2649 lines
67 KiB
C
2649 lines
67 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): 2004-2006, Blender Foundation
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/render/intern/source/shadbuf.c
|
|
* \ingroup render
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_group_types.h"
|
|
#include "DNA_lamp_types.h"
|
|
#include "DNA_material_types.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_jitter.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_rand.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BKE_global.h"
|
|
#include "BKE_scene.h"
|
|
|
|
#include "PIL_time.h"
|
|
|
|
#include "renderpipeline.h"
|
|
#include "render_types.h"
|
|
#include "renderdatabase.h"
|
|
#include "rendercore.h"
|
|
#include "shadbuf.h"
|
|
#include "shading.h"
|
|
#include "zbuf.h"
|
|
|
|
/* XXX, could be better implemented... this is for endian issues */
|
|
#ifdef __BIG_ENDIAN__
|
|
//# define RCOMP 3
|
|
# define GCOMP 2
|
|
# define BCOMP 1
|
|
# define ACOMP 0
|
|
#else
|
|
//# define RCOMP 0
|
|
# define GCOMP 1
|
|
# define BCOMP 2
|
|
# define ACOMP 3
|
|
#endif
|
|
|
|
#define RCT_SIZE_X(rct) ((rct)->xmax - (rct)->xmin)
|
|
#define RCT_SIZE_Y(rct) ((rct)->ymax - (rct)->ymin)
|
|
|
|
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
|
|
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
|
|
/* only to be used here in this file, it's for speed */
|
|
extern struct Render R;
|
|
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* initshadowbuf() in convertBlenderScene.c */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void copy_to_ztile(int *rectz, int size, int x1, int y1, int tile, char *r1)
|
|
{
|
|
int len4, *rz;
|
|
int x2, y2;
|
|
|
|
x2= x1+tile;
|
|
y2= y1+tile;
|
|
if (x2>=size) x2= size-1;
|
|
if (y2>=size) y2= size-1;
|
|
|
|
if (x1>=x2 || y1>=y2) return;
|
|
|
|
len4= 4*(x2- x1);
|
|
rz= rectz + size*y1 + x1;
|
|
for (; y1<y2; y1++) {
|
|
memcpy(r1, rz, len4);
|
|
rz+= size;
|
|
r1+= len4;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static int sizeoflampbuf(ShadBuf *shb)
|
|
{
|
|
int num, count=0;
|
|
char *cp;
|
|
|
|
cp= shb->cbuf;
|
|
num= (shb->size*shb->size)/256;
|
|
|
|
while (num--) count+= *(cp++);
|
|
|
|
return 256*count;
|
|
}
|
|
#endif
|
|
|
|
/* not threadsafe... */
|
|
static float *give_jitter_tab(int samp)
|
|
{
|
|
/* these are all possible jitter tables, takes up some
|
|
* 12k, not really bad!
|
|
* For soft shadows, it saves memory and render time
|
|
*/
|
|
static int tab[17]={1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256};
|
|
static float jit[1496][2];
|
|
static char ctab[17]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
int a, offset=0;
|
|
|
|
if (samp<2) samp= 2;
|
|
else if (samp>16) samp= 16;
|
|
|
|
for (a=0; a<samp-1; a++) offset+= tab[a];
|
|
|
|
if (ctab[samp]==0) {
|
|
ctab[samp]= 1;
|
|
BLI_jitter_init((float (*)[2])jit[offset], samp*samp);
|
|
}
|
|
|
|
return jit[offset];
|
|
|
|
}
|
|
|
|
static void make_jitter_weight_tab(Render *re, ShadBuf *shb, short filtertype)
|
|
{
|
|
float *jit, totw= 0.0f;
|
|
int samp= get_render_shadow_samples(&re->r, shb->samp);
|
|
int a, tot=samp*samp;
|
|
|
|
shb->weight= MEM_mallocN(sizeof(float)*tot, "weight tab lamp");
|
|
|
|
for (jit= shb->jit, a=0; a<tot; a++, jit+=2) {
|
|
if (filtertype==LA_SHADBUF_TENT)
|
|
shb->weight[a] = 0.71f - sqrtf(jit[0] * jit[0] + jit[1] * jit[1]);
|
|
else if (filtertype==LA_SHADBUF_GAUSS)
|
|
shb->weight[a] = RE_filter_value(R_FILTER_GAUSS, 1.8f * sqrtf(jit[0] * jit[0] + jit[1] * jit[1]));
|
|
else
|
|
shb->weight[a]= 1.0f;
|
|
|
|
totw+= shb->weight[a];
|
|
}
|
|
|
|
totw= 1.0f/totw;
|
|
for (a=0; a<tot; a++) {
|
|
shb->weight[a]*= totw;
|
|
}
|
|
}
|
|
|
|
static int verg_deepsample(const void *poin1, const void *poin2)
|
|
{
|
|
const DeepSample *ds1= (const DeepSample*)poin1;
|
|
const DeepSample *ds2= (const DeepSample*)poin2;
|
|
|
|
if (ds1->z < ds2->z) return -1;
|
|
else if (ds1->z == ds2->z) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
static int compress_deepsamples(DeepSample *dsample, int tot, float epsilon)
|
|
{
|
|
/* uses doubles to avoid overflows and other numerical issues,
|
|
* could be improved */
|
|
DeepSample *ds, *newds;
|
|
float v;
|
|
double slope, slopemin, slopemax, min, max, div, newmin, newmax;
|
|
int a, first, z, newtot= 0;
|
|
|
|
#if 0
|
|
if (print) {
|
|
for (a=0, ds=dsample; a<tot; a++, ds++)
|
|
printf("%lf, %f ", ds->z/(double)0x7FFFFFFF, ds->v);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/* read from and write into same array */
|
|
ds= dsample;
|
|
newds= dsample;
|
|
a= 0;
|
|
|
|
/* as long as we are not at the end of the array */
|
|
for (a++, ds++; a<tot; a++, ds++) {
|
|
slopemin= 0.0f;
|
|
slopemax= 0.0f;
|
|
first= 1;
|
|
|
|
for (; a<tot; a++, ds++) {
|
|
//dz= ds->z - newds->z;
|
|
if (ds->z == newds->z) {
|
|
/* still in same z position, simply check
|
|
* visibility difference against epsilon */
|
|
if (!(fabsf(newds->v - ds->v) <= epsilon)) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* compute slopes */
|
|
div= (double)0x7FFFFFFF / ((double)ds->z - (double)newds->z);
|
|
min= (double)((ds->v - epsilon) - newds->v) * div;
|
|
max= (double)((ds->v + epsilon) - newds->v) * div;
|
|
|
|
/* adapt existing slopes */
|
|
if (first) {
|
|
newmin= min;
|
|
newmax= max;
|
|
first= 0;
|
|
}
|
|
else {
|
|
newmin= MAX2(slopemin, min);
|
|
newmax= MIN2(slopemax, max);
|
|
|
|
/* verify if there is still space between the slopes */
|
|
if (newmin > newmax) {
|
|
ds--;
|
|
a--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
slopemin= newmin;
|
|
slopemax= newmax;
|
|
}
|
|
}
|
|
|
|
if (a == tot) {
|
|
ds--;
|
|
a--;
|
|
}
|
|
|
|
/* always previous z */
|
|
z= ds->z;
|
|
|
|
if (first || a==tot-1) {
|
|
/* if slopes were not initialized, use last visibility */
|
|
v= ds->v;
|
|
}
|
|
else {
|
|
/* compute visibility at center between slopes at z */
|
|
slope = (slopemin + slopemax) * 0.5;
|
|
v = (double)newds->v + slope * ((double)(z - newds->z) / (double)0x7FFFFFFF);
|
|
}
|
|
|
|
newds++;
|
|
newtot++;
|
|
|
|
newds->z= z;
|
|
newds->v= v;
|
|
}
|
|
|
|
if (newtot == 0 || (newds->v != (newds-1)->v))
|
|
newtot++;
|
|
|
|
#if 0
|
|
if (print) {
|
|
for (a=0, ds=dsample; a<newtot; a++, ds++)
|
|
printf("%lf, %f ", ds->z/(double)0x7FFFFFFF, ds->v);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
return newtot;
|
|
}
|
|
|
|
static float deep_alpha(Render *re, int obinr, int facenr, int strand)
|
|
{
|
|
ObjectInstanceRen *obi= &re->objectinstance[obinr];
|
|
Material *ma;
|
|
|
|
if (strand) {
|
|
StrandRen *strand= RE_findOrAddStrand(obi->obr, facenr-1);
|
|
ma= strand->buffer->ma;
|
|
}
|
|
else {
|
|
VlakRen *vlr= RE_findOrAddVlak(obi->obr, (facenr-1) & RE_QUAD_MASK);
|
|
ma= vlr->mat;
|
|
}
|
|
|
|
return ma->shad_alpha;
|
|
}
|
|
|
|
static void compress_deepshadowbuf(Render *re, ShadBuf *shb, APixstr *apixbuf, APixstrand *apixbufstrand)
|
|
{
|
|
ShadSampleBuf *shsample;
|
|
DeepSample *ds[RE_MAX_OSA], *sampleds[RE_MAX_OSA], *dsb, *newbuf;
|
|
APixstr *ap, *apn;
|
|
APixstrand *aps, *apns;
|
|
float visibility;
|
|
|
|
const int totbuf= shb->totbuf;
|
|
const float totbuf_f= (float)shb->totbuf;
|
|
const float totbuf_f_inv= 1.0f/totbuf_f;
|
|
const int size= shb->size;
|
|
|
|
int a, b, c, tot, minz, found, prevtot, newtot;
|
|
int sampletot[RE_MAX_OSA], totsample = 0, totsamplec = 0;
|
|
|
|
shsample= MEM_callocN(sizeof(ShadSampleBuf), "shad sample buf");
|
|
BLI_addtail(&shb->buffers, shsample);
|
|
|
|
shsample->totbuf = MEM_callocN(sizeof(int) * size * size, "deeptotbuf");
|
|
shsample->deepbuf = MEM_callocN(sizeof(DeepSample *) * size * size, "deepbuf");
|
|
|
|
ap= apixbuf;
|
|
aps= apixbufstrand;
|
|
for (a=0; a<size*size; a++, ap++, aps++) {
|
|
/* count number of samples */
|
|
for (c=0; c<totbuf; c++)
|
|
sampletot[c]= 0;
|
|
|
|
tot= 0;
|
|
for (apn=ap; apn; apn=apn->next)
|
|
for (b=0; b<4; b++)
|
|
if (apn->p[b])
|
|
for (c=0; c<totbuf; c++)
|
|
if (apn->mask[b] & (1<<c))
|
|
sampletot[c]++;
|
|
|
|
if (apixbufstrand) {
|
|
for (apns=aps; apns; apns=apns->next)
|
|
for (b=0; b<4; b++)
|
|
if (apns->p[b])
|
|
for (c=0; c<totbuf; c++)
|
|
if (apns->mask[b] & (1<<c))
|
|
sampletot[c]++;
|
|
}
|
|
|
|
for (c=0; c<totbuf; c++)
|
|
tot += sampletot[c];
|
|
|
|
if (tot == 0) {
|
|
shsample->deepbuf[a]= NULL;
|
|
shsample->totbuf[a]= 0;
|
|
continue;
|
|
}
|
|
|
|
/* fill samples */
|
|
ds[0]= sampleds[0]= MEM_callocN(sizeof(DeepSample)*tot*2, "deepsample");
|
|
for (c=1; c<totbuf; c++)
|
|
ds[c]= sampleds[c]= sampleds[c-1] + sampletot[c-1]*2;
|
|
|
|
for (apn=ap; apn; apn=apn->next) {
|
|
for (b=0; b<4; b++) {
|
|
if (apn->p[b]) {
|
|
for (c=0; c<totbuf; c++) {
|
|
if (apn->mask[b] & (1<<c)) {
|
|
/* two entries to create step profile */
|
|
ds[c]->z= apn->z[b];
|
|
ds[c]->v= 1.0f; /* not used */
|
|
ds[c]++;
|
|
ds[c]->z= apn->z[b];
|
|
ds[c]->v= deep_alpha(re, apn->obi[b], apn->p[b], 0);
|
|
ds[c]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (apixbufstrand) {
|
|
