This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/application/Controller.cpp
Tamito Kajiyama 4569f9ae4e Optimized view map calculation by Alexander Beels.
* View map calculation has been intensively optimized for speed by
means of:

1) new spatial grid data structures (SphericalGrid for perspective
cameras and BoxGrid for orthographic cameras; automatically switched
based on the camera type);

2) a heuristic grid density calculation algorithm; and

3) new line visibility computation algorithms: A "traditional"
algorithm for emulating old visibility algorithms, and a "cumulative"
algorithm for improved, more consistent line visibility, both exploiting
the new spatial grid data structures for fast ray casting.

A new option "Raycasting Algorithm" was added to allow users to choose
a ray casting (line visibility) algorithm.  Available choices are:

- Normal Ray Casting
- Fast Ray Casting
- Very Fast Ray Casting
- Culled Traditional Visibility Detection
- Unculled Traditional Visibility Detection
- Culled Cumulative Visibility Detection
- Unculled Cumulative Visibility Detection

The first three algorithms are those available in the original
Freestyle (the "normal" ray casting was used unconditionally, though).
The "fast" and "very fast" ray casting algorithms achieve a faster
calculation at the cost of less visibility accuracy.

The last four are newly introduced optimized options.  The culled
versions of the new algorithms will exclude from visibility
calculation those faces that lay outside the camera, which leads to a
faster view map construction.  The unculled counterparts will take all
faces into account.  The unculled visibility algorithms are useful
when culling affects stroke chaining.

The recommended options for users are the culled/unculled cumulative
visibility algorithms.  These options are meant to replace the old
algorithms in the future.

Performance improvements over the old algorithms depend on the scenes
to be rendered.

* Silhouette detection has also been considerably optimized for speed.

Performance gains by this optimization do not depend on scenes.

* Improper handling of error conditions in the view map construction
was fixed.
2011-03-14 00:36:27 +00:00

962 lines
25 KiB
C++
Executable File

//
// Copyright (C) : Please refer to the COPYRIGHT file distributed
// with this source distribution.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
///////////////////////////////////////////////////////////////////////////////
// Must be included before any QT header, because of moc
#include "../system/PythonInterpreter.h"
#include <string>
#include <fstream>
#include <float.h>
#include "AppView.h"
#include "AppCanvas.h"
#include "AppConfig.h"
#include "../system/StringUtils.h"
#include "../scene_graph/NodeShape.h"
#include "../scene_graph/NodeTransform.h"
#include "../scene_graph/NodeDrawingStyle.h"
#include "../winged_edge/WingedEdgeBuilder.h"
#include "../winged_edge/WEdge.h"
#include "../scene_graph/VertexRep.h"
#include "../winged_edge/WXEdgeBuilder.h"
#include "../scene_graph/ScenePrettyPrinter.h"
#include "../view_map/ViewMapTesselator.h"
#include "../stroke/StrokeTesselator.h"
#include "../view_map/ViewMapIO.h"
#include "Controller.h"
#include "../view_map/ViewMap.h"
#include "../winged_edge/Curvature.h"
#include "../image/Image.h"
#include "../view_map/SteerableViewMap.h"
#include "../stroke/PSStrokeRenderer.h"
