This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/collision.c
Kent Mein ff26d59577 WITH_BULLET wasn't working for Makefiles.
I changed it so its tests are more inline with other defines.
Jesterking said this shouldn't affect scons so yell at him if it does. ;)

Kent
2008-04-22 19:14:33 +00:00

1223 lines
31 KiB
C

/* collision.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_group_types.h"
#include "DNA_object_types.h"
#include "DNA_cloth_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_cloth.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "mydevice.h"
#include "Bullet-C-Api.h"
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
{
float tv[3] = {0,0,0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ )
{
VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvh_update_from_mvert ( collmd->bvh, collmd->current_x, collmd->numverts, collmd->current_xnew, 1 );
}
/* build bounding volume hierarchy from mverts (see kdop.c for whole BVH code) */
BVH *bvh_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
{
BVH *bvh=NULL;
bvh = MEM_callocN ( sizeof ( BVH ), "BVH" );
if ( bvh == NULL )
{
printf ( "bvh: Out of memory.\n" );
return NULL;
}
// in the moment, return zero if no faces there
if ( !numfaces )
return NULL;
bvh->epsilon = epsilon;
bvh->numfaces = numfaces;
bvh->mfaces = mfaces;
// we have no faces, we save seperate points
if ( !mfaces )
{
bvh->numfaces = numverts;
}
bvh->numverts = numverts;
bvh->current_x = MEM_dupallocN ( x );
bvh_build ( bvh );
return bvh;
}
void bvh_update_from_mvert ( BVH * bvh, MVert *x, unsigned int numverts, MVert *xnew, int moving )
{
if ( !bvh )
return;
if ( numverts!=bvh->numverts )
return;
if ( x )
memcpy ( bvh->current_xold, x, sizeof ( MVert ) * numverts );
if ( xnew )
memcpy ( bvh->current_x, xnew, sizeof ( MVert ) * numverts );
bvh_update ( bvh, moving );
}
/***********************************
Collision modifier code end
***********************************/
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
/* DG: debug hint! don't forget that all functions were "fabs", "sinf", etc before */
#define mySWAP(a,b) { float tmp = b ; b = a ; a = tmp ; }
int gsl_poly_solve_cubic ( float a, float b, float c, float *x0, float *x1, float *x2 )
{
float q = ( a * a - 3 * b );
float r = ( 2 * a * a * a - 9 * a * b + 27 * c );
float Q = q / 9;
float R = r / 54;
float Q3 = Q * Q * Q;
float R2 = R * R;
float CR2 = 729 * r * r;
float CQ3 = 2916 * q * q * q;
if ( R == 0 && Q == 0 )
{
*x0 = - a / 3 ;
*x1 = - a / 3 ;
*x2 = - a / 3 ;
return 3 ;
}
else if ( CR2 == CQ3 )
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some float roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
float sqrtQ = sqrt ( Q );
if ( R > 0 )
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
return 3 ;
}
else if ( CR2 < CQ3 ) /* equivalent to R2 < Q3 */
{
float sqrtQ = sqrt ( Q );
float sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
float theta = acos ( R / sqrtQ3 );
float norm = -2 * sqrtQ;
*x0 = norm * cos ( theta / 3 ) - a / 3;
*x1 = norm * cos ( ( theta + 2.0 * M_PI ) / 3 ) - a / 3;
*x2 = norm * cos ( ( theta - 2.0 * M_PI ) / 3 ) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if ( *x0 > *x1 )
mySWAP ( *x0, *x1 ) ;
if ( *x1 > *x2 )
{
mySWAP ( *x1, *x2 ) ;
if ( *x0 > *x1 )
mySWAP ( *x0, *x1 ) ;
}
return 3;
}
else
{
float sgnR = ( R >= 0 ? 1 : -1 );
float A = -sgnR * pow ( ABS ( R ) + sqrt ( R2 - Q3 ), 1.0/3.0 );
float B = Q / A ;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
int gsl_poly_solve_quadratic ( float a, float b, float c, float *x0, float *x1 )
{
float disc = b * b - 4 * a * c;
if ( disc > 0 )
{
if ( b == 0 )
{
float r = ABS ( 0.5 * sqrt ( disc ) / a );
*x0 = -r;
*x1 = r;
}
else
{