for (apns=aps; apns; apns=apns->next) {
|
|
for (b=0; b<4; b++) {
|
|
if (apns->p[b]) {
|
|
for (c=0; c<totbuf; c++) {
|
|
if (apns->mask[b] & (1<<c)) {
|
|
/* two entries to create step profile */
|
|
ds[c]->z= apns->z[b];
|
|
ds[c]->v= 1.0f; /* not used */
|
|
ds[c]++;
|
|
ds[c]->z= apns->z[b];
|
|
ds[c]->v= deep_alpha(re, apns->obi[b], apns->p[b], 1);
|
|
ds[c]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (c=0; c<totbuf; c++) {
|
|
/* sort by increasing z */
|
|
qsort(sampleds[c], sampletot[c], sizeof(DeepSample)*2, verg_deepsample);
|
|
|
|
/* sum visibility, replacing alpha values */
|
|
visibility= 1.0f;
|
|
ds[c]= sampleds[c];
|
|
|
|
for (b=0; b<sampletot[c]; b++) {
|
|
/* two entries creating step profile */
|
|
ds[c]->v= visibility;
|
|
ds[c]++;
|
|
|
|
visibility *= 1.0f-ds[c]->v;
|
|
ds[c]->v= visibility;
|
|
ds[c]++;
|
|
}
|
|
|
|
/* halfway trick, probably won't work well for volumes? */
|
|
ds[c]= sampleds[c];
|
|
for (b=0; b<sampletot[c]; b++) {
|
|
if (b+1 < sampletot[c]) {
|
|
ds[c]->z= (ds[c]->z>>1) + ((ds[c]+2)->z>>1);
|
|
ds[c]++;
|
|
ds[c]->z= (ds[c]->z>>1) + ((ds[c]+2)->z>>1);
|
|
ds[c]++;
|
|
}
|
|
else {
|
|
ds[c]->z= (ds[c]->z>>1) + (0x7FFFFFFF>>1);
|
|
ds[c]++;
|
|
ds[c]->z= (ds[c]->z>>1) + (0x7FFFFFFF>>1);
|
|
ds[c]++;
|
|
}
|
|
}
|
|
|
|
/* init for merge loop */
|
|
ds[c]= sampleds[c];
|
|
sampletot[c] *= 2;
|
|
}
|
|
|
|
shsample->deepbuf[a]= MEM_callocN(sizeof(DeepSample)*tot*2, "deepsample");
|
|
shsample->totbuf[a]= 0;
|
|
|
|
/* merge buffers */
|
|
dsb= shsample->deepbuf[a];
|
|
while (1) {
|
|
minz= 0;
|
|
found= 0;
|
|
|
|
for (c=0; c<totbuf; c++) {
|
|
if (sampletot[c] && (!found || ds[c]->z < minz)) {
|
|
minz= ds[c]->z;
|
|
found= 1;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
break;
|
|
|
|
dsb->z= minz;
|
|
dsb->v= 0.0f;
|
|
|
|
visibility= 0.0f;
|
|
for (c=0; c<totbuf; c++) {
|
|
if (sampletot[c] && ds[c]->z == minz) {
|
|
ds[c]++;
|
|
sampletot[c]--;
|
|
}
|
|
|
|
if (sampleds[c] == ds[c])
|
|
visibility += totbuf_f_inv;
|
|
else
|
|
visibility += (ds[c]-1)->v / totbuf_f;
|
|
}
|
|
|
|
dsb->v= visibility;
|
|
dsb++;
|
|
shsample->totbuf[a]++;
|
|
}
|
|
|
|
prevtot= shsample->totbuf[a];
|
|
totsample += prevtot;
|
|
|
|
newtot= compress_deepsamples(shsample->deepbuf[a], prevtot, shb->compressthresh);
|
|
shsample->totbuf[a]= newtot;
|
|
totsamplec += newtot;
|
|
|
|
if (newtot < prevtot) {
|
|
newbuf= MEM_mallocN(sizeof(DeepSample)*newtot, "cdeepsample");
|
|
memcpy(newbuf, shsample->deepbuf[a], sizeof(DeepSample)*newtot);
|
|
MEM_freeN(shsample->deepbuf[a]);
|
|
shsample->deepbuf[a]= newbuf;
|
|
}
|
|
|
|
MEM_freeN(sampleds[0]);
|
|
}
|
|
|
|
//printf("%d -> %d, ratio %f\n", totsample, totsamplec, (float)totsamplec/(float)totsample);
|
|
}
|
|
|
|
/* create Z tiles (for compression): this system is 24 bits!!! */
|
|
static void compress_shadowbuf(ShadBuf *shb, int *rectz, int square)
|
|
{
|
|
ShadSampleBuf *shsample;
|
|
float dist;
|
|
uintptr_t *ztile;
|
|
int *rz, *rz1, verg, verg1, size= shb->size;
|
|
int a, x, y, minx, miny, byt1, byt2;
|
|
char *rc, *rcline, *ctile, *zt;
|
|
|
|
shsample= MEM_callocN(sizeof(ShadSampleBuf), "shad sample buf");
|
|
BLI_addtail(&shb->buffers, shsample);
|
|
|
|
shsample->zbuf= MEM_mallocN(sizeof(uintptr_t)*(size*size)/256, "initshadbuf2");
|
|
shsample->cbuf= MEM_callocN((size*size)/256, "initshadbuf3");
|
|
|
|
ztile= (uintptr_t *)shsample->zbuf;
|
|
ctile= shsample->cbuf;
|
|
|
|
/* help buffer */
|
|
rcline= MEM_mallocN(256*4+sizeof(int), "makeshadbuf2");
|
|
|
|
for (y=0; y<size; y+=16) {
|
|
if (y< size/2) miny= y+15-size/2;
|
|
else miny= y-size/2;
|
|
|
|
for (x=0; x<size; x+=16) {
|
|
|
|
/* is tile within spotbundle? */
|
|
a= size/2;
|
|
if (x< a) minx= x+15-a;
|
|
else minx= x-a;
|
|
|
|
dist= sqrt( (float)(minx*minx+miny*miny) );
|
|
|
|
if (square==0 && dist>(float)(a+12)) { /* 12, tested with a onlyshadow lamp */
|
|
a= 256; verg= 0; /* 0x80000000; */ /* 0x7FFFFFFF; */
|
|
rz1= (&verg)+1;
|
|
}
|
|
else {
|
|
copy_to_ztile(rectz, size, x, y, 16, rcline);
|
|
rz1= (int *)rcline;
|
|
|
|
verg= (*rz1 & 0xFFFFFF00);
|
|
|
|
for (a=0;a<256;a++, rz1++) {
|
|
if ( (*rz1 & 0xFFFFFF00) !=verg) break;
|
|
}
|
|
}
|
|
if (a==256) { /* complete empty tile */
|
|
*ctile= 0;
|
|
*ztile= *(rz1-1);
|
|
}
|
|
else {
|
|
|
|
/* ACOMP etc. are defined to work L/B endian */
|
|
|
|
rc= rcline;
|
|
rz1= (int *)rcline;
|
|
verg= rc[ACOMP];
|
|
verg1= rc[BCOMP];
|
|
rc+= 4;
|
|
byt1= 1; byt2= 1;
|
|
for (a=1;a<256;a++, rc+=4) {
|
|
byt1 &= (verg==rc[ACOMP]);
|
|
byt2 &= (verg1==rc[BCOMP]);
|
|
|
|
if (byt1==0) break;
|
|
}
|
|
if (byt1 && byt2) { /* only store byte */
|
|
*ctile= 1;
|
|
*ztile= (uintptr_t)MEM_mallocN(256+4, "tile1");
|
|
rz= (int *)*ztile;
|
|
*rz= *rz1;
|
|
|
|
zt= (char *)(rz+1);
|
|
rc= rcline;
|
|
for (a=0; a<256; a++, zt++, rc+=4) *zt= rc[GCOMP];
|
|
}
|
|
else if (byt1) { /* only store short */
|
|
*ctile= 2;
|
|
*ztile= (uintptr_t)MEM_mallocN(2*256+4, "Tile2");
|
|
rz= (int *)*ztile;
|
|
*rz= *rz1;
|
|
|
|
zt= (char *)(rz+1);
|
|
rc= rcline;
|
|
for (a=0; a<256; a++, zt+=2, rc+=4) {
|
|
zt[0]= rc[BCOMP];
|
|
zt[1]= rc[GCOMP];
|
|
}
|
|
}
|
|
else { /* store triple */
|
|
*ctile= 3;
|
|
*ztile= (uintptr_t)MEM_mallocN(3*256, "Tile3");
|
|
|
|
zt= (char *)*ztile;
|
|
rc= rcline;
|
|
for (a=0; a<256; a++, zt+=3, rc+=4) {
|
|
zt[0]= rc[ACOMP];
|
|
zt[1]= rc[BCOMP];
|
|
zt[2]= rc[GCOMP];
|
|
}
|
|
}
|
|
}
|
|
ztile++;
|
|
ctile++;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(rcline);
|
|
}
|
|
|
|
/* sets start/end clipping. lar->shb should be initialized */
|
|
static void shadowbuf_autoclip(Render *re, LampRen *lar)
|
|
{
|
|
ObjectInstanceRen *obi;
|
|
ObjectRen *obr;
|
|
VlakRen *vlr= NULL;
|
|
VertRen *ver= NULL;
|
|
Material *ma= NULL;
|
|
float minz, maxz, vec[3], viewmat[4][4], obviewmat[4][4];
|
|
unsigned int lay = -1;
|
|
int i, a, maxtotvert, ok= 1;
|
|
char *clipflag;
|
|
|
|
minz= 1.0e30f; maxz= -1.0e30f;
|
|
copy_m4_m4(viewmat, lar->shb->viewmat);
|
|
|
|
if (lar->mode & (LA_LAYER|LA_LAYER_SHADOW)) lay= lar->lay;
|
|
|
|
maxtotvert= 0;
|
|
for (obr=re->objecttable.first; obr; obr=obr->next)
|
|
maxtotvert = max_ii(obr->totvert, maxtotvert);
|
|
|
|
clipflag= MEM_callocN(sizeof(char)*maxtotvert, "autoclipflag");
|
|
|
|
/* set clip in vertices when face visible */
|
|
for (i=0, obi=re->instancetable.first; obi; i++, obi=obi->next) {
|
|
obr= obi->obr;
|
|
|
|
if (obi->flag & R_TRANSFORMED)
|
|
mul_m4_m4m4(obviewmat, viewmat, obi->mat);
|
|
else
|
|
copy_m4_m4(obviewmat, viewmat);
|
|
|
|
memset(clipflag, 0, sizeof(char)*obr->totvert);
|
|
|
|
/* clear clip, is being set if face is visible (clip is calculated for real later) */
|
|
for (a=0; a<obr->totvlak; a++) {
|
|
if ((a & 255)==0) vlr= obr->vlaknodes[a>>8].vlak;
|
|
else vlr++;
|
|
|
|
/* note; these conditions are copied from zbuffer_shadow() */
|
|
if (vlr->mat!= ma) {
|
|
ma= vlr->mat;
|
|
ok= 1;
|
|
if ((ma->mode2 & MA_CASTSHADOW)==0 || (ma->mode & MA_SHADBUF)==0) ok= 0;
|
|
}
|
|
|
|
if (ok && (obi->lay & lay)) {
|
|
clipflag[vlr->v1->index]= 1;
|
|
clipflag[vlr->v2->index]= 1;
|
|
clipflag[vlr->v3->index]= 1;
|
|
if (vlr->v4) clipflag[vlr->v4->index]= 1;
|
|
}
|
|
}
|
|
|
|
/* calculate min and max */
|
|
for (a=0; a< obr->totvert;a++) {
|
|
if ((a & 255)==0) ver= RE_findOrAddVert(obr, a);
|
|
else ver++;
|
|
|
|
if (clipflag[a]) {
|
|
copy_v3_v3(vec, ver->co);
|
|
mul_m4_v3(obviewmat, vec);
|
|
/* Z on visible side of lamp space */
|
|
if (vec[2] < 0.0f) {
|
|
float inpr, z= -vec[2];
|
|
|
|
/* since vec is rotated in lampspace, this is how to get the cosine of angle */
|
|
/* precision is set 20% larger */
|
|
vec[2]*= 1.2f;
|
|
normalize_v3(vec);
|
|
inpr= - vec[2];
|
|
|
|
if (inpr>=lar->spotsi) {
|
|
if (z<minz) minz= z;
|
|
if (z>maxz) maxz= z;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(clipflag);
|
|
|
|
/* set clipping min and max */
|
|
if (minz < maxz) {
|
|
float delta= (maxz - minz); /* threshold to prevent precision issues */
|
|
|
|
//printf("minz %f maxz %f delta %f\n", minz, maxz, delta);
|
|
if (lar->bufflag & LA_SHADBUF_AUTO_START)
|
|
lar->shb->d= minz - delta*0.02f; /* 0.02 is arbitrary... needs more thinking! */
|
|
if (lar->bufflag & LA_SHADBUF_AUTO_END)
|
|
lar->shb->clipend= maxz + delta*0.1f;
|
|
|
|
/* bias was calculated as percentage, we scale it to prevent animation issues */
|
|
delta= (lar->clipend-lar->clipsta)/(lar->shb->clipend-lar->shb->d);
|
|
//printf("bias delta %f\n", delta);
|
|
lar->shb->bias= (int) (delta*(float)lar->shb->bias);
|
|
}
|
|
}
|
|
|
|
static void makeflatshadowbuf(Render *re, LampRen *lar, float *jitbuf)
|
|
{
|
|
ShadBuf *shb= lar->shb;
|
|
int *rectz, samples;
|
|
|
|
/* zbuffering */
|
|
rectz= MEM_mapallocN(sizeof(int)*shb->size*shb->size, "makeshadbuf");
|
|
|
|
for (samples=0; samples<shb->totbuf; samples++) {
|
|
zbuffer_shadow(re, shb->persmat, lar, rectz, shb->size, jitbuf[2*samples], jitbuf[2*samples+1]);
|
|
/* create Z tiles (for compression): this system is 24 bits!!! */
|
|
compress_shadowbuf(shb, rectz, lar->mode & LA_SQUARE);