#include "../stroke/TextStrokeRenderer.h"
#include "../stroke/StyleModule.h"
#include "../system/StringUtils.h"
#include "../blender_interface/BlenderFileLoader.h"
#include "../blender_interface/BlenderStrokeRenderer.h"
#include "../blender_interface/BlenderStyleModule.h"
#include "DNA_freestyle_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "../../FRS_freestyle.h"
#ifdef __cplusplus
}
#endif
Controller::Controller()
{
const string sep(Config::DIR_SEP.c_str());
//const string filename = Config::Path::getInstance()->getHomeDir() + sep + Config::OPTIONS_DIR + sep + Config::OPTIONS_CURRENT_DIRS_FILE;
//_current_dirs = new ConfigIO(filename, Config::APPLICATION_NAME + "CurrentDirs", true);
_RootNode = new NodeGroup;
_RootNode->addRef();
_SilhouetteNode = NULL;
//_ProjectedSilhouette = NULL;
//_VisibleProjectedSilhouette = NULL;
_DebugNode = new NodeGroup;
_DebugNode->addRef();
_winged_edge = NULL;
_pView = NULL;
_edgeTesselationNature = (Nature::SILHOUETTE | Nature::BORDER | Nature::CREASE);
_ProgressBar = new ProgressBar;
_SceneNumFaces = 0;
_minEdgeSize = DBL_MAX;
_EPSILON = 1e-6;
_bboxDiag = 0;
_ViewMap = 0;
_Canvas = 0;
_VisibilityAlgo = ViewMapBuilder::ray_casting_adaptive_traditional;
//_VisibilityAlgo = ViewMapBuilder::ray_casting;
_Canvas = new AppCanvas;
_inter = new PythonInterpreter();
_EnableQI = true;
_ComputeRidges = true;
_ComputeSteerableViewMap = false;
_ComputeSuggestive = true;
_ComputeMaterialBoundaries = true;
_sphereRadius = 1.0;
_creaseAngle = 134.43;
init_options();
}
Controller::~Controller()
{
if(NULL != _RootNode)
{
int ref = _RootNode->destroy();
if(0 == ref)
delete _RootNode;
}
if(NULL != _SilhouetteNode)
{
int ref = _SilhouetteNode->destroy();
if(0 == ref)
delete _SilhouetteNode;
}
if(NULL != _DebugNode)
{
int ref = _DebugNode->destroy();
if(0 == ref)
delete _DebugNode;
}
if(_winged_edge) {
delete _winged_edge;
_winged_edge = NULL;
}
if(0 != _ViewMap)
{
delete _ViewMap;
_ViewMap = 0;
}
if(0 != _Canvas)
{
delete _Canvas;
_Canvas = 0;
}
if (_inter) {
delete _inter;
_inter = NULL;
}
//delete _current_dirs;
}
void Controller::setView(AppView *iView)
{
if(NULL == iView)
return;
_pView = iView;
_Canvas->setViewer(_pView);
}
void Controller::setPassDiffuse(float *buf, int width, int height)
{
AppCanvas *app_canvas = dynamic_cast<AppCanvas *>(_Canvas);
assert(app_canvas != 0);
app_canvas->setPassDiffuse(buf, width, height);
}
void Controller::setPassZ(float *buf, int width, int height)
{
AppCanvas *app_canvas = dynamic_cast<AppCanvas *>(_Canvas);
assert(app_canvas != 0);
app_canvas->setPassZ(buf, width, height);
}
void Controller::setContext(bContext *C)
{
PythonInterpreter* py_inter = dynamic_cast<PythonInterpreter*>(_inter);
assert(py_inter != 0);
py_inter->setContext(C);
}
int Controller::LoadMesh(Render *re, SceneRenderLayer* srl)
{
BlenderFileLoader loader(re, srl);
_Chrono.start();
NodeGroup *blenderScene = loader.Load();
if (blenderScene == NULL) {
cout << "Cannot load scene" << endl;
return 1;
}
if( blenderScene->numberOfChildren() < 1) {
cout << "Empty scene" << endl;
blenderScene->destroy();
delete blenderScene;
return 1;
}
cout << "Scene loaded" << endl;
printf("Mesh cleaning : %lf\n", _Chrono.stop());
_SceneNumFaces += loader.numFacesRead();
if(loader.minEdgeSize() < _minEdgeSize)
{
_minEdgeSize = loader.minEdgeSize();
}
// DEBUG
// ScenePrettyPrinter spp;
// blenderScene->accept(spp);
_RootNode->AddChild(blenderScene);