float sgnb = ( b > 0 ? 1 : -1 );
float temp = -0.5 * ( b + sgnb * sqrt ( disc ) );
float r1 = temp / a ;
float r2 = c / temp ;
if ( r1 < r2 )
{
*x0 = r1 ;
*x1 = r2 ;
}
else
{
*x0 = r2 ;
*x1 = r1 ;
}
}
return 2;
}
else if ( disc == 0 )
{
*x0 = -0.5 * b / a ;
*x1 = -0.5 * b / a ;
return 2 ;
}
else
{
return 0;
}
}
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
int cloth_get_collision_time ( float a[3], float b[3], float c[3], float d[3], float e[3], float f[3], float solution[3] )
{
int num_sols = 0;
float g = -a[2] * c[1] * e[0] + a[1] * c[2] * e[0] +
a[2] * c[0] * e[1] - a[0] * c[2] * e[1] -
a[1] * c[0] * e[2] + a[0] * c[1] * e[2];
float h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
float i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
float j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if ( ABS ( j ) > ALMOST_ZERO )
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
}
else if ( ABS ( i ) > ALMOST_ZERO )
{
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
solution[2] = -1.0;
}
else if ( ABS ( h ) > ALMOST_ZERO )
{
solution[0] = -g / h;
solution[1] = solution[2] = -1.0;
num_sols = 1;
}
else if ( ABS ( g ) > ALMOST_ZERO )
{
solution[0] = 0;
solution[1] = solution[2] = -1.0;
num_sols = 1;
}
// Discard negative solutions
if ( ( num_sols >= 1 ) && ( solution[0] < 0 ) )
{
--num_sols;
solution[0] = solution[num_sols];
}
if ( ( num_sols >= 2 ) && ( solution[1] < 0 ) )
{
--num_sols;
solution[1] = solution[num_sols];
}
if ( ( num_sols == 3 ) && ( solution[2] < 0 ) )
{
--num_sols;
}
// Sort
if ( num_sols == 2 )
{
if ( solution[0] > solution[1] )
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if ( num_sols == 3 )
{
// Bubblesort
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if ( solution[1] > solution[2] )
{
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
// w3 is not perfect
void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < ALMOST_ZERO )
{
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
to[0] = to[1] = to[2] = 0;
VECADDMUL ( to, v1, w1 );
VECADDMUL ( to, v2, w2 );
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd )
{
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = collmd->bvh->epsilon;
cloth1 = clmd->clothObject;
search = clmd->coll_parms->collision_list;
while ( search )
{
collpair = search->link;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
VecMulf ( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
Normalize ( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
result = 1;
}
search = search->next;
}
return result;
}
int cloth_collision_response_moving_tris ( ClothModifierData *clmd, ClothModifierData *coll_clmd )
{
return 1;
}
int cloth_collision_response_moving_edges ( ClothModifierData *clmd, ClothModifierData *coll_clmd )
{
return 1;
}
void cloth_collision_static ( ModifierData *md1, ModifierData *md2, CollisionTree *tree1, CollisionTree *tree2 )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
CollPair *collpair = NULL;
Cloth *cloth1=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL;
double distance = 0;
float epsilon = clmd->coll_parms->epsilon;
float epsilon2 = ( ( CollisionModifierData * ) md2 )->bvh->epsilon;
unsigned int i = 0;
for ( i = 0; i < 4; i++ )
{
collpair = ( CollPair * ) MEM_callocN ( sizeof ( CollPair ), "cloth coll pair" );
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( collmd->mfaces[tree2->tri_index] );
// check all possible pairs of triangles
if ( i == 0 )
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
if ( i == 1 )
{
if ( face1->v4 )
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i+=2;
}
if ( i == 3 )
{
if ( ( face1->v4 ) && ( face2->v4 ) )
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i++;
}
// calc SIPcode (?)