|
|
|
|
if (re->test_break(re->tbh))
|
|
break;
|
|
}
|
|
|
|
MEM_freeN(rectz);
|
|
}
|
|
|
|
static void makedeepshadowbuf(Render *re, LampRen *lar, float *jitbuf)
|
|
{
|
|
ShadBuf *shb= lar->shb;
|
|
APixstr *apixbuf;
|
|
APixstrand *apixbufstrand= NULL;
|
|
ListBase apsmbase= {NULL, NULL};
|
|
|
|
/* zbuffering */
|
|
apixbuf= MEM_callocN(sizeof(APixstr)*shb->size*shb->size, "APixbuf");
|
|
if (re->totstrand)
|
|
apixbufstrand= MEM_callocN(sizeof(APixstrand)*shb->size*shb->size, "APixbufstrand");
|
|
|
|
zbuffer_abuf_shadow(re, lar, shb->persmat, apixbuf, apixbufstrand, &apsmbase, shb->size,
|
|
shb->totbuf, (float(*)[2])jitbuf);
|
|
|
|
/* create Z tiles (for compression): this system is 24 bits!!! */
|
|
compress_deepshadowbuf(re, shb, apixbuf, apixbufstrand);
|
|
|
|
MEM_freeN(apixbuf);
|
|
if (apixbufstrand)
|
|
MEM_freeN(apixbufstrand);
|
|
freepsA(&apsmbase);
|
|
}
|
|
|
|
void makeshadowbuf(Render *re, LampRen *lar)
|
|
{
|
|
ShadBuf *shb= lar->shb;
|
|
float wsize, *jitbuf, twozero[2]= {0.0f, 0.0f}, angle, temp;
|
|
|
|
if (lar->bufflag & (LA_SHADBUF_AUTO_START|LA_SHADBUF_AUTO_END))
|
|
shadowbuf_autoclip(re, lar);
|
|
|
|
/* just to enforce identical behavior of all irregular buffers */
|
|
if (lar->buftype==LA_SHADBUF_IRREGULAR)
|
|
shb->size= 1024;
|
|
|
|
/* matrices and window: in winmat the transformation is being put,
|
|
* transforming from observer view to lamp view, including lamp window matrix */
|
|
|
|
angle= saacos(lar->spotsi);
|
|
temp = 0.5f * shb->size * cosf(angle) / sinf(angle);
|
|
shb->pixsize= (shb->d)/temp;
|
|
wsize= shb->pixsize*(shb->size/2.0f);
|
|
|
|
perspective_m4(shb->winmat, -wsize, wsize, -wsize, wsize, shb->d, shb->clipend);
|
|
mul_m4_m4m4(shb->persmat, shb->winmat, shb->viewmat);
|
|
|
|
if (ELEM3(lar->buftype, LA_SHADBUF_REGULAR, LA_SHADBUF_HALFWAY, LA_SHADBUF_DEEP)) {
|
|
shb->totbuf= lar->buffers;
|
|
|
|
/* jitter, weights - not threadsafe! */
|
|
BLI_lock_thread(LOCK_CUSTOM1);
|
|
shb->jit= give_jitter_tab(get_render_shadow_samples(&re->r, shb->samp));
|
|
make_jitter_weight_tab(re, shb, lar->filtertype);
|
|
BLI_unlock_thread(LOCK_CUSTOM1);
|
|
|
|
if (shb->totbuf==4) jitbuf= give_jitter_tab(2);
|
|
else if (shb->totbuf==9) jitbuf= give_jitter_tab(3);
|
|
else jitbuf= twozero;
|
|
|
|
/* zbuffering */
|
|
if (lar->buftype == LA_SHADBUF_DEEP) {
|
|
makedeepshadowbuf(re, lar, jitbuf);
|
|
shb->totbuf= 1;
|
|
}
|
|
else
|
|
makeflatshadowbuf(re, lar, jitbuf);
|
|
|
|
/* printf("lampbuf %d\n", sizeoflampbuf(shb)); */
|
|
}
|
|
}
|
|
|
|
static void *do_shadow_thread(void *re_v)
|
|
{
|
|
Render *re = (Render *)re_v;
|
|
LampRen *lar;
|
|
|
|
do {
|
|
BLI_lock_thread(LOCK_CUSTOM1);
|
|
for (lar=re->lampren.first; lar; lar=lar->next) {
|
|
if (lar->shb && !lar->thread_assigned) {
|
|
lar->thread_assigned= 1;
|
|
break;
|
|
}
|
|
}
|
|
BLI_unlock_thread(LOCK_CUSTOM1);
|
|
|
|
/* if type is irregular, this only sets the perspective matrix and autoclips */
|
|
if (lar) {
|
|
makeshadowbuf(re, lar);
|
|
BLI_lock_thread(LOCK_CUSTOM1);
|
|
lar->thread_ready= 1;
|
|
BLI_unlock_thread(LOCK_CUSTOM1);
|
|
}
|
|
} while (lar && !re->test_break(re->tbh));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static volatile int g_break= 0;
|
|
static int thread_break(void *UNUSED(arg))
|
|
{
|
|
return g_break;
|
|
}
|
|
|
|
void threaded_makeshadowbufs(Render *re)
|
|
{
|
|
ListBase threads;
|
|
LampRen *lar;
|
|
int a, totthread= 0;
|
|
int (*test_break)(void *);
|
|
|
|
/* count number of threads to use */
|
|
if (G.is_rendering) {
|
|
for (lar=re->lampren.first; lar; lar= lar->next)
|
|
if (lar->shb)
|
|
totthread++;
|
|
|
|
totthread = min_ii(totthread, re->r.threads);
|
|
}
|
|
else
|
|
totthread = 1; /* preview render */
|
|
|
|
if (totthread <= 1) {
|
|
for (lar=re->lampren.first; lar; lar= lar->next) {
|
|
if (re->test_break(re->tbh)) break;
|
|
if (lar->shb) {
|
|
/* if type is irregular, this only sets the perspective matrix and autoclips */
|
|
makeshadowbuf(re, lar);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* swap test break function */
|
|
test_break= re->test_break;
|
|
re->test_break= thread_break;
|
|
|
|
for (lar=re->lampren.first; lar; lar= lar->next) {
|
|
lar->thread_assigned= 0;
|
|
lar->thread_ready= 0;
|
|
}
|
|
|
|
BLI_init_threads(&threads, do_shadow_thread, totthread);
|
|
|
|
for (a=0; a<totthread; a++)
|
|
BLI_insert_thread(&threads, re);
|
|
|
|
/* keep rendering as long as there are shadow buffers not ready */
|
|
do {
|
|
if ((g_break=test_break(re->tbh)))
|
|
break;
|
|
|
|
PIL_sleep_ms(50);
|
|
|
|
BLI_lock_thread(LOCK_CUSTOM1);
|
|
for (lar=re->lampren.first; lar; lar= lar->next)
|
|
if (lar->shb && !lar->thread_ready)
|
|
break;
|
|
BLI_unlock_thread(LOCK_CUSTOM1);
|
|
} while (lar);
|
|
|
|
BLI_end_threads(&threads);
|
|
|
|
/* unset threadsafety */
|
|
re->test_break= test_break;
|
|
g_break= 0;
|
|
}
|
|
}
|
|
|
|
void freeshadowbuf(LampRen *lar)
|
|
{
|
|
if (lar->shb) {
|
|
ShadBuf *shb= lar->shb;
|
|
ShadSampleBuf *shsample;
|
|
int b, v;
|
|
|
|
for (shsample= shb->buffers.first; shsample; shsample= shsample->next) {
|
|
if (shsample->deepbuf) {
|
|
v= shb->size*shb->size;
|
|
for (b=0; b<v; b++)
|
|
if (shsample->deepbuf[b])
|
|
MEM_freeN(shsample->deepbuf[b]);
|
|
|
|
MEM_freeN(shsample->deepbuf);
|
|
MEM_freeN(shsample->totbuf);
|
|
}
|
|
else {
|
|
intptr_t *ztile= shsample->zbuf;
|
|
const char *ctile= shsample->cbuf;
|
|
|
|
v= (shb->size*shb->size)/256;
|
|
for (b=0; b<v; b++, ztile++, ctile++)
|
|
if (*ctile) MEM_freeN((void *) *ztile);
|
|
|
|
MEM_freeN(shsample->zbuf);
|
|
MEM_freeN(shsample->cbuf);
|
|
}
|
|
}
|
|
BLI_freelistN(&shb->buffers);
|
|
|
|
if (shb->weight) MEM_freeN(shb->weight);
|
|
MEM_freeN(lar->shb);
|
|
|
|
lar->shb= NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static int firstreadshadbuf(ShadBuf *shb, ShadSampleBuf *shsample, int **rz, int xs, int ys, int nr)
|
|
{
|
|
/* return a 1 if fully compressed shadbuf-tile && z==const */
|
|
int ofs;
|
|
const char *ct;
|
|
|
|
if (shsample->deepbuf)
|
|
return 0;
|
|
|
|
/* always test borders of shadowbuffer */
|
|
if (xs<0) xs= 0; else if (xs>=shb->size) xs= shb->size-1;
|
|
if (ys<0) ys= 0; else if (ys>=shb->size) ys= shb->size-1;
|
|
|
|
/* calc z */
|
|
ofs= (ys>>4)*(shb->size>>4) + (xs>>4);
|
|
ct= shsample->cbuf+ofs;
|
|
if (*ct==0) {
|
|
if (nr==0) {
|
|
*rz= *( (int **)(shsample->zbuf+ofs) );
|
|
return 1;
|
|
}
|
|
else if (*rz!= *( (int **)(shsample->zbuf+ofs) )) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float readdeepvisibility(DeepSample *dsample, int tot, int z, int bias, float *biast)
|
|
{
|
|
DeepSample *ds, *prevds;
|
|
float t;
|
|
int a;
|
|
|
|
/* tricky stuff here; we use ints which can overflow easily with bias values */
|
|
|
|
ds= dsample;
|
|
for (a=0; a<tot && (z-bias > ds->z); a++, ds++) {}
|
|
|
|
if (a == tot) {
|
|
if (biast)
|
|
*biast= 0.0f;
|
|
return (ds-1)->v; /* completely behind all samples */
|
|
}
|
|
|
|
/* check if this read needs bias blending */
|
|
if (biast) {
|
|
if (z > ds->z)
|
|
*biast= (float)(z - ds->z)/(float)bias;
|
|
else
|
|
*biast= 0.0f;
|
|
}
|
|
|
|
if (a == 0)
|
|
return 1.0f; /* completely in front of all samples */
|
|
|
|
/* converting to float early here because ds->z - prevds->z can overflow */
|
|
prevds= ds-1;
|
|
t= ((float)(z-bias) - (float)prevds->z)/((float)ds->z - (float)prevds->z);
|
|
return t*ds->v + (1.0f-t)*prevds->v;
|
|
}
|
|
|
|
static float readdeepshadowbuf(ShadBuf *shb, ShadSampleBuf *shsample, int bias, int xs, int ys, int zs)
|
|
{
|
|
float v, biasv, biast;
|
|
int ofs, tot;
|
|
|
|
if (zs < - 0x7FFFFE00 + bias)
|
|
return 1.0; /* extreme close to clipstart */
|
|
|
|
/* calc z */
|
|
ofs= ys*shb->size + xs;
|
|
tot= shsample->totbuf[ofs];
|
|
if (tot == 0)
|
|
return 1.0f;
|
|
|
|
v= readdeepvisibility(shsample->deepbuf[ofs], tot, zs, bias, &biast);
|
|
|
|
if (biast != 0.0f) {
|
|
/* in soft bias area */
|
|
biasv = readdeepvisibility(shsample->deepbuf[ofs], tot, zs, 0, NULL);
|
|
|
|
biast= biast*biast;
|
|
return (1.0f-biast)*v + biast*biasv;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
/* return 1.0 : fully in light */
|
|
static float readshadowbuf(ShadBuf *shb, ShadSampleBuf *shsample, int bias, int xs, int ys, int zs)
|
|
{
|
|
float temp;
|
|
int *rz, ofs;
|
|
int zsamp=0;
|
|
char *ct, *cz;
|
|
|
|
/* simpleclip */
|
|
/* if (xs<0 || ys<0) return 1.0; */
|
|
/* if (xs>=shb->size || ys>=shb->size) return 1.0; */
|
|
|
|
/* always test borders of shadowbuffer */
|
|
if (xs<0) xs= 0; else if (xs>=shb->size) xs= shb->size-1;
|
|
if (ys<0) ys= 0; else if (ys>=shb->size) ys= shb->size-1;
|
|
|
|
if (shsample->deepbuf)
|
|
return readdeepshadowbuf(shb, shsample, bias, xs, ys, zs);
|
|
|
|
/* calc z */
|
|
ofs= (ys>>4)*(shb->size>>4) + (xs>>4);
|
|
ct= shsample->cbuf+ofs;
|
|
rz= *( (int **)(shsample->zbuf+ofs) );
|
|
|
|
if (*ct==3) {
|
|
ct= ((char *)rz)+3*16*(ys & 15)+3*(xs & 15);
|
|
cz= (char *)&zsamp;
|
|
cz[ACOMP]= ct[0];
|
|
cz[BCOMP]= ct[1];
|
|
cz[GCOMP]= ct[2];