_RootNode->UpdateBBox(); // FIXME: Correct that by making a Renderer to compute the bbox
_pView->setModel(_RootNode);
//_pView->FitBBox();
_Chrono.start();
WXEdgeBuilder wx_builder;
blenderScene->accept(wx_builder);
_winged_edge = wx_builder.getWingedEdge();
printf("WEdge building : %lf\n", _Chrono.stop());
//
// _pView->setDebug(_DebugNode);
//delete stuff
// if(0 != ws_builder)
// {
// delete ws_builder;
// ws_builder = 0;
// }
//soc QFileInfo qfi(iFileName);
//soc string basename((const char*)qfi.fileName().toAscii().data());
// char cleaned[FILE_MAX];
// BLI_strncpy(cleaned, iFileName, FILE_MAX);
// BLI_cleanup_file(NULL, cleaned);
// string basename = StringUtils::toAscii( string(cleaned) );
_ListOfModels.push_back("Blender_models");
cout << "Triangles nb : " << _SceneNumFaces << endl;
_bboxDiag = (_RootNode->bbox().getMax()-_RootNode->bbox().getMin()).norm();
cout << "Bounding Box : " << _bboxDiag << endl;
ClearRootNode();
return 0;
}
void Controller::CloseFile()
{
WShape::setCurrentId(0);
_ListOfModels.clear();
// We deallocate the memory:
ClearRootNode();
DeleteWingedEdge();
DeleteViewMap();
// clears the canvas
_Canvas->Clear();
// soc: reset passes
setPassDiffuse(NULL, 0, 0);
setPassZ(NULL, 0, 0);
}
void Controller::ClearRootNode()
{
_pView->DetachModel();
if(NULL != _RootNode)
{
int ref = _RootNode->destroy();
if(0 == ref)
_RootNode->addRef();
_RootNode->clearBBox();
}
}
void Controller::DeleteWingedEdge()
{
if(_winged_edge)
{
delete _winged_edge;
_winged_edge = NULL;
}
// clears the grid
_Grid.clear();
_SceneNumFaces = 0;
_minEdgeSize = DBL_MAX;
}
void Controller::DeleteViewMap()
{
_pView->DetachSilhouette();
if (NULL != _SilhouetteNode)
{
int ref = _SilhouetteNode->destroy();
if(0 == ref) {
delete _SilhouetteNode;
_SilhouetteNode = NULL;
}
}
// if(NULL != _ProjectedSilhouette)
// {
// int ref = _ProjectedSilhouette->destroy();
// if(0 == ref)
// {
// delete _ProjectedSilhouette;
// _ProjectedSilhouette = NULL;
// }
// }
// if(NULL != _VisibleProjectedSilhouette)
// {
// int ref = _VisibleProjectedSilhouette->destroy();
// if(0 == ref)
// {
// delete _VisibleProjectedSilhouette;
// _VisibleProjectedSilhouette = NULL;
// }
// }
_pView->DetachDebug();
if(NULL != _DebugNode) {
int ref = _DebugNode->destroy();
if(0 == ref)
_DebugNode->addRef();
}
if(NULL != _ViewMap) {
delete _ViewMap;
_ViewMap = 0;
}
}
void Controller::ComputeViewMap()
{
if (!_ListOfModels.size())
return;
if(NULL != _ViewMap)
{
delete _ViewMap;
_ViewMap = 0;
}
_pView->DetachDebug();
if(NULL != _DebugNode)
{
int ref = _DebugNode->destroy();
if(0 == ref)
_DebugNode->addRef();
}
_pView->DetachSilhouette();
if (NULL != _SilhouetteNode)
{
int ref = _SilhouetteNode->destroy();
if(0 == ref)
delete _SilhouetteNode;
}
// if(NULL != _ProjectedSilhouette)
// {
// int ref = _ProjectedSilhouette->destroy();
// if(0 == ref)
// delete _ProjectedSilhouette;
// }
// if(NULL != _VisibleProjectedSilhouette)
// {
// int ref = _VisibleProjectedSilhouette->destroy();
// if(0 == ref)
// {
// delete _VisibleProjectedSilhouette;
// _VisibleProjectedSilhouette = 0;
// }
// }
// retrieve the 3D viewpoint and transformations information
//----------------------------------------------------------
// Save the viewpoint context at the view level in order
// to be able to restore it later:
// Restore the context of view:
// we need to perform all these operations while the
// 3D context is on.
