radiance;
}
{
vec3 out_emission_radiance = render_pass_emission_mask(emission.rgb);
out_emission_radiance *= emission_strength;
result.radiance += out_emission_radiance;
}
result.transmittance = vec3(1.0 - alpha);
result.radiance *= alpha;
result.ssr_data.rgb *= alpha;
# ifdef USE_SSS
result.sss_albedo *= alpha;
# endif
}
#else
/* clang-format off */
/* Stub principled because it is not compatible with volumetrics. */
# define node_bsdf_principled(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, bb, cc, dd, result) (result = CLOSURE_DEFAULT)
/* clang-format on */
#endif