|
|
}
|
|
else if (*ct==2) {
|
|
ct= ((char *)rz);
|
|
ct+= 4+2*16*(ys & 15)+2*(xs & 15);
|
|
zsamp= *rz;
|
|
|
|
cz= (char *)&zsamp;
|
|
cz[BCOMP]= ct[0];
|
|
cz[GCOMP]= ct[1];
|
|
}
|
|
else if (*ct==1) {
|
|
ct= ((char *)rz);
|
|
ct+= 4+16*(ys & 15)+(xs & 15);
|
|
zsamp= *rz;
|
|
|
|
cz= (char *)&zsamp;
|
|
cz[GCOMP]= ct[0];
|
|
|
|
}
|
|
else {
|
|
/* got warning on this for 64 bits.... */
|
|
/* but it's working code! in this case rz is not a pointer but zvalue (ton) */
|
|
zsamp= GET_INT_FROM_POINTER(rz);
|
|
}
|
|
|
|
/* tricky stuff here; we use ints which can overflow easily with bias values */
|
|
|
|
if (zsamp > zs) return 1.0; /* absolute no shadow */
|
|
else if (zs < - 0x7FFFFE00 + bias) return 1.0; /* extreme close to clipstart */
|
|
else if (zsamp < zs-bias) return 0.0; /* absolute in shadow */
|
|
else { /* soft area */
|
|
|
|
temp= ( (float)(zs- zsamp) )/(float)bias;
|
|
return 1.0f - temp*temp;
|
|
|
|
}
|
|
}
|
|
|
|
static void shadowbuf_project_co(float *x, float *y, float *z, ShadBuf *shb, const float co[3])
|
|
{
|
|
float hco[4], size= 0.5f*(float)shb->size;
|
|
|
|
copy_v3_v3(hco, co);
|
|
hco[3]= 1.0f;
|
|
|
|
mul_m4_v4(shb->persmat, hco);
|
|
|
|
*x= size*(1.0f+hco[0]/hco[3]);
|
|
*y= size*(1.0f+hco[1]/hco[3]);
|
|
if (z) *z= (hco[2]/hco[3]);
|
|
}
|
|
|
|
/* the externally called shadow testing (reading) function */
|
|
/* return 1.0: no shadow at all */
|
|
float testshadowbuf(Render *re, ShadBuf *shb, const float co[3], const float dxco[3], const float dyco[3], float inp, float mat_bias)
|
|
{
|
|
ShadSampleBuf *shsample;
|
|
float fac, dco[3], dx[3], dy[3], shadfac=0.0f;
|
|
float xs1, ys1, zs1, *jit, *weight, xres, yres, biasf;
|
|
int xs, ys, zs, bias, *rz;
|
|
short a, num;
|
|
|
|
/* crash preventer */
|
|
if (shb->buffers.first==NULL)
|
|
return 1.0f;
|
|
|
|
/* when facing away, assume fully in shadow */
|
|
if (inp <= 0.0f)
|
|
return 0.0f;
|
|
|
|
/* project coordinate to pixel space */
|
|
shadowbuf_project_co(&xs1, &ys1, &zs1, shb, co);
|
|
|
|
/* clip z coordinate, z is projected so that (-1.0, 1.0) matches
|
|
* (clipstart, clipend), so we can do this simple test */
|
|
if (zs1>=1.0f)
|
|
return 0.0f;
|
|
else if (zs1<= -1.0f)
|
|
return 1.0f;
|
|
|
|
zs= ((float)0x7FFFFFFF)*zs1;
|
|
|
|
/* take num*num samples, increase area with fac */
|
|
num= get_render_shadow_samples(&re->r, shb->samp);
|
|
num= num*num;
|
|
fac= shb->soft;
|
|
|
|
/* compute z bias */
|
|
if (mat_bias!=0.0f) biasf= shb->bias*mat_bias;
|
|
else biasf= shb->bias;
|
|
/* with inp==1.0, bias is half the size. correction value was 1.1, giving errors
|
|
* on cube edges, with one side being almost frontal lighted (ton) */
|
|
bias= (1.5f-inp*inp)*biasf;
|
|
|
|
/* in case of no filtering we can do things simpler */
|
|
if (num==1) {
|
|
for (shsample= shb->buffers.first; shsample; shsample= shsample->next)
|
|
shadfac += readshadowbuf(shb, shsample, bias, (int)xs1, (int)ys1, zs);
|
|
|
|
return shadfac/(float)shb->totbuf;
|
|
}
|
|
|
|
/* calculate filter size */
|
|
add_v3_v3v3(dco, co, dxco);
|
|
shadowbuf_project_co(&dx[0], &dx[1], NULL, shb, dco);
|
|
dx[0]= xs1 - dx[0];
|
|
dx[1]= ys1 - dx[1];
|
|
|
|
add_v3_v3v3(dco, co, dyco);
|
|
shadowbuf_project_co(&dy[0], &dy[1], NULL, shb, dco);
|
|
dy[0]= xs1 - dy[0];
|
|
dy[1]= ys1 - dy[1];
|
|
|
|
xres = fac * (fabsf(dx[0]) + fabsf(dy[0]));
|
|
yres = fac * (fabsf(dx[1]) + fabsf(dy[1]));
|
|
if (xres<1.0f) xres= 1.0f;
|
|
if (yres<1.0f) yres= 1.0f;
|
|
|
|
/* make xs1/xs1 corner of sample area */
|
|
xs1 -= xres*0.5f;
|
|
ys1 -= yres*0.5f;
|
|
|
|
/* in case we have a constant value in a tile, we can do quicker lookup */
|
|
if (xres<16.0f && yres<16.0f) {
|
|
shsample= shb->buffers.first;
|
|
if (firstreadshadbuf(shb, shsample, &rz, (int)xs1, (int)ys1, 0)) {
|
|
if (firstreadshadbuf(shb, shsample, &rz, (int)(xs1+xres), (int)ys1, 1)) {
|
|
if (firstreadshadbuf(shb, shsample, &rz, (int)xs1, (int)(ys1+yres), 1)) {
|
|
if (firstreadshadbuf(shb, shsample, &rz, (int)(xs1+xres), (int)(ys1+yres), 1)) {
|
|
return readshadowbuf(shb, shsample, bias, (int)xs1, (int)ys1, zs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* full jittered shadow buffer lookup */
|
|
for (shsample= shb->buffers.first; shsample; shsample= shsample->next) {
|
|
jit= shb->jit;
|
|
weight= shb->weight;
|
|
|
|
for (a=num; a>0; a--, jit+=2, weight++) {
|
|
/* instead of jit i tried random: ugly! */
|
|
/* note: the plus 0.5 gives best sampling results, jit goes from -0.5 to 0.5 */
|
|
/* xs1 and ys1 are already corrected to be corner of sample area */
|
|
xs= xs1 + xres*(jit[0] + 0.5f);
|
|
ys= ys1 + yres*(jit[1] + 0.5f);
|
|
|
|
shadfac+= *weight * readshadowbuf(shb, shsample, bias, xs, ys, zs);
|
|
}
|
|
}
|
|
|
|
/* Renormalizes for the sample number: */
|
|
return shadfac/(float)shb->totbuf;
|
|
}
|
|
|
|
/* different function... sampling behind clipend can be LIGHT, bias is negative! */
|
|
/* return: light */
|
|
static float readshadowbuf_halo(ShadBuf *shb, ShadSampleBuf *shsample, int xs, int ys, int zs)
|
|
{
|
|
float temp;
|
|
int *rz, ofs;
|
|
int bias, zbias, zsamp;
|
|
char *ct, *cz;
|
|
|
|
/* negative! The other side is more important */
|
|
bias= -shb->bias;
|
|
|
|
/* simpleclip */
|
|
if (xs<0 || ys<0) return 0.0;
|
|
if (xs>=shb->size || ys>=shb->size) return 0.0;
|
|
|
|
/* calc z */
|
|
ofs= (ys>>4)*(shb->size>>4) + (xs>>4);
|
|
ct= shsample->cbuf+ofs;
|
|
rz= *( (int **)(shsample->zbuf+ofs) );
|
|
|
|
if (*ct==3) {
|
|
ct= ((char *)rz)+3*16*(ys & 15)+3*(xs & 15);
|
|
cz= (char *)&zsamp;
|
|
zsamp= 0;
|
|
cz[ACOMP]= ct[0];
|
|
cz[BCOMP]= ct[1];
|
|
cz[GCOMP]= ct[2];
|
|
}
|
|
else if (*ct==2) {
|
|
ct= ((char *)rz);
|
|
ct+= 4+2*16*(ys & 15)+2*(xs & 15);
|
|
zsamp= *rz;
|
|
|
|
cz= (char *)&zsamp;
|
|
cz[BCOMP]= ct[0];
|
|
cz[GCOMP]= ct[1];
|
|
}
|
|
else if (*ct==1) {
|
|
ct= ((char *)rz);
|
|
ct+= 4+16*(ys & 15)+(xs & 15);
|
|
zsamp= *rz;
|
|
|
|
cz= (char *)&zsamp;
|
|
cz[GCOMP]= ct[0];
|
|
|
|
}
|
|
else {
|
|
/* same as before */
|
|
/* still working code! (ton) */
|
|
zsamp= GET_INT_FROM_POINTER(rz);
|
|
}
|
|
|
|
/* NO schadow when sampled at 'eternal' distance */
|
|
|
|
if (zsamp >= 0x7FFFFE00) return 1.0;
|
|
|
|
if (zsamp > zs) return 1.0; /* absolute no shadww */
|
|
else {
|
|
/* bias is negative, so the (zs-bias) can be beyond 0x7fffffff */
|
|
zbias= 0x7fffffff - zs;
|
|
if (zbias > -bias) {
|
|
if ( zsamp < zs-bias) return 0.0; /* absolute in shadow */
|
|
}
|
|
else return 0.0; /* absolute shadow */
|
|
}
|
|
|
|
/* soft area */
|
|
|
|
temp= ( (float)(zs- zsamp) )/(float)bias;
|
|
return 1.0f - temp*temp;
|
|
}
|
|
|
|
|
|
float shadow_halo(LampRen *lar, const float p1[3], const float p2[3])
|
|
{
|
|
/* p1 p2 already are rotated in spot-space */
|
|
ShadBuf *shb= lar->shb;
|
|
ShadSampleBuf *shsample;
|
|
float co[4], siz;
|
|
float lambda, lambda_o, lambda_x, lambda_y, ldx, ldy;
|
|
float zf, xf1, yf1, zf1, xf2, yf2, zf2;
|
|
float count, lightcount;
|
|
int x, y, z, xs1, ys1;
|
|
int dx = 0, dy = 0;
|
|
|
|
siz= 0.5f*(float)shb->size;
|
|
|
|
co[0]= p1[0];
|
|
co[1]= p1[1];
|
|
co[2]= p1[2]/lar->sh_zfac;
|
|
co[3]= 1.0;
|
|
mul_m4_v4(shb->winmat, co); /* rational hom co */
|
|
xf1= siz*(1.0f+co[0]/co[3]);
|
|
yf1= siz*(1.0f+co[1]/co[3]);
|
|
zf1= (co[2]/co[3]);
|
|
|
|
|
|
co[0]= p2[0];
|
|
co[1]= p2[1];
|
|
co[2]= p2[2]/lar->sh_zfac;
|
|
co[3]= 1.0;
|
|
mul_m4_v4(shb->winmat, co); /* rational hom co */
|
|
xf2= siz*(1.0f+co[0]/co[3]);
|
|
yf2= siz*(1.0f+co[1]/co[3]);
|
|
zf2= (co[2]/co[3]);
|
|
|
|
/* the 2dda (a pixel line formula) */
|
|
|
|
xs1= (int)xf1;
|
|
ys1= (int)yf1;
|
|
|
|
if (xf1 != xf2) {
|
|
if (xf2-xf1 > 0.0f) {
|
|
lambda_x= (xf1-xs1-1.0f)/(xf1-xf2);
|
|
ldx= -shb->shadhalostep/(xf1-xf2);
|
|
dx= shb->shadhalostep;
|
|
}
|
|
else {
|
|
lambda_x= (xf1-xs1)/(xf1-xf2);
|
|
ldx= shb->shadhalostep/(xf1-xf2);
|
|
dx= -shb->shadhalostep;
|
|
}
|
|
}
|
|
else {
|
|
lambda_x= 1.0;
|
|
ldx= 0.0;
|
|
}
|
|
|
|
if (yf1 != yf2) {
|
|
if (yf2-yf1 > 0.0f) {
|
|
lambda_y= (yf1-ys1-1.0f)/(yf1-yf2);
|
|
ldy= -shb->shadhalostep/(yf1-yf2);
|
|
dy= shb->shadhalostep;
|
|
}
|
|
else {
|
|
lambda_y= (yf1-ys1)/(yf1-yf2);
|
|
ldy= shb->shadhalostep/(yf1-yf2);
|
|
dy= -shb->shadhalostep;
|
|
}
|
|
}
|
|
else {
|
|
lambda_y= 1.0;
|
|
ldy= 0.0;
|
|
}
|
|
|
|
x= xs1;
|
|
y= ys1;
|
|
lambda= count= lightcount= 0.0;
|
|
|
|
/* printf("start %x %x \n", (int)(0x7FFFFFFF*zf1), (int)(0x7FFFFFFF*zf2)); */
|
|
|
|
do {
|
|
lambda_o= lambda;
|
|
|
|
if (lambda_x==lambda_y) {
|
|
lambda_x+= ldx;
|
|
x+= dx;
|
|
lambda_y+= ldy;
|
|
y+= dy;
|
|
}
|
|
else {
|
|
if (lambda_x<lambda_y) {
|
|
lambda_x+= ldx;
|
|
x+= dx;
|
|
}
|
|
else {
|
|
lambda_y+= ldy;
|
|
y+= dy;
|
|
}
|
|
}
|
|
|
|
lambda = min_ff(lambda_x, lambda_y);
|
|
|
|
/* not making any progress? */
|
|
if (lambda==lambda_o) break;
|
|
|
|
/* clip to end of volume */
|
|
lambda = min_ff(lambda, 1.0f);
|
|
|
|
zf= zf1 + lambda*(zf2-zf1);
|
|
count+= (float)shb->totbuf;
|
|
|
|
if (zf<= -1.0f) lightcount += 1.0f; /* close to the spot */
|
|
else {
|
|
|