Vec3r vp( freestyle_viewpoint[0], freestyle_viewpoint[1], freestyle_viewpoint[2]);
//cout << "mv" << endl;
real mv[4][4];
for( int i= 0; i < 4; i++) {
for( int j= 0; j < 4; j++) {
mv[i][j] = freestyle_mv[i][j];
//cout << mv[i][j] << " ";
}
// cout << endl;
}
//cout << "\nproj" << endl;
real proj[4][4];
for( int i= 0; i < 4; i++) {
for( int j= 0; j < 4; j++) {
proj[i][j] = freestyle_proj[i][j];
//cout << proj[i][j] << " ";
}
//cout << endl;
}
int viewport[4];
for( int i= 0; i < 4; i++)
viewport[i] = freestyle_viewport[i];
//cout << "\nfocal:" << _pView->GetFocalLength() << endl << endl;
// Flag the WXEdge structure for silhouette edge detection:
//----------------------------------------------------------
cout << "\n=== Detecting silhouette edges ===" << endl;
_Chrono.start();
edgeDetector.setViewpoint(Vec3r(vp));
edgeDetector.enableOrthographicProjection(proj[3][3] != 0.0);
edgeDetector.enableRidgesAndValleysFlag(_ComputeRidges);
edgeDetector.enableSuggestiveContours(_ComputeSuggestive);
edgeDetector.enableMaterialBoundaries(_ComputeMaterialBoundaries);
edgeDetector.enableFaceSmoothness(_EnableFaceSmoothness);
edgeDetector.setCreaseAngle(_creaseAngle);
edgeDetector.setSphereRadius(_sphereRadius);
edgeDetector.setSuggestiveContourKrDerivativeEpsilon(_suggestiveContourKrDerivativeEpsilon);
edgeDetector.processShapes(*_winged_edge);
real duration = _Chrono.stop();
printf("Feature lines : %lf\n", duration);
// Builds the view map structure from the flagged WSEdge structure:
//----------------------------------------------------------
ViewMapBuilder vmBuilder;
vmBuilder.setEnableQI(_EnableQI);
vmBuilder.setViewpoint(Vec3r(vp));
vmBuilder.setTransform( mv, proj,viewport, _pView->GetFocalLength(), _pView->GetAspect(), _pView->GetFovyRadian());
vmBuilder.setFrustum(_pView->znear(), _pView->zfar());
vmBuilder.setGrid(&_Grid);
// Builds a tesselated form of the silhouette for display purpose:
//---------------------------------------------------------------
ViewMapTesselator3D sTesselator3d;
//ViewMapTesselator2D sTesselator2d;
//sTesselator2d.setNature(_edgeTesselationNature);
sTesselator3d.setNature(_edgeTesselationNature);
cout << "\n=== Building the view map ===" << endl;
_Chrono.start();
// Build View Map
_ViewMap = vmBuilder.BuildViewMap(*_winged_edge, _VisibilityAlgo, _EPSILON, _RootNode->bbox(), _SceneNumFaces);
_ViewMap->setScene3dBBox(_RootNode->bbox());
printf("ViewMap edge count : %i\n", _ViewMap->viewedges_size() );
//Tesselate the 3D edges:
_SilhouetteNode = sTesselator3d.Tesselate(_ViewMap);
_SilhouetteNode->addRef();
// Tesselate 2D edges
// _ProjectedSilhouette = sTesselator2d.Tesselate(_ViewMap);
// _ProjectedSilhouette->addRef();
duration = _Chrono.stop();
printf("ViewMap building : %lf\n", duration);
_pView->AddSilhouette(_SilhouetteNode);
//_pView->AddSilhouette(_WRoot);
//_pView->Add2DSilhouette(_ProjectedSilhouette);
//_pView->Add2DVisibleSilhouette(_VisibleProjectedSilhouette);
_pView->AddDebug(_DebugNode);
// Draw the steerable density map:
//--------------------------------
if(_ComputeSteerableViewMap){
ComputeSteerableViewMap();
}
// Reset Style modules modification flags
resetModified(true);
DeleteWingedEdge();
}
void Controller::ComputeSteerableViewMap(){
//soc
// if((!_Canvas) || (!_ViewMap))
// return;
//
// // Build 4 nodes containing the edges in the 4 directions
// NodeGroup *ng[Canvas::NB_STEERABLE_VIEWMAP];
// unsigned i;
// real c = 32.f/255.f; // see SteerableViewMap::readSteerableViewMapPixel() for information about this 32.
