This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/tests/BLI_math_base_test.cc
Campbell Barton c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00

134 lines
4.3 KiB
C++

/* SPDX-License-Identifier: Apache-2.0 */
#include "testing/testing.h"
#include "BLI_math.h"
/* In tests below, when we are using -1.0f as max_diff value, we actually turn the function into a
* pure-ULP one. */
/* Put this here, since we cannot use BLI_assert() in inline math files it seems... */
TEST(math_base, CompareFFRelativeValid)
{
EXPECT_TRUE(sizeof(float) == sizeof(int));
}
TEST(math_base, CompareFFRelativeNormal)
{
float f1 = 1.99999988f; /* *(float *)&(*(int *)&f2 - 1) */
float f2 = 2.00000000f;
float f3 = 2.00000048f; /* *(float *)&(*(int *)&f2 + 2) */
float f4 = 2.10000000f; /* *(float *)&(*(int *)&f2 + 419430) */
const float max_diff = FLT_EPSILON * 0.1f;
EXPECT_TRUE(compare_ff_relative(f1, f2, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(f2, f1, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(f3, f2, max_diff, 2));
EXPECT_TRUE(compare_ff_relative(f2, f3, max_diff, 2));
EXPECT_FALSE(compare_ff_relative(f3, f2, max_diff, 1));
EXPECT_FALSE(compare_ff_relative(f2, f3, max_diff, 1));
EXPECT_FALSE(compare_ff_relative(f3, f2, -1.0f, 1));
EXPECT_FALSE(compare_ff_relative(f2, f3, -1.0f, 1));
EXPECT_TRUE(compare_ff_relative(f3, f2, -1.0f, 2));
EXPECT_TRUE(compare_ff_relative(f2, f3, -1.0f, 2));
EXPECT_FALSE(compare_ff_relative(f4, f2, max_diff, 64));
EXPECT_FALSE(compare_ff_relative(f2, f4, max_diff, 64));
EXPECT_TRUE(compare_ff_relative(f1, f3, max_diff, 64));
EXPECT_TRUE(compare_ff_relative(f3, f1, max_diff, 64));
}
TEST(math_base, CompareFFRelativeZero)
{
float f0 = 0.0f;
float f1 = 4.2038954e-045f; /* *(float *)&(*(int *)&f0 + 3) */
float fn0 = -0.0f;
float fn1 = -2.8025969e-045f; /* *(float *)&(*(int *)&fn0 - 2) */
const float max_diff = FLT_EPSILON * 0.1f;
EXPECT_TRUE(compare_ff_relative(f0, f1, -1.0f, 3));
EXPECT_TRUE(compare_ff_relative(f1, f0, -1.0f, 3));
EXPECT_FALSE(compare_ff_relative(f0, f1, -1.0f, 1));
EXPECT_FALSE(compare_ff_relative(f1, f0, -1.0f, 1));
EXPECT_TRUE(compare_ff_relative(fn0, fn1, -1.0f, 8));
EXPECT_TRUE(compare_ff_relative(fn1, fn0, -1.0f, 8));
EXPECT_TRUE(compare_ff_relative(f0, f1, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(f1, f0, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(fn0, f0, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(f0, fn0, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(f0, fn1, max_diff, 1));
EXPECT_TRUE(compare_ff_relative(fn1, f0, max_diff, 1));
/* NOTE: in theory, this should return false, since 0.0f and -0.0f have 0x80000000 diff,
* but overflow in subtraction seems to break something here
* (abs(*(int *)&fn0 - *(int *)&f0) == 0x80000000 == fn0), probably because int32 cannot
* hold this abs value. this is yet another illustration of why one shall never use (near-)zero
* floats in pure-ULP comparison. */
// EXPECT_FALSE(compare_ff_relative(fn0, f0, -1.0f, 1024));
// EXPECT_FALSE(compare_ff_relative(f0, fn0, -1.0f, 1024));
EXPECT_FALSE(compare_ff_relative(fn0, f1, -1.0f, 1024));
EXPECT_FALSE(compare_ff_relative(f1, fn0, -1.0f, 1024));
}
TEST(math_base, Log2FloorU)
{
EXPECT_EQ(log2_floor_u(0), 0);
EXPECT_EQ(log2_floor_u(1), 0);
EXPECT_EQ(log2_floor_u(2), 1);
EXPECT_EQ(log2_floor_u(3), 1);
EXPECT_EQ(log2_floor_u(4), 2);
EXPECT_EQ(log2_floor_u(5), 2);
EXPECT_EQ(log2_floor_u(6), 2);
EXPECT_EQ(log2_floor_u(7), 2);
EXPECT_EQ(log2_floor_u(8), 3);
EXPECT_EQ(log2_floor_u(9), 3);
EXPECT_EQ(log2_floor_u(123456), 16);
}
TEST(math_base, Log2CeilU)
{
EXPECT_EQ(log2_ceil_u(0), 0);
EXPECT_EQ(log2_ceil_u(1), 0);
EXPECT_EQ(log2_ceil_u(2), 1);
EXPECT_EQ(log2_ceil_u(3), 2);
EXPECT_EQ(log2_ceil_u(4), 2);
EXPECT_EQ(log2_ceil_u(5), 3);
EXPECT_EQ(log2_ceil_u(6), 3);
EXPECT_EQ(log2_ceil_u(7), 3);
EXPECT_EQ(log2_ceil_u(8), 3);
EXPECT_EQ(log2_ceil_u(9), 4);
EXPECT_EQ(log2_ceil_u(123456), 17);
}
TEST(math_base, CeilPowerOf10)
{
EXPECT_EQ(ceil_power_of_10(0), 0);
EXPECT_EQ(ceil_power_of_10(1), 1);
EXPECT_EQ(ceil_power_of_10(1e-6f), 1e-6f);
EXPECT_NEAR(ceil_power_of_10(100.1f), 1000.0f, 1e-4f);
EXPECT_NEAR(ceil_power_of_10(99.9f), 100.0f, 1e-4f);
}
TEST(math_base, FloorPowerOf10)
{
EXPECT_EQ(floor_power_of_10(0), 0);
EXPECT_EQ(floor_power_of_10(1), 1);
EXPECT_EQ(floor_power_of_10(1e-6f), 1e-6f);
EXPECT_NEAR(floor_power_of_10(100.1f), 100.0f, 1e-4f);
EXPECT_NEAR(floor_power_of_10(99.9f), 10.0f, 1e-4f);
}