|
/* make sure, behind the clipend we extend halolines. */
|
|
if (zf>=1.0f) z= 0x7FFFF000;
|
|
else z= (int)(0x7FFFF000*zf);
|
|
|
|
for (shsample= shb->buffers.first; shsample; shsample= shsample->next)
|
|
lightcount+= readshadowbuf_halo(shb, shsample, x, y, z);
|
|
|
|
}
|
|
}
|
|
while (lambda < 1.0f);
|
|
|
|
if (count!=0.0f) return (lightcount/count);
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
|
|
/* ********************* Irregular Shadow Buffer (ISB) ************* */
|
|
/* ********** storage of all view samples in a raster of lists ***** */
|
|
|
|
/* based on several articles describing this method, like:
|
|
* The Irregular Z-Buffer and its Application to Shadow Mapping
|
|
* Gregory S. Johnson - William R. Mark - Christopher A. Burns
|
|
* and
|
|
* Alias-Free Shadow Maps
|
|
* Timo Aila and Samuli Laine
|
|
*/
|
|
|
|
/* bsp structure (actually kd tree) */
|
|
|
|
#define BSPMAX_SAMPLE 128
|
|
#define BSPMAX_DEPTH 32
|
|
|
|
/* aligned with struct rctf */
|
|
typedef struct Boxf {
|
|
float xmin, xmax;
|
|
float ymin, ymax;
|
|
float zmin, zmax;
|
|
} Boxf;
|
|
|
|
typedef struct ISBBranch {
|
|
struct ISBBranch *left, *right;
|
|
float divider[2];
|
|
Boxf box;
|
|
short totsamp, index, full, unused;
|
|
ISBSample **samples;
|
|
} ISBBranch;
|
|
|
|
typedef struct BSPFace {
|
|
Boxf box;
|
|
const float *v1, *v2, *v3, *v4;
|
|
int obi; /* object for face lookup */
|
|
int facenr; /* index to retrieve VlakRen */
|
|
int type; /* only for strand now */
|
|
short shad_alpha, is_full;
|
|
|
|
/* strand caching data, optimize for point_behind_strand() */
|
|
float radline, radline_end, len;
|
|
float vec1[3], vec2[3], rc[3];
|
|
} BSPFace;
|
|
|
|
/* boxes are in lamp projection */
|
|
static void init_box(Boxf *box)
|
|
{
|
|
box->xmin = 1000000.0f;
|
|
box->xmax = 0;
|
|
box->ymin = 1000000.0f;
|
|
box->ymax = 0;
|
|
box->zmin= 0x7FFFFFFF;
|
|
box->zmax= - 0x7FFFFFFF;
|
|
}
|
|
|
|
/* use v1 to calculate boundbox */
|
|
static void bound_boxf(Boxf *box, const float v1[3])
|
|
{
|
|
if (v1[0] < box->xmin) box->xmin = v1[0];
|
|
if (v1[0] > box->xmax) box->xmax = v1[0];
|
|
if (v1[1] < box->ymin) box->ymin = v1[1];
|
|
if (v1[1] > box->ymax) box->ymax = v1[1];
|
|
if (v1[2] < box->zmin) box->zmin= v1[2];
|
|
if (v1[2] > box->zmax) box->zmax= v1[2];
|
|
}
|
|
|
|
/* use v1 to calculate boundbox */
|
|
static void bound_rectf(rctf *box, const float v1[2])
|
|
{
|
|
if (v1[0] < box->xmin) box->xmin = v1[0];
|
|
if (v1[0] > box->xmax) box->xmax = v1[0];
|
|
if (v1[1] < box->ymin) box->ymin = v1[1];
|
|
if (v1[1] > box->ymax) box->ymax = v1[1];
|
|
}
|
|
|
|
|
|
/* halfway splitting, for initializing a more regular tree */
|
|
static void isb_bsp_split_init(ISBBranch *root, MemArena *mem, int level)
|
|
{
|
|
|
|
/* if level > 0 we create new branches and go deeper */
|
|
if (level > 0) {
|
|
ISBBranch *left, *right;
|
|
int i;
|
|
|
|
/* splitpoint */
|
|
root->divider[0]= 0.5f*(root->box.xmin+root->box.xmax);
|
|
root->divider[1]= 0.5f*(root->box.ymin+root->box.ymax);
|
|
|
|
/* find best splitpoint */
|
|
if (RCT_SIZE_X(&root->box) > RCT_SIZE_Y(&root->box))
|
|
i = root->index = 0;
|
|
else
|
|
i = root->index = 1;
|
|
|
|
left= root->left= BLI_memarena_alloc(mem, sizeof(ISBBranch));
|
|
right= root->right= BLI_memarena_alloc(mem, sizeof(ISBBranch));
|
|
|
|
/* box info */
|
|
left->box= root->box;
|
|
right->box= root->box;
|
|
if (i==0) {
|
|
left->box.xmax = root->divider[0];
|
|
right->box.xmin = root->divider[0];
|
|
}
|
|
else {
|
|
left->box.ymax = root->divider[1];
|
|
right->box.ymin = root->divider[1];
|
|
}
|
|
isb_bsp_split_init(left, mem, level-1);
|
|
isb_bsp_split_init(right, mem, level-1);
|
|
}
|
|
else {
|
|
/* we add sample array */
|
|
root->samples= BLI_memarena_alloc(mem, BSPMAX_SAMPLE*sizeof(void *));
|
|
}
|
|
}
|
|
|
|
/* note; if all samples on same location we just spread them over 2 new branches */
|
|
static void isb_bsp_split(ISBBranch *root, MemArena *mem)
|
|
{
|
|
ISBBranch *left, *right;
|
|
ISBSample *samples[BSPMAX_SAMPLE];
|
|
int a, i;
|
|
|
|
/* splitpoint */
|
|
root->divider[0]= root->divider[1]= 0.0f;
|
|
for (a=BSPMAX_SAMPLE-1; a>=0; a--) {
|
|
root->divider[0]+= root->samples[a]->zco[0];
|
|
root->divider[1]+= root->samples[a]->zco[1];
|
|
}
|
|
root->divider[0]/= BSPMAX_SAMPLE;
|
|
root->divider[1]/= BSPMAX_SAMPLE;
|
|
|
|
/* find best splitpoint */
|
|
if (RCT_SIZE_X(&root->box) > RCT_SIZE_Y(&root->box))
|
|
i = root->index = 0;
|
|
else
|
|
i = root->index = 1;
|
|
|
|
/* new branches */
|
|
left= root->left= BLI_memarena_alloc(mem, sizeof(ISBBranch));
|
|
right= root->right= BLI_memarena_alloc(mem, sizeof(ISBBranch));
|
|
|
|
/* new sample array */
|
|
left->samples = BLI_memarena_alloc(mem, BSPMAX_SAMPLE*sizeof(void *));
|
|
right->samples = samples; /* tmp */
|
|
|
|
/* split samples */
|
|
for (a=BSPMAX_SAMPLE-1; a>=0; a--) {
|
|
int comp= 0;
|
|
/* this prevents adding samples all to 1 branch when divider is equal to samples */
|
|
if (root->samples[a]->zco[i] == root->divider[i])
|
|
comp= a & 1;
|
|
else if (root->samples[a]->zco[i] < root->divider[i])
|
|
comp= 1;
|
|
|
|
if (comp==1) {
|
|
left->samples[left->totsamp]= root->samples[a];
|
|
left->totsamp++;
|
|
}
|
|
else {
|
|
right->samples[right->totsamp]= root->samples[a];
|
|
right->totsamp++;
|
|
}
|
|
}
|
|
|
|
/* copy samples from tmp */
|
|
memcpy(root->samples, samples, right->totsamp*(sizeof(void *)));
|
|
right->samples= root->samples;
|
|
root->samples= NULL;
|
|
|
|
/* box info */
|
|
left->box= root->box;
|
|
right->box= root->box;
|
|
if (i==0) {
|
|
left->box.xmax = root->divider[0];
|
|
right->box.xmin = root->divider[0];
|
|
}
|
|
else {
|
|
left->box.ymax = root->divider[1];
|
|
right->box.ymin = root->divider[1];
|
|
}
|
|
}
|
|
|
|
/* inserts sample in main tree, also splits on threshold */
|
|
/* returns 1 if error */
|
|
static int isb_bsp_insert(ISBBranch *root, MemArena *memarena, ISBSample *sample)
|
|
{
|
|
ISBBranch *bspn= root;
|
|
const float *zco= sample->zco;
|
|
int i= 0;
|
|
|
|
/* debug counter, also used to check if something was filled in ever */
|
|
root->totsamp++;
|
|
|
|
/* going over branches until last one found */
|
|
while (bspn->left) {
|
|
if (zco[bspn->index] <= bspn->divider[bspn->index])
|
|
bspn= bspn->left;
|
|
else
|
|
bspn= bspn->right;
|
|
i++;
|
|
}
|
|
/* bspn now is the last branch */
|
|
|
|
if (bspn->totsamp==BSPMAX_SAMPLE) {
|
|
printf("error in bsp branch\n"); /* only for debug, cannot happen */
|
|
return 1;
|
|
}
|
|
|
|
/* insert */
|
|
bspn->samples[bspn->totsamp]= sample;
|
|
bspn->totsamp++;
|
|
|
|
/* split if allowed and needed */
|
|
if (bspn->totsamp==BSPMAX_SAMPLE) {
|
|
if (i==BSPMAX_DEPTH) {
|
|
bspn->totsamp--; /* stop filling in... will give errors */
|
|
return 1;
|
|
}
|
|
isb_bsp_split(bspn, memarena);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* initialize vars in face, for optimal point-in-face test */
|
|
static void bspface_init_strand(BSPFace *face)
|
|
{
|
|
|
|
face->radline= 0.5f* len_v2v2(face->v1, face->v2);
|
|
|
|
mid_v3_v3v3(face->vec1, face->v1, face->v2);
|
|
if (face->v4)
|
|
mid_v3_v3v3(face->vec2, face->v3, face->v4);
|
|
else
|
|
copy_v3_v3(face->vec2, face->v3);
|
|
|
|
face->rc[0]= face->vec2[0]-face->vec1[0];
|
|
face->rc[1]= face->vec2[1]-face->vec1[1];
|
|
face->rc[2]= face->vec2[2]-face->vec1[2];
|
|
|
|
face->len= face->rc[0]*face->rc[0]+ face->rc[1]*face->rc[1];
|
|
|
|
if (face->len != 0.0f) {
|
|
face->radline_end = face->radline / sqrtf(face->len);
|
|
face->len = 1.0f / face->len;
|
|
}
|
|
}
|
|
|
|
/* brought back to a simple 2d case */
|
|
static int point_behind_strand(const float p[3], BSPFace *face)
|
|
{
|
|
/* v1 - v2 is radius, v1 - v3 length */
|
|
float dist, rc[2], pt[2];
|
|
|
|
/* using code from dist_to_line_segment_v2(), distance vec to line-piece */
|
|
|
|
if (face->len==0.0f) {
|
|
rc[0]= p[0]-face->vec1[0];
|
|
rc[1]= p[1]-face->vec1[1];
|
|
dist= (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
|
|
|
|
if (dist < face->radline)
|
|
return 1;
|
|
}
|
|
else {
|
|
float lambda= ( face->rc[0]*(p[0]-face->vec1[0]) + face->rc[1]*(p[1]-face->vec1[1]) )*face->len;
|
|
|
|
if (lambda > -face->radline_end && lambda < 1.0f+face->radline_end) {
|
|
/* hesse for dist: */
|
|
//dist= (float)(fabs( (p[0]-vec2[0])*rc[1] + (p[1]-vec2[1])*rc[0])/len);
|
|
|
|
pt[0]= lambda*face->rc[0]+face->vec1[0];
|
|
pt[1]= lambda*face->rc[1]+face->vec1[1];
|
|
|
|
rc[0]= pt[0]-p[0];
|
|
rc[1]= pt[1]-p[1];
|
|
dist= sqrtf(rc[0]*rc[0]+ rc[1]*rc[1]);
|
|
|
|
if (dist < face->radline) {
|
|
float zval= face->vec1[2] + lambda*face->rc[2];
|
|
if (p[2] > zval)
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* return 1 if inside. code derived from src/parametrizer.c */
|
|
static int point_behind_tria2d(const float p[3], const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float a[2], c[2], h[2], div;
|
|
float u, v;
|
|
|
|
a[0] = v2[0] - v1[0];
|
|
a[1] = v2[1] - v1[1];
|
|
c[0] = v3[0] - v1[0];
|
|
c[1] = v3[1] - v1[1];