// for(i=0; i<Canvas::NB_STEERABLE_VIEWMAP; ++i){
// ng[i] = new NodeGroup;
// }
// NodeShape *completeNS = new NodeShape;
// completeNS->material().setDiffuse(c,c,c,1);
// ng[Canvas::NB_STEERABLE_VIEWMAP-1]->AddChild(completeNS);
// SteerableViewMap * svm = _Canvas->getSteerableViewMap();
// svm->Reset();
//
// ViewMap::fedges_container& fedges = _ViewMap->FEdges();
// LineRep * fRep;
// NodeShape *ns;
// for(ViewMap::fedges_container::iterator f=fedges.begin(), fend=fedges.end();
// f!=fend;
// ++f){
// if((*f)->viewedge()->qi() != 0)
// continue;
// fRep = new LineRep((*f)->vertexA()->point2d(),(*f)->vertexB()->point2d()) ;
// completeNS->AddRep(fRep); // add to the complete map anyway
// double *oweights = svm->AddFEdge(*f);
// for(i=0; i<Canvas::NB_STEERABLE_VIEWMAP-1; ++i){
// ns = new NodeShape;
// double wc = oweights[i]*c;
// if(oweights[i] == 0)
// continue;
// ns->material().setDiffuse(wc, wc, wc, 1);
// ns->AddRep(fRep);
// ng[i]->AddChild(ns);
// }
// }
//
// GrayImage *img[Canvas::NB_STEERABLE_VIEWMAP];
// //#ifdef WIN32
// QGLBasicWidget offscreenBuffer(_pView, "SteerableViewMap", _pView->width(), _pView->height());
// QPixmap pm;
// QImage qimg;
// for(i=0; i<Canvas::NB_STEERABLE_VIEWMAP; ++i){
// offscreenBuffer.AddNode(ng[i]);
// //img[i] = new GrayImage(_pView->width(), _pView->height());
// //offscreenBuffer.readPixels(0,0,_pView->width(), _pView->height(), img[i]->getArray());
// pm = offscreenBuffer.renderPixmap(_pView->width(), _pView->height());
//
// if(pm.isNull())
// cout << "BuildViewMap Warning: couldn't render the steerable ViewMap" << endl;
// //pm.save(QString("steerable")+QString::number(i)+QString(".bmp"), "BMP");
// // FIXME!! Lost of time !
// qimg = pm.toImage();
// // FIXME !! again!