if ( i < 4 )
{
// calc distance + normal
#ifdef WITH_BULLET
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * ( epsilon + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon + epsilon2 + ALMOST_ZERO ) )
{
// printf("dist: %f\n", (float)distance);
// collpair->face1 = tree1->tri_index;
// collpair->face2 = tree2->tri_index;
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
collpair->distance = distance;
BLI_linklist_prepend ( &clmd->coll_parms->collision_list, collpair );
}
else
{
MEM_freeN ( collpair );
}
}
else
{
MEM_freeN ( collpair );
}
}
}
int cloth_are_edges_adjacent ( ClothModifierData *clmd, ClothModifierData *coll_clmd, EdgeCollPair *edgecollpair )
{
Cloth *cloth1 = NULL, *cloth2 = NULL;
ClothVertex *verts1 = NULL, *verts2 = NULL;
float temp[3];
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p21].xold );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p22].xold );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p21].xold );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p22].xold );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
return 0;
}
void cloth_collision_moving_edges ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( cloth2->mfaces[tree2->tri_index] );
for ( i = 0; i < 5; i++ )
{
if ( i == 0 )
{
edgecollpair.p11 = face1->v1;
edgecollpair.p12 = face1->v2;
}
else if ( i == 1 )
{
edgecollpair.p11 = face1->v2;
edgecollpair.p12 = face1->v3;
}
else if ( i == 2 )
{
if ( face1->v4 )
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v4;
}
else
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
i+=5; // get out of here after this edge pair is handled
}
}
else if ( i == 3 )
{
if ( face1->v4 )
{
edgecollpair.p11 = face1->v4;
edgecollpair.p12 = face1->v1;
}
else
continue;
}
else
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
}
for ( j = 0; j < 5; j++ )
{
if ( j == 0 )
{
edgecollpair.p21 = face2->v1;
edgecollpair.p22 = face2->v2;
}
else if ( j == 1 )
{
edgecollpair.p21 = face2->v2;
edgecollpair.p22 = face2->v3;
}
else if ( j == 2 )
{
if ( face2->v4 )
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v4;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
}
else if ( j == 3 )
{
if ( face2->v4 )
{
edgecollpair.p21 = face2->v4;
edgecollpair.p22 = face2->v1;
}
else
continue;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
if ( !cloth_are_edges_adjacent ( clmd, coll_clmd, &edgecollpair ) )
{
VECSUB ( a, verts1[edgecollpair.p12].xold, verts1[edgecollpair.p11].xold );
VECSUB ( b, verts1[edgecollpair.p12].v, verts1[edgecollpair.p11].v );
VECSUB ( c, verts1[edgecollpair.p21].xold, verts1[edgecollpair.p11].xold );
VECSUB ( d, verts1[edgecollpair.p21].v, verts1[edgecollpair.p11].v );
VECSUB ( e, verts2[edgecollpair.p22].xold, verts1[edgecollpair.p11].xold );
VECSUB ( f, verts2[edgecollpair.p22].v, verts1[edgecollpair.p11].v );
numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
for ( k = 0; k < numsolutions; k++ )
{
if ( ( solution[k] >= 0.0 ) && ( solution[k] <= 1.0 ) )
{
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (edge) collision list
// printf("Moving edge found!\n");
}
}
}
}
}
}
void cloth_collision_moving_tris ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
{
CollPair collpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
for ( i = 0; i < 2; i++ )
{
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( cloth2->mfaces[tree2->tri_index] );
// check all possible pairs of triangles
if ( i == 0 )
{
collpair.ap1 = face1->v1;
collpair.ap2 = face1->v2;
collpair.ap3 = face1->v3;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
if ( i == 1 )
{
if ( face1->v4 )
{
collpair.ap1 = face1->v3;
collpair.ap2 = face1->v4;
collpair.ap3 = face1->v1;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
else
i++;
}
// calc SIPcode (?)