|
|
|
|
div = a[0]*c[1] - a[1]*c[0];
|
|
if (div==0.0f)
|
|
return 0;
|
|
|
|
h[0] = p[0] - v1[0];
|
|
h[1] = p[1] - v1[1];
|
|
|
|
div = 1.0f/div;
|
|
|
|
u = (h[0]*c[1] - h[1]*c[0])*div;
|
|
if (u >= 0.0f) {
|
|
v = (a[0]*h[1] - a[1]*h[0])*div;
|
|
if (v >= 0.0f) {
|
|
if ( u + v <= 1.0f) {
|
|
/* inside, now check if point p is behind */
|
|
float z= (1.0f-u-v)*v1[2] + u*v2[2] + v*v3[2];
|
|
if (z <= p[2])
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/* tested these calls, but it gives inaccuracy, 'side' cannot be found reliably using v3 */
|
|
|
|
/* check if line v1-v2 has all rect points on other side of point v3 */
|
|
static int rect_outside_line(rctf *rect, const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float a, b, c;
|
|
int side;
|
|
|
|
/* line formula for v1-v2 */
|
|
a= v2[1]-v1[1];
|
|
b= v1[0]-v2[0];
|
|
c= -a*v1[0] - b*v1[1];
|
|
side= a*v3[0] + b*v3[1] + c < 0.0f;
|
|
|
|
/* the four quad points */
|
|
if ( side==(rect->xmin*a + rect->ymin*b + c >= 0.0f) )
|
|
if ( side==(rect->xmax*a + rect->ymin*b + c >= 0.0f) )
|
|
if ( side==(rect->xmax*a + rect->ymax*b + c >= 0.0f) )
|
|
if ( side==(rect->xmin*a + rect->ymax*b + c >= 0.0f) )
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* check if one of the triangle edges separates all rect points on 1 side */
|
|
static int rect_isect_tria(rctf *rect, const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
if (rect_outside_line(rect, v1, v2, v3))
|
|
return 0;
|
|
if (rect_outside_line(rect, v2, v3, v1))
|
|
return 0;
|
|
if (rect_outside_line(rect, v3, v1, v2))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* if face overlaps a branch, it executes func. recursive */
|
|
static void isb_bsp_face_inside(ISBBranch *bspn, BSPFace *face)
|
|
{
|
|
|
|
/* are we descending? */
|
|
if (bspn->left) {
|
|
/* hrmf, the box struct cannot be addressed with index */
|
|
if (bspn->index==0) {
|
|
if (face->box.xmin <= bspn->divider[0])
|
|
isb_bsp_face_inside(bspn->left, face);
|
|
if (face->box.xmax > bspn->divider[0])
|
|
isb_bsp_face_inside(bspn->right, face);
|
|
}
|
|
else {
|
|
if (face->box.ymin <= bspn->divider[1])
|
|
isb_bsp_face_inside(bspn->left, face);
|
|
if (face->box.ymax > bspn->divider[1])
|
|
isb_bsp_face_inside(bspn->right, face);
|
|
}
|
|
}
|
|
else {
|
|
/* else: end branch reached */
|
|
int a;
|
|
|
|
if (bspn->totsamp==0) return;
|
|
|
|
/* check for nodes entirely in shadow, can be skipped */
|
|
if (bspn->totsamp==bspn->full)
|
|
return;
|
|
|
|
/* if bsp node is entirely in front of face, give up */
|
|
if (bspn->box.zmax < face->box.zmin)
|
|
return;
|
|
|
|
/* if face boundbox is outside of branch rect, give up */
|
|
if (0==BLI_rctf_isect((rctf *)&face->box, (rctf *)&bspn->box, NULL))
|
|
return;
|
|
|
|
/* test all points inside branch */
|
|
for (a=bspn->totsamp-1; a>=0; a--) {
|
|
ISBSample *samp= bspn->samples[a];
|
|
|
|
if ((samp->facenr!=face->facenr || samp->obi!=face->obi) && samp->shadfac) {
|
|
if (face->box.zmin < samp->zco[2]) {
|
|
if (BLI_rctf_isect_pt_v((rctf *)&face->box, samp->zco)) {
|
|
int inshadow= 0;
|
|
|
|
if (face->type) {
|
|
if (point_behind_strand(samp->zco, face))
|
|
inshadow= 1;
|
|
}
|
|
else if ( point_behind_tria2d(samp->zco, face->v1, face->v2, face->v3))
|
|
inshadow= 1;
|
|
else if (face->v4 && point_behind_tria2d(samp->zco, face->v1, face->v3, face->v4))
|
|
inshadow= 1;
|
|
|
|
if (inshadow) {
|
|
*(samp->shadfac) += face->shad_alpha;
|
|
/* optimize; is_full means shad_alpha==4096 */
|
|
if (*(samp->shadfac) >= 4096 || face->is_full) {
|
|
bspn->full++;
|
|
samp->shadfac= NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* based on available samples, recalculate the bounding box for bsp nodes, recursive */
|
|
static void isb_bsp_recalc_box(ISBBranch *root)
|
|
{
|
|
if (root->left) {
|
|
isb_bsp_recalc_box(root->left);
|
|
isb_bsp_recalc_box(root->right);
|
|
}
|
|
else if (root->totsamp) {
|
|
int a;
|
|
|
|
init_box(&root->box);
|
|
for (a=root->totsamp-1; a>=0; a--)
|
|
bound_boxf(&root->box, root->samples[a]->zco);
|
|
}
|
|
}
|
|
|
|
/* callback function for zbuf clip */
|
|
static void isb_bsp_test_strand(ZSpan *zspan, int obi, int zvlnr,
|
|
const float *v1, const float *v2, const float *v3, const float *v4)
|
|
{
|
|
BSPFace face;
|
|
|
|
face.v1= v1;
|
|
face.v2= v2;
|
|
face.v3= v3;
|
|
face.v4= v4;
|
|
face.obi= obi;
|
|
face.facenr= zvlnr & ~RE_QUAD_OFFS;
|
|
face.type= R_STRAND;
|
|
if (R.osa)
|
|
face.shad_alpha= (short)ceil(4096.0f*zspan->shad_alpha/(float)R.osa);
|
|
else
|
|
face.shad_alpha= (short)ceil(4096.0f*zspan->shad_alpha);
|
|
|
|
face.is_full= (zspan->shad_alpha==1.0f);
|
|
|
|
/* setup boundbox */
|
|
init_box(&face.box);
|
|
bound_boxf(&face.box, v1);
|
|
bound_boxf(&face.box, v2);
|
|
bound_boxf(&face.box, v3);
|
|
if (v4)
|
|
bound_boxf(&face.box, v4);
|
|
|
|
/* optimize values */
|
|
bspface_init_strand(&face);
|
|
|
|
isb_bsp_face_inside((ISBBranch *)zspan->rectz, &face);
|
|
|
|
}
|
|
|
|
/* callback function for zbuf clip */
|
|
static void isb_bsp_test_face(ZSpan *zspan, int obi, int zvlnr,
|
|
const float *v1, const float *v2, const float *v3, const float *v4)
|
|
{
|
|
BSPFace face;
|
|
|
|
face.v1= v1;
|
|
face.v2= v2;
|
|
face.v3= v3;
|
|
face.v4= v4;
|
|
face.obi= obi;
|
|
face.facenr= zvlnr & ~RE_QUAD_OFFS;
|
|
face.type= 0;
|
|
if (R.osa)
|
|
face.shad_alpha= (short)ceil(4096.0f*zspan->shad_alpha/(float)R.osa);
|
|
else
|
|
face.shad_alpha= (short)ceil(4096.0f*zspan->shad_alpha);
|
|
|
|
face.is_full= (zspan->shad_alpha==1.0f);
|
|
|
|
/* setup boundbox */
|
|
init_box(&face.box);
|
|
bound_boxf(&face.box, v1);
|
|
bound_boxf(&face.box, v2);
|
|
bound_boxf(&face.box, v3);
|
|
if (v4)
|
|
bound_boxf(&face.box, v4);
|
|
|
|
isb_bsp_face_inside((ISBBranch *)zspan->rectz, &face);
|
|
}
|
|
|
|
static int testclip_minmax(const float ho[4], const float minmax[4])
|
|
{
|
|
float wco= ho[3];
|
|
int flag= 0;
|
|
|
|
if ( ho[0] > minmax[1]*wco) flag = 1;
|
|
else if ( ho[0]< minmax[0]*wco) flag = 2;
|
|
|
|
if ( ho[1] > minmax[3]*wco) flag |= 4;
|
|
else if ( ho[1]< minmax[2]*wco) flag |= 8;
|
|
|
|
return flag;
|
|
}
|
|
|
|
/* main loop going over all faces and check in bsp overlaps, fill in shadfac values */
|
|
static void isb_bsp_fillfaces(Render *re, LampRen *lar, ISBBranch *root)
|
|
{
|
|
ObjectInstanceRen *obi;
|
|
ObjectRen *obr;
|
|
ShadBuf *shb= lar->shb;
|
|
ZSpan zspan, zspanstrand;
|
|
VlakRen *vlr= NULL;
|
|
Material *ma= NULL;
|
|
float minmaxf[4], winmat[4][4];
|
|
int size= shb->size;
|
|
int i, a, ok=1, lay= -1;
|
|
|
|
/* further optimize, also sets minz maxz */
|
|
isb_bsp_recalc_box(root);
|
|
|
|
/* extra clipping for minmax */
|
|
minmaxf[0]= (2.0f*root->box.xmin - size-2.0f)/size;
|
|
minmaxf[1]= (2.0f*root->box.xmax - size+2.0f)/size;
|
|
minmaxf[2]= (2.0f*root->box.ymin - size-2.0f)/size;
|
|
minmaxf[3]= (2.0f*root->box.ymax - size+2.0f)/size;
|
|
|
|
if (lar->mode & (LA_LAYER|LA_LAYER_SHADOW)) lay= lar->lay;
|
|
|
|
/* (ab)use zspan, since we use zbuffer clipping code */
|
|
zbuf_alloc_span(&zspan, size, size, re->clipcrop);
|
|
|
|
zspan.zmulx= ((float)size)/2.0f;
|
|
zspan.zmuly= ((float)size)/2.0f;
|
|
zspan.zofsx= -0.5f;
|
|
zspan.zofsy= -0.5f;
|
|
|
|
/* pass on bsp root to zspan */
|
|
zspan.rectz= (int *)root;
|
|
|
|
/* filling methods */
|
|
zspanstrand= zspan;
|
|
// zspan.zbuflinefunc= zbufline_onlyZ;
|
|
zspan.zbuffunc= isb_bsp_test_face;
|
|
zspanstrand.zbuffunc= isb_bsp_test_strand;
|
|
|
|
for (i=0, obi=re->instancetable.first; obi; i++, obi=obi->next) {
|
|
obr= obi->obr;
|
|
|
|
if (obi->flag & R_TRANSFORMED)
|
|
mul_m4_m4m4(winmat, shb->persmat, obi->mat);
|
|
else
|
|
copy_m4_m4(winmat, shb->persmat);
|
|
|
|
for (a=0; a<obr->totvlak; a++) {
|
|
|
|
if ((a & 255)==0) vlr= obr->vlaknodes[a>>8].vlak;
|
|
else vlr++;
|
|
|
|
/* note, these conditions are copied in shadowbuf_autoclip() */
|
|
if (vlr->mat!= ma) {
|
|
ma= vlr->mat;
|
|
ok= 1;
|
|
if ((ma->mode2 & MA_CASTSHADOW)==0 || (ma->mode & MA_SHADBUF)==0) ok= 0;
|
|
if (ma->material_type == MA_TYPE_WIRE) ok= 0;
|
|
zspanstrand.shad_alpha= zspan.shad_alpha= ma->shad_alpha;
|
|
}
|
|
|
|
if (ok && (obi->lay & lay)) {
|
|
float hoco[4][4];
|
|
int c1, c2, c3, c4=0;
|
|
int d1, d2, d3, d4=0;
|
|
int partclip;
|
|
|
|
/* create hocos per face, it is while render */
|
|
projectvert(vlr->v1->co, winmat, hoco[0]); d1= testclip_minmax(hoco[0], minmaxf);
|
|
projectvert(vlr->v2->co, winmat, hoco[1]); d2= testclip_minmax(hoco[1], minmaxf);
|
|
projectvert(vlr->v3->co, winmat, hoco[2]); d3= testclip_minmax(hoco[2], minmaxf);
|
|
if (vlr->v4) {
|
|
projectvert(vlr->v4->co, winmat, hoco[3]); d4= testclip_minmax(hoco[3], minmaxf);
|
|
}
|
|
|
|
/* minmax clipping */
|
|
if (vlr->v4) partclip= d1 & d2 & d3 & d4;
|
|
else partclip= d1 & d2 & d3;
|
|
|
|
if (partclip==0) {
|
|
|
|
/* window clipping */
|
|
c1= testclip(hoco[0]);
|
|
c2= testclip(hoco[1]);
|
|
c3= testclip(hoco[2]);
|
|
if (vlr->v4)
|
|
c4= testclip(hoco[3]);
|
|
|
|
/* ***** NO WIRE YET */
|
|
if (ma->material_type == MA_TYPE_WIRE) {