// img[i] = new GrayImage(_pView->width(), _pView->height());
// for(unsigned y=0;y<img[i]->height();++y){
// for(unsigned x=0;x<img[i]->width();++x){
// //img[i]->setPixel(x,y,(float)qGray(qimg.pixel(x,y))/255.f);
// img[i]->setPixel(x,y,(float)qGray(qimg.pixel(x,y)));
// // float c = qGray(qimg.pixel(x,y));
// // img[i]->setPixel(x,y,qGray(qimg.pixel(x,y)));
// }
// }
// offscreenBuffer.DetachNode(ng[i]);
// ng[i]->destroy();
// delete ng[i];
// // check
// // qimg = QImage(_pView->width(), _pView->height(), 32);
// // for(y=0;y<img[i]->height();++y){
// // for(unsigned x=0;x<img[i]->width();++x){
// // float v = img[i]->pixel(x,y);
// // qimg.setPixel(x,y,qRgb(v,v,v));
// // }
// // }
// // qimg.save(QString("newsteerable")+QString::number(i)+QString(".bmp"), "BMP");
// }
//
//
// svm->buildImagesPyramids(img,false,0,1.f);
}
void Controller::saveSteerableViewMapImages(){
SteerableViewMap * svm = _Canvas->getSteerableViewMap();
if(!svm){
cerr << "the Steerable ViewMap has not been computed yet" << endl;
return;
}
svm->saveSteerableViewMap();
}
void Controller::toggleVisibilityAlgo()
{
if(_VisibilityAlgo == ViewMapBuilder::ray_casting) {
_VisibilityAlgo = ViewMapBuilder::ray_casting_fast;
}
else if (_VisibilityAlgo == ViewMapBuilder::ray_casting_fast) {
_VisibilityAlgo = ViewMapBuilder::ray_casting_very_fast;
}
else {
_VisibilityAlgo = ViewMapBuilder::ray_casting;
}
}
void Controller::setVisibilityAlgo(int algo)
{
switch (algo) {
case FREESTYLE_ALGO_REGULAR:
_VisibilityAlgo = ViewMapBuilder::ray_casting;
break;
case FREESTYLE_ALGO_FAST:
_VisibilityAlgo = ViewMapBuilder::ray_casting_fast;
break;
case FREESTYLE_ALGO_VERYFAST:
_VisibilityAlgo = ViewMapBuilder::ray_casting_very_fast;
break;
case FREESTYLE_ALGO_CULLED_ADAPTIVE_TRADITIONAL:
_VisibilityAlgo = ViewMapBuilder::ray_casting_culled_adaptive_traditional;
break;
case FREESTYLE_ALGO_ADAPTIVE_TRADITIONAL:
_VisibilityAlgo = ViewMapBuilder::ray_casting_adaptive_traditional;
break;
case FREESTYLE_ALGO_CULLED_ADAPTIVE_CUMULATIVE:
_VisibilityAlgo = ViewMapBuilder::ray_casting_culled_adaptive_cumulative;
break;
case FREESTYLE_ALGO_ADAPTIVE_CUMULATIVE:
_VisibilityAlgo = ViewMapBuilder::ray_casting_adaptive_cumulative;
break;
}
}
int Controller::getVisibilityAlgo()
{
switch (_VisibilityAlgo) {
case ViewMapBuilder::ray_casting:
return FREESTYLE_ALGO_REGULAR;
case ViewMapBuilder::ray_casting_fast:
return FREESTYLE_ALGO_FAST;
case ViewMapBuilder::ray_casting_very_fast:
return FREESTYLE_ALGO_VERYFAST;
case ViewMapBuilder::ray_casting_culled_adaptive_traditional:
return FREESTYLE_ALGO_CULLED_ADAPTIVE_TRADITIONAL;
case ViewMapBuilder::ray_casting_adaptive_traditional:
return FREESTYLE_ALGO_ADAPTIVE_TRADITIONAL;
case ViewMapBuilder::ray_casting_culled_adaptive_cumulative:
return FREESTYLE_ALGO_CULLED_ADAPTIVE_CUMULATIVE;
case ViewMapBuilder::ray_casting_adaptive_cumulative:
return FREESTYLE_ALGO_ADAPTIVE_CUMULATIVE;
}
// ray_casting_adaptive_traditional is the most exact replacement
// for legacy code
return FREESTYLE_ALGO_ADAPTIVE_TRADITIONAL;
}
void Controller::setQuantitativeInvisibility(bool iBool)
{
_EnableQI = iBool;
}
bool Controller::getQuantitativeInvisibility() const
{
return _EnableQI;
}
void Controller::setFaceSmoothness(bool iBool)
{
_EnableFaceSmoothness = iBool;