if ( i < 2 )
{
VECSUB ( a, verts1[collpair.ap2].xold, verts1[collpair.ap1].xold );
VECSUB ( b, verts1[collpair.ap2].v, verts1[collpair.ap1].v );
VECSUB ( c, verts1[collpair.ap3].xold, verts1[collpair.ap1].xold );
VECSUB ( d, verts1[collpair.ap3].v, verts1[collpair.ap1].v );
for ( j = 0; j < 4; j++ )
{
if ( ( j==3 ) && ! ( face2->v4 ) )
break;
VECSUB ( e, verts2[collpair.pointsb[j]].xold, verts1[collpair.ap1].xold );
VECSUB ( f, verts2[collpair.pointsb[j]].v, verts1[collpair.ap1].v );
numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
for ( k = 0; k < numsolutions; k++ )
{
if ( ( solution[k] >= 0.0 ) && ( solution[k] <= 1.0 ) )
{
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (point-face) collision list
// printf("Moving found!\n");
}
}
// TODO: check borders for collisions
}
}
}
}
void cloth_collision_moving ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
{
// TODO: check for adjacent
cloth_collision_moving_edges ( clmd, coll_clmd, tree1, tree2 );
cloth_collision_moving_tris ( clmd, coll_clmd, tree1, tree2 );
cloth_collision_moving_tris ( coll_clmd, clmd, tree2, tree1 );
}
void cloth_free_collision_list ( ClothModifierData *clmd )
{
// free collision list
if ( clmd->coll_parms->collision_list )
{
LinkNode *search = clmd->coll_parms->collision_list;
while ( search )
{
CollPair *coll_pair = search->link;
MEM_freeN ( coll_pair );
search = search->next;
}
BLI_linklist_free ( clmd->coll_parms->collision_list,NULL );
clmd->coll_parms->collision_list = NULL;
}
}
int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData *collmd, float step, float dt )
{
Cloth *cloth = clmd->clothObject;
BVH *cloth_bvh= ( BVH * ) cloth->tree;
long i=0, j = 0, numfaces = 0, numverts = 0;
ClothVertex *verts = NULL;
int ret = 0;
unsigned int result = 0;
float tnull[3] = {0,0,0};
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
if ( collmd->bvh )
{
/* get pointer to bounding volume hierarchy */
BVH *coll_bvh = collmd->bvh;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
bvh_traverse ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, cloth_bvh->root, coll_bvh->root, step, cloth_collision_static, 0 );
}
else
{
if ( G.rt > 0 )
printf ( "cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n" );
}
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
{
result = 0;
if ( collmd->bvh )
result += cloth_collision_response_static ( clmd, collmd );
// apply impulses in parallel
if ( result )
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECCOPY ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
if ( !result )
break;
}
cloth_free_collision_list ( clmd );
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
{
Base *base=NULL;
CollisionModifierData *collmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVH *cloth_bvh=NULL;
long i=0, j = 0, numfaces = 0, numverts = 0;
unsigned int result = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0;
ClothModifierData *tclmd;
int collisions = 0, count = 0;
if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->tree ) )
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = ( BVH * ) cloth->tree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvh_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
do
{
result = 0;
clmd->coll_parms->collision_list = NULL;
// check all collision objects
for ( base = G.scene->base.first; base; base = base->next )
{
coll_ob = base->object;
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
if ( !collmd )
{
if ( coll_ob->dup_group )
{
GroupObject *go;
Group *group = coll_ob->dup_group;
for ( go= group->gobject.first; go; go= go->next )
{
coll_ob = go->ob;
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
if ( !collmd )
continue;
tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
if ( tclmd == clmd )
continue;
ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
}
}
}
else
{
tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
if ( tclmd == clmd )
continue;
ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
}
}
rounds++;
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ )
{
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
collisions = 1;
verts = cloth->verts; // needed for openMP
for ( count = 0; count < clmd->coll_parms->self_loop_count; count++ )
{
if ( collisions )
{
collisions = 0;
#pragma omp parallel for private(i,j, collisions) shared(verts, ret)
for ( i = 0; i < cloth->numverts; i++ )
{
for ( j = i + 1; j < cloth->numverts; j++ )
{
float temp[3];
float length = 0;
float mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
VECSUB ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, i, j ) )
{
continue;
}
length = Normalize ( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
VecMulf ( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
collisions = 1;
if ( !ret )
{
#pragma omp critical
{
ret = 1;
}
}
}
}
}
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret )
{
for ( i = 0; i < cloth->numverts; i++ )
{
if ( ! ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
}
}
////////////////////////////////////////////////////////////
}
}
while ( result && ( clmd->coll_parms->loop_count>rounds ) );
return MIN2 ( ret, 1 );
}