This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/lattice.c

915 lines
21 KiB
C

/**
* lattice.c
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_ipo_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_lattice_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
//XXX #include "BIF_editdeform.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
Lattice *editLatt=0;
static Lattice *deformLatt=0;
static float *latticedata=0, latmat[4][4];
void calc_lat_fudu(int flag, int res, float *fu, float *du)
{
if(res==1) {
*fu= 0.0;
*du= 0.0;
}
else if(flag & LT_GRID) {
*fu= -0.5f*(res-1);
*du= 1.0f;
}
else {
*fu= -1.0f;
*du= 2.0f/(res-1);
}
}
void resizelattice(Lattice *lt, int uNew, int vNew, int wNew, Object *ltOb)
{
BPoint *bp;
int i, u, v, w;
float fu, fv, fw, uc, vc, wc, du=0.0, dv=0.0, dw=0.0;
float *co, (*vertexCos)[3] = NULL;
/* vertex weight groups are