|
|
if (vlr->v4)
|
|
zbufclipwire(&zspan, i, a+1, vlr->ec, hoco[0], hoco[1], hoco[2], hoco[3], c1, c2, c3, c4);
|
|
else
|
|
zbufclipwire(&zspan, i, a+1, vlr->ec, hoco[0], hoco[1], hoco[2], NULL, c1, c2, c3, 0);
|
|
}
|
|
else if (vlr->v4) {
|
|
if (vlr->flag & R_STRAND)
|
|
zbufclip4(&zspanstrand, i, a+1, hoco[0], hoco[1], hoco[2], hoco[3], c1, c2, c3, c4);
|
|
else
|
|
zbufclip4(&zspan, i, a+1, hoco[0], hoco[1], hoco[2], hoco[3], c1, c2, c3, c4);
|
|
}
|
|
else
|
|
zbufclip(&zspan, i, a+1, hoco[0], hoco[1], hoco[2], c1, c2, c3);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
zbuf_free_span(&zspan);
|
|
}
|
|
|
|
/* returns 1 when the viewpixel is visible in lampbuffer */
|
|
static int viewpixel_to_lampbuf(ShadBuf *shb, ObjectInstanceRen *obi, VlakRen *vlr, float x, float y, float co_r[3])
|
|
{
|
|
float hoco[4], v1[3], nor[3];
|
|
float dface, fac, siz;
|
|
|
|
RE_vlakren_get_normal(&R, obi, vlr, nor);
|
|
copy_v3_v3(v1, vlr->v1->co);
|
|
if (obi->flag & R_TRANSFORMED)
|
|
mul_m4_v3(obi->mat, v1);
|
|
|
|
/* from shadepixel() */
|
|
dface = dot_v3v3(v1, nor);
|
|
hoco[3]= 1.0f;
|
|
|
|
/* ortho viewplane cannot intersect using view vector originating in (0, 0, 0) */
|
|
if (R.r.mode & R_ORTHO) {
|
|
/* x and y 3d coordinate can be derived from pixel coord and winmat */
|
|
float fx= 2.0f/(R.winx*R.winmat[0][0]);
|
|
float fy= 2.0f/(R.winy*R.winmat[1][1]);
|
|
|
|
hoco[0]= (x - 0.5f*R.winx)*fx - R.winmat[3][0]/R.winmat[0][0];
|
|
hoco[1]= (y - 0.5f*R.winy)*fy - R.winmat[3][1]/R.winmat[1][1];
|
|
|
|
/* using a*x + b*y + c*z = d equation, (a b c) is normal */
|
|
if (nor[2]!=0.0f)
|
|
hoco[2]= (dface - nor[0]*hoco[0] - nor[1]*hoco[1])/nor[2];
|
|
else
|
|
hoco[2]= 0.0f;
|
|
}
|
|
else {
|
|
float div, view[3];
|
|
|
|
calc_view_vector(view, x, y);
|
|
|
|
div = dot_v3v3(nor, view);
|
|
if (div==0.0f)
|
|
return 0;
|
|
|
|
fac= dface/div;
|
|
|
|
hoco[0]= fac*view[0];
|
|
hoco[1]= fac*view[1];
|
|
hoco[2]= fac*view[2];
|
|
}
|
|
|
|
/* move 3d vector to lampbuf */
|
|
mul_m4_v4(shb->persmat, hoco); /* rational hom co */
|
|
|
|
/* clip We can test for -1.0/1.0 because of the properties of the
|
|
* coordinate transformations. */
|
|
fac = fabsf(hoco[3]);
|
|
if (hoco[0]<-fac || hoco[0]>fac)
|
|
return 0;
|
|
if (hoco[1]<-fac || hoco[1]>fac)
|
|
return 0;
|
|
if (hoco[2]<-fac || hoco[2]>fac)
|
|
return 0;
|
|
|
|
siz= 0.5f*(float)shb->size;
|
|
co_r[0]= siz*(1.0f+hoco[0]/hoco[3]) -0.5f;
|
|
co_r[1]= siz*(1.0f+hoco[1]/hoco[3]) -0.5f;
|
|
co_r[2]= ((float)0x7FFFFFFF)*(hoco[2]/hoco[3]);
|
|
|
|
/* XXXX bias, much less than normal shadbuf, or do we need a constant? */
|
|
co_r[2] -= 0.05f*shb->bias;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* storage of shadow results, solid osa and transp case */
|
|
static void isb_add_shadfac(ISBShadfacA **isbsapp, MemArena *mem, int obi, int facenr, short shadfac, short samples)
|
|
{
|
|
ISBShadfacA *new;
|
|
float shadfacf;
|
|
|
|
/* in osa case, the samples were filled in with factor 1.0/R.osa. if fewer samples we have to correct */
|
|
if (R.osa)
|
|
shadfacf= ((float)shadfac*R.osa)/(4096.0f*samples);
|
|
else
|
|
shadfacf= ((float)shadfac)/(4096.0f);
|
|
|
|
new= BLI_memarena_alloc(mem, sizeof(ISBShadfacA));
|
|
new->obi= obi;
|
|
new->facenr= facenr & ~RE_QUAD_OFFS;
|
|
new->shadfac= shadfacf;
|
|
if (*isbsapp)
|
|
new->next= (*isbsapp);
|
|
else
|
|
new->next= NULL;
|
|
|
|
*isbsapp= new;
|
|
}
|
|
|
|
/* adding samples, solid case */
|
|
static int isb_add_samples(RenderPart *pa, ISBBranch *root, MemArena *memarena, ISBSample **samplebuf)
|
|
{
|
|
int xi, yi, *xcos, *ycos;
|
|
int sample, bsp_err= 0;
|
|
|
|
/* bsp split doesn't like to handle regular sequences */
|
|
xcos= MEM_mallocN(pa->rectx*sizeof(int), "xcos");
|
|
ycos= MEM_mallocN(pa->recty*sizeof(int), "ycos");
|
|
for (xi=0; xi<pa->rectx; xi++)
|
|
xcos[xi]= xi;
|
|
for (yi=0; yi<pa->recty; yi++)
|
|
ycos[yi]= yi;
|
|
BLI_array_randomize(xcos, sizeof(int), pa->rectx, 12345);
|
|
BLI_array_randomize(ycos, sizeof(int), pa->recty, 54321);
|
|
|
|
for (sample=0; sample<(R.osa?R.osa:1); sample++) {
|
|
ISBSample *samp= samplebuf[sample], *samp1;
|
|
|
|
for (yi=0; yi<pa->recty; yi++) {
|
|
int y= ycos[yi];
|
|
for (xi=0; xi<pa->rectx; xi++) {
|
|
int x= xcos[xi];
|
|
samp1= samp + y*pa->rectx + x;
|
|
if (samp1->facenr)
|
|
bsp_err |= isb_bsp_insert(root, memarena, samp1);
|
|
}
|
|
if (bsp_err) break;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(xcos);
|
|
MEM_freeN(ycos);
|
|
|
|
return bsp_err;
|
|
}
|
|
|
|
/* solid version */
|
|
/* lar->shb, pa->rectz and pa->rectp should exist */
|
|
static void isb_make_buffer(RenderPart *pa, LampRen *lar)
|
|
{
|
|
ShadBuf *shb= lar->shb;
|
|
ISBData *isbdata;
|
|
ISBSample *samp, *samplebuf[16]; /* should be RE_MAX_OSA */
|
|
ISBBranch root;
|
|
MemArena *memarena;
|
|
intptr_t *rd;
|
|
int *recto, *rectp, x, y, sindex, sample, bsp_err=0;
|
|
|
|
/* storage for shadow, per thread */
|
|
isbdata= shb->isb_result[pa->thread];
|
|
|
|
/* to map the shi->xs and ys coordinate */
|
|
isbdata->minx= pa->disprect.xmin;
|
|
isbdata->miny= pa->disprect.ymin;
|
|
isbdata->rectx= pa->rectx;
|
|
isbdata->recty= pa->recty;
|
|
|
|
/* branches are added using memarena (32k branches) */
|
|
memarena = BLI_memarena_new(0x8000 * sizeof(ISBBranch), "isb arena");
|
|
BLI_memarena_use_calloc(memarena);
|
|
|
|
/* samplebuf is in camera view space (pixels) */
|
|
for (sample=0; sample<(R.osa?R.osa:1); sample++)
|
|
samplebuf[sample]= MEM_callocN(sizeof(ISBSample)*pa->rectx*pa->recty, "isb samplebuf");
|
|
|
|
/* for end result, ISBSamples point to this in non OSA case, otherwise to pixstruct->shadfac */
|
|
if (R.osa==0)
|
|
isbdata->shadfacs= MEM_callocN(pa->rectx*pa->recty*sizeof(short), "isb shadfacs");
|
|
|
|
/* setup bsp root */
|
|
memset(&root, 0, sizeof(ISBBranch));
|
|
root.box.xmin = (float)shb->size;
|
|
root.box.ymin = (float)shb->size;
|
|
|
|
/* create the sample buffers */
|
|
for (sindex=0, y=0; y<pa->recty; y++) {
|
|
for (x=0; x<pa->rectx; x++, sindex++) {
|
|
|
|
/* this makes it a long function, but splitting it out would mean 10+ arguments */
|
|
/* first check OSA case */
|
|
if (R.osa) {
|
|
rd= pa->rectdaps + sindex;
|
|
if (*rd) {
|
|
float xs= (float)(x + pa->disprect.xmin);
|
|
float ys= (float)(y + pa->disprect.ymin);
|
|
|
|
for (sample=0; sample<R.osa; sample++) {
|
|
PixStr *ps= (PixStr *)(*rd);
|
|
int mask= (1<<sample);
|
|
|
|
while (ps) {
|
|
if (ps->mask & mask)
|
|
break;
|
|
ps= ps->next;
|
|
}
|
|
if (ps && ps->facenr>0) {
|
|
ObjectInstanceRen *obi= &R.objectinstance[ps->obi];
|
|
ObjectRen *obr= obi->obr;
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, (ps->facenr-1) & RE_QUAD_MASK);
|
|
|
|
samp= samplebuf[sample] + sindex;
|
|
/* convert image plane pixel location to lamp buffer space */
|
|
if (viewpixel_to_lampbuf(shb, obi, vlr, xs + R.jit[sample][0], ys + R.jit[sample][1], samp->zco)) {
|
|
samp->obi= ps->obi;
|
|
samp->facenr= ps->facenr & ~RE_QUAD_OFFS;
|
|
ps->shadfac= 0;
|
|
samp->shadfac= &ps->shadfac;
|
|
bound_rectf((rctf *)&root.box, samp->zco);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
rectp= pa->rectp + sindex;
|
|
recto= pa->recto + sindex;
|
|
if (*rectp>0) {
|
|
ObjectInstanceRen *obi= &R.objectinstance[*recto];
|
|
ObjectRen *obr= obi->obr;
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, (*rectp-1) & RE_QUAD_MASK);
|
|
float xs= (float)(x + pa->disprect.xmin);
|
|
float ys= (float)(y + pa->disprect.ymin);
|
|
|
|
samp= samplebuf[0] + sindex;
|
|
/* convert image plane pixel location to lamp buffer space */
|
|
if (viewpixel_to_lampbuf(shb, obi, vlr, xs, ys, samp->zco)) {
|
|
samp->obi= *recto;
|
|
samp->facenr= *rectp & ~RE_QUAD_OFFS;
|
|
samp->shadfac= isbdata->shadfacs + sindex;
|
|
bound_rectf((rctf *)&root.box, samp->zco);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* simple method to see if we have samples */
|
|
if (root.box.xmin != (float)shb->size) {
|
|
/* now create a regular split, root.box has the initial bounding box of all pixels */
|
|
/* split bsp 8 levels deep, in regular grid (16 x 16) */
|
|
isb_bsp_split_init(&root, memarena, 8);
|
|
|
|
/* insert all samples in BSP now */
|
|
bsp_err= isb_add_samples(pa, &root, memarena, samplebuf);
|
|
|
|
if (bsp_err==0) {
|
|
/* go over all faces and fill in shadow values */
|
|
|
|
isb_bsp_fillfaces(&R, lar, &root); /* shb->persmat should have been calculated */
|
|
|
|
/* copy shadow samples to persistent buffer, reduce memory overhead */
|
|
if (R.osa) {
|
|
ISBShadfacA **isbsa= isbdata->shadfaca= MEM_callocN(pa->rectx*pa->recty*sizeof(void *), "isb shadfacs");
|
|
|
|
isbdata->memarena = BLI_memarena_new(0x8000 * sizeof(ISBSampleA), "isb arena");
|
|
BLI_memarena_use_calloc(isbdata->memarena);
|
|
|
|
for (rd= pa->rectdaps, x=pa->rectx*pa->recty; x>0; x--, rd++, isbsa++) {
|
|
|
|
if (*rd) {
|
|
PixStr *ps= (PixStr *)(*rd);
|
|
while (ps) {
|
|
if (ps->shadfac)
|
|
isb_add_shadfac(isbsa, isbdata->memarena, ps->obi, ps->facenr, ps->shadfac, count_mask(ps->mask));