}
bool Controller::getFaceSmoothness() const
{
return _EnableFaceSmoothness;
}
void Controller::setComputeRidgesAndValleysFlag(bool iBool){
_ComputeRidges = iBool;
}
bool Controller::getComputeRidgesAndValleysFlag() const {
return _ComputeRidges;
}
void Controller::setComputeSuggestiveContoursFlag(bool b){
_ComputeSuggestive = b;
}
bool Controller::getComputeSuggestiveContoursFlag() const {
return _ComputeSuggestive;
}
void Controller::setComputeMaterialBoundariesFlag(bool b){
_ComputeMaterialBoundaries = b;
}
bool Controller::getComputeMaterialBoundariesFlag() const {
return _ComputeMaterialBoundaries;
}
void Controller::setComputeSteerableViewMapFlag(bool iBool){
_ComputeSteerableViewMap = iBool;
}
bool Controller::getComputeSteerableViewMapFlag() const {
return _ComputeSteerableViewMap;
}
void Controller::DrawStrokes()
{
if(_ViewMap == 0)
return;
cout << "\n=== Stroke drawing ===" << endl;
_Chrono.start();
_Canvas->Draw();
real d = _Chrono.stop();
cout << "Strokes generation : " << d << endl;
cout << "Stroke count : " << _Canvas->stroke_count << endl;
resetModified();
DeleteViewMap();
}
void Controller::ResetRenderCount()
{
_render_count = 0;
}
Render* Controller::RenderStrokes(Render *re) {
_Chrono.start();
BlenderStrokeRenderer* blenderRenderer = new BlenderStrokeRenderer(re, ++_render_count);
_Canvas->Render( blenderRenderer );
Render* freestyle_render = blenderRenderer->RenderScene(re);
real d = _Chrono.stop();
cout << "Stroke rendering : " << d << endl;
delete blenderRenderer;
return freestyle_render;
}
void Controller::InsertStyleModule(unsigned index, const char *iFileName)
{
if( !BLI_testextensie(iFileName, ".py") ) {
cerr << "Error: Cannot load \"" << StringUtils::toAscii( string(iFileName) )
<< "\", unknown extension" << endl;
return;
}
StyleModule* sm = new StyleModule(iFileName, _inter);
_Canvas->InsertStyleModule(index, sm);
}
void Controller::InsertStyleModule(unsigned index, const char *iName, struct Text *iText)
{
StyleModule* sm = new BlenderStyleModule(iText, iName, _inter);
_Canvas->InsertStyleModule(index, sm);
}
void Controller::AddStyleModule(const char *iFileName)
{
//_pStyleWindow->Add(iFileName);
}
void Controller::RemoveStyleModule(unsigned index)
{
_Canvas->RemoveStyleModule(index);
}
void Controller::Clear()
{
_Canvas->Clear();
}
void Controller::ReloadStyleModule(unsigned index, const char * iFileName)
{
StyleModule* sm = new StyleModule(iFileName, _inter);
_Canvas->ReplaceStyleModule(index, sm);
}
void Controller::SwapStyleModules(unsigned i1, unsigned i2)
{
_Canvas->SwapStyleModules(i1, i2);
}
void Controller::toggleLayer(unsigned index, bool iDisplay)
{
_Canvas->setVisible(index, iDisplay);
}
void Controller::setModified(unsigned index, bool iMod)
{
//_pStyleWindow->setModified(index, iMod);
_Canvas->setModified(index, iMod);
updateCausalStyleModules(index + 1);
}
void Controller::updateCausalStyleModules(unsigned index) {
vector<unsigned> vec;
_Canvas->causalStyleModules(vec, index);
for (vector<unsigned>::const_iterator it = vec.begin(); it != vec.end(); it++) {
//_pStyleWindow->setModified(*it, true);
_Canvas->setModified(*it, true);
}
}
void Controller::resetModified(bool iMod)
{
//_pStyleWindow->resetModified(iMod);
_Canvas->resetModified(iMod);
}
NodeGroup * Controller::BuildRep(vector<ViewEdge*>::iterator vedges_begin,
vector<ViewEdge*>::iterator vedges_end)
{
ViewMapTesselator2D tesselator2D;
FrsMaterial mat;
mat.setDiffuse(1,1,0.3,1);
tesselator2D.setFrsMaterial(mat);
return (tesselator2D.Tesselate(vedges_begin, vedges_end));
}
void Controller::toggleEdgeTesselationNature(Nature::EdgeNature iNature)
{
_edgeTesselationNature ^= (iNature);
ComputeViewMap();
}
void Controller::setModelsDir(const string& dir) {
//_current_dirs->setValue("models/dir", dir);
}
string Controller::getModelsDir() const {
string dir = ".";
//_current_dirs->getValue("models/dir", dir);
return dir;
}
void Controller::setModulesDir(const string& dir) {
//_current_dirs->setValue("modules/dir", dir);
}
string Controller::getModulesDir() const {
string dir = ".";
//_current_dirs->getValue("modules/dir", dir);
return dir;
}
void Controller::setHelpIndex(const string& index) {
_help_index = index;
}
string Controller::getHelpIndex() const {
return _help_index;
}
void Controller::setBrowserCmd(const string& cmd) {
_browser_cmd = cmd;
}
string Controller::getBrowserCmd() const {
return _browser_cmd;
}
void Controller::resetInterpreter() {
if (_inter)
_inter->reset();
}
void Controller::displayDensityCurves(int x, int y){
SteerableViewMap * svm = _Canvas->getSteerableViewMap();
if(!svm)
return;
unsigned i,j;
typedef vector<Vec3r> densityCurve;
vector<densityCurve> curves(svm->getNumberOfOrientations()+1);
vector<densityCurve> curvesDirection(svm->getNumberOfPyramidLevels());
// collect the curves values
unsigned nbCurves = svm->getNumberOfOrientations()+1;
unsigned nbPoints = svm->getNumberOfPyramidLevels();
if(!nbPoints)
return;
// build the density/nbLevels curves for each orientation
for(i=0;i<nbCurves; ++i){
for(j=0; j<nbPoints; ++j){
curves[i].push_back(Vec3r(j, svm->readSteerableViewMapPixel(i, j, x, y), 0));
}
}
// build the density/nbOrientations curves for each level
for(i=0;i<nbPoints; ++i){
for(j=0; j<nbCurves; ++j){
curvesDirection[i].push_back(Vec3r(j, svm->readSteerableViewMapPixel(j, i, x, y), 0));
}
}
// display the curves
// for(i=0; i<nbCurves; ++i)
// _pDensityCurvesWindow->setOrientationCurve(i, Vec2d(0,0), Vec2d(nbPoints, 1), curves[i], "scale", "density");
// for(i=1; i<=8; ++i)
// _pDensityCurvesWindow->setLevelCurve(i, Vec2d(0,0), Vec2d(nbCurves, 1), curvesDirection[i], "orientation", "density");
// _pDensityCurvesWindow->show();
}
void Controller::init_options(){
// from AppOptionsWindow.cpp
// Default init options
Config::Path * cpath = Config::Path::getInstance();
// Directories
ViewMapIO::Options::setModelsPath( StringUtils::toAscii( cpath->getModelsPath() ) );
PythonInterpreter::Options::setPythonPath( StringUtils::toAscii( cpath->getPythonPath() ) );
TextureManager::Options::setPatternsPath( StringUtils::toAscii( cpath->getPatternsPath() ) );
TextureManager::Options::setBrushesPath( StringUtils::toAscii( cpath->getModelsPath() ) );
// ViewMap Format
ViewMapIO::Options::rmFlags(ViewMapIO::Options::FLOAT_VECTORS);
ViewMapIO::Options::rmFlags(ViewMapIO::Options::NO_OCCLUDERS);
setComputeSteerableViewMapFlag( false );
// Visibility
setQuantitativeInvisibility(true);
// soc: initialize canvas
_Canvas->init();
// soc: initialize passes
setPassDiffuse(NULL, 0, 0);
setPassZ(NULL, 0, 0);
}