|
|
ps= ps->next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (isbdata->shadfacs) {
|
|
MEM_freeN(isbdata->shadfacs);
|
|
isbdata->shadfacs= NULL;
|
|
}
|
|
}
|
|
|
|
/* free BSP */
|
|
BLI_memarena_free(memarena);
|
|
|
|
/* free samples */
|
|
for (x=0; x<(R.osa?R.osa:1); x++)
|
|
MEM_freeN(samplebuf[x]);
|
|
|
|
if (bsp_err) printf("error in filling bsp\n");
|
|
}
|
|
|
|
/* add sample to buffer, isbsa is the root sample in a buffer */
|
|
static ISBSampleA *isb_alloc_sample_transp(ISBSampleA **isbsa, MemArena *mem)
|
|
{
|
|
ISBSampleA *new;
|
|
|
|
new= BLI_memarena_alloc(mem, sizeof(ISBSampleA));
|
|
if (*isbsa)
|
|
new->next= (*isbsa);
|
|
else
|
|
new->next= NULL;
|
|
|
|
*isbsa= new;
|
|
return new;
|
|
}
|
|
|
|
/* adding samples in BSP, transparent case */
|
|
static int isb_add_samples_transp(RenderPart *pa, ISBBranch *root, MemArena *memarena, ISBSampleA ***samplebuf)
|
|
{
|
|
int xi, yi, *xcos, *ycos;
|
|
int sample, bsp_err= 0;
|
|
|
|
/* bsp split doesn't like to handle regular sequences */
|
|
xcos= MEM_mallocN(pa->rectx*sizeof(int), "xcos");
|
|
ycos= MEM_mallocN(pa->recty*sizeof(int), "ycos");
|
|
for (xi=0; xi<pa->rectx; xi++)
|
|
xcos[xi]= xi;
|
|
for (yi=0; yi<pa->recty; yi++)
|
|
ycos[yi]= yi;
|
|
BLI_array_randomize(xcos, sizeof(int), pa->rectx, 12345);
|
|
BLI_array_randomize(ycos, sizeof(int), pa->recty, 54321);
|
|
|
|
for (sample=0; sample<(R.osa?R.osa:1); sample++) {
|
|
ISBSampleA **samp= samplebuf[sample], *samp1;
|
|
|
|
for (yi=0; yi<pa->recty; yi++) {
|
|
int y= ycos[yi];
|
|
for (xi=0; xi<pa->rectx; xi++) {
|
|
int x= xcos[xi];
|
|
|
|
samp1= *(samp + y*pa->rectx + x);
|
|
while (samp1) {
|
|
bsp_err |= isb_bsp_insert(root, memarena, (ISBSample *)samp1);
|
|
samp1= samp1->next;
|
|
}
|
|
}
|
|
if (bsp_err) break;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(xcos);
|
|
MEM_freeN(ycos);
|
|
|
|
return bsp_err;
|
|
}
|
|
|
|
|
|
/* Ztransp version */
|
|
/* lar->shb, pa->rectz and pa->rectp should exist */
|
|
static void isb_make_buffer_transp(RenderPart *pa, APixstr *apixbuf, LampRen *lar)
|
|
{
|
|
ShadBuf *shb= lar->shb;
|
|
ISBData *isbdata;
|
|
ISBSampleA *samp, **samplebuf[16]; /* MAX_OSA */
|
|
ISBBranch root;
|
|
MemArena *memarena;
|
|
APixstr *ap;
|
|
int x, y, sindex, sample, bsp_err=0;
|
|
|
|
/* storage for shadow, per thread */
|
|
isbdata= shb->isb_result[pa->thread];
|
|
|
|
/* to map the shi->xs and ys coordinate */
|
|
isbdata->minx= pa->disprect.xmin;
|
|
isbdata->miny= pa->disprect.ymin;
|
|
isbdata->rectx= pa->rectx;
|
|
isbdata->recty= pa->recty;
|
|
|
|
/* branches are added using memarena (32k branches) */
|
|
memarena = BLI_memarena_new(0x8000 * sizeof(ISBBranch), "isb arena");
|
|
BLI_memarena_use_calloc(memarena);
|
|
|
|
/* samplebuf is in camera view space (pixels) */
|
|
for (sample=0; sample<(R.osa?R.osa:1); sample++)
|
|
samplebuf[sample]= MEM_callocN(sizeof(void *)*pa->rectx*pa->recty, "isb alpha samplebuf");
|
|
|
|
/* setup bsp root */
|
|
memset(&root, 0, sizeof(ISBBranch));
|
|
root.box.xmin = (float)shb->size;
|
|
root.box.ymin = (float)shb->size;
|
|
|
|
/* create the sample buffers */
|
|
for (ap= apixbuf, sindex=0, y=0; y<pa->recty; y++) {
|
|
for (x=0; x<pa->rectx; x++, sindex++, ap++) {
|
|
|
|
if (ap->p[0]) {
|
|
APixstr *apn;
|
|
float xs= (float)(x + pa->disprect.xmin);
|
|
float ys= (float)(y + pa->disprect.ymin);
|
|
|
|
for (apn=ap; apn; apn= apn->next) {
|
|
int a;
|
|
for (a=0; a<4; a++) {
|
|
if (apn->p[a]) {
|
|
ObjectInstanceRen *obi= &R.objectinstance[apn->obi[a]];
|
|
ObjectRen *obr= obi->obr;
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, (apn->p[a]-1) & RE_QUAD_MASK);
|
|
float zco[3];
|
|
|
|
/* here we store shadfac, easier to create the end storage buffer. needs zero'ed, multiple shadowbufs use it */
|
|
apn->shadfac[a]= 0;
|
|
|
|
if (R.osa) {
|
|
for (sample=0; sample<R.osa; sample++) {
|
|
int mask= (1<<sample);
|
|
|
|
if (apn->mask[a] & mask) {
|
|
|
|
/* convert image plane pixel location to lamp buffer space */
|
|
if (viewpixel_to_lampbuf(shb, obi, vlr, xs + R.jit[sample][0], ys + R.jit[sample][1], zco)) {
|
|
samp= isb_alloc_sample_transp(samplebuf[sample] + sindex, memarena);
|
|
samp->obi= apn->obi[a];
|
|
samp->facenr= apn->p[a] & ~RE_QUAD_OFFS;
|
|
samp->shadfac= &apn->shadfac[a];
|
|
|
|
copy_v3_v3(samp->zco, zco);
|
|
bound_rectf((rctf *)&root.box, samp->zco);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
|
|
/* convert image plane pixel location to lamp buffer space */
|
|
if (viewpixel_to_lampbuf(shb, obi, vlr, xs, ys, zco)) {
|
|
|
|
samp= isb_alloc_sample_transp(samplebuf[0] + sindex, memarena);
|
|
samp->obi= apn->obi[a];
|
|
samp->facenr= apn->p[a] & ~RE_QUAD_OFFS;
|
|
samp->shadfac= &apn->shadfac[a];
|
|
|
|
copy_v3_v3(samp->zco, zco);
|
|
bound_rectf((rctf *)&root.box, samp->zco);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* simple method to see if we have samples */
|
|
if (root.box.xmin != (float)shb->size) {
|
|
/* now create a regular split, root.box has the initial bounding box of all pixels */
|
|
/* split bsp 8 levels deep, in regular grid (16 x 16) */
|
|
isb_bsp_split_init(&root, memarena, 8);
|
|
|
|
/* insert all samples in BSP now */
|
|
bsp_err= isb_add_samples_transp(pa, &root, memarena, samplebuf);
|
|
|
|
if (bsp_err==0) {
|
|
ISBShadfacA **isbsa;
|
|
|
|
/* go over all faces and fill in shadow values */
|
|
isb_bsp_fillfaces(&R, lar, &root); /* shb->persmat should have been calculated */
|
|
|
|
/* copy shadow samples to persistent buffer, reduce memory overhead */
|
|
isbsa= isbdata->shadfaca= MEM_callocN(pa->rectx*pa->recty*sizeof(void *), "isb shadfacs");
|
|
|
|
isbdata->memarena = BLI_memarena_new(0x8000 * sizeof(ISBSampleA), "isb arena");
|
|
|
|
for (ap= apixbuf, x=pa->rectx*pa->recty; x>0; x--, ap++, isbsa++) {
|
|
|
|
if (ap->p[0]) {
|
|
APixstr *apn;
|
|
for (apn=ap; apn; apn= apn->next) {
|
|
int a;
|
|
for (a=0; a<4; a++) {
|
|
if (apn->p[a] && apn->shadfac[a]) {
|
|
if (R.osa)
|
|
isb_add_shadfac(isbsa, isbdata->memarena, apn->obi[a], apn->p[a], apn->shadfac[a], count_mask(apn->mask[a]));
|
|
else
|
|
isb_add_shadfac(isbsa, isbdata->memarena, apn->obi[a], apn->p[a], apn->shadfac[a], 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* free BSP */
|
|
BLI_memarena_free(memarena);
|
|
|
|
/* free samples */
|
|
for (x=0; x<(R.osa?R.osa:1); x++)
|
|
MEM_freeN(samplebuf[x]);
|
|
|
|
if (bsp_err) printf("error in filling bsp\n");
|
|
}
|
|
|
|
|
|
|
|
/* exported */
|
|
|
|
/* returns amount of light (1.0 = no shadow) */
|
|
/* note, shadepixel() rounds the coordinate, not the real sample info */
|
|
float ISB_getshadow(ShadeInput *shi, ShadBuf *shb)
|
|
{
|
|
/* if raytracing, we can't accept irregular shadow */
|
|
if (shi->depth==0) {
|
|
ISBData *isbdata= shb->isb_result[shi->thread];
|
|
|
|
if (isbdata) {
|
|
if (isbdata->shadfacs || isbdata->shadfaca) {
|
|
int x= shi->xs - isbdata->minx;
|
|
|
|
if (x >= 0 && x < isbdata->rectx) {
|
|
int y= shi->ys - isbdata->miny;
|
|
|
|
if (y >= 0 && y < isbdata->recty) {
|
|
if (isbdata->shadfacs) {
|
|
const short *sp= isbdata->shadfacs + y*isbdata->rectx + x;
|
|
return *sp>=4096?0.0f:1.0f - ((float)*sp)/4096.0f;
|
|
}
|
|
else {
|
|
int sindex= y*isbdata->rectx + x;
|
|
int obi= shi->obi - R.objectinstance;
|
|
ISBShadfacA *isbsa= *(isbdata->shadfaca + sindex);
|
|
|
|
while (isbsa) {
|
|
if (isbsa->facenr==shi->facenr+1 && isbsa->obi==obi)
|
|
return isbsa->shadfac>=1.0f?0.0f:1.0f - isbsa->shadfac;
|
|
isbsa= isbsa->next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1.0f;
|
|
}
|
|
|
|
/* part is supposed to be solid zbuffered (apixbuf==NULL) or transparent zbuffered */
|
|
void ISB_create(RenderPart *pa, APixstr *apixbuf)
|
|
{
|
|
GroupObject *go;
|
|
|
|
/* go over all lamps, and make the irregular buffers */
|
|
for (go=R.lights.first; go; go= go->next) {
|
|
LampRen *lar= go->lampren;
|
|
|
|
if (lar->type==LA_SPOT && lar->shb && lar->buftype==LA_SHADBUF_IRREGULAR) {
|
|
|
|
/* create storage for shadow, per thread */
|
|
lar->shb->isb_result[pa->thread]= MEM_callocN(sizeof(ISBData), "isb data");
|
|
|
|
if (apixbuf)
|
|
isb_make_buffer_transp(pa, apixbuf, lar);
|
|
else
|
|
isb_make_buffer(pa, lar);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* end of part rendering, free stored shadow data for this thread from all lamps */
|
|
void ISB_free(RenderPart *pa)
|
|
{
|
|
GroupObject *go;
|
|
|
|
/* go over all lamps, and free the irregular buffers */
|
|
for (go=R.lights.first; go; go= go->next) {
|
|
LampRen *lar= go->lampren;
|
|
|
|
if (lar->type==LA_SPOT && lar->shb && lar->buftype==LA_SHADBUF_IRREGULAR) {
|
|
ISBData *isbdata= lar->shb->isb_result[pa->thread];
|
|
|
|
if (isbdata) {
|
|
if (isbdata->shadfacs)
|
|
MEM_freeN(isbdata->shadfacs);
|
|
if (isbdata->shadfaca)
|
|
MEM_freeN(isbdata->shadfaca);
|
|
|
|
if (isbdata->memarena)
|
|
BLI_memarena_free(isbdata->memarena);
|
|
|
|
MEM_freeN(isbdata);
|
|
lar->shb->isb_result[pa->thread]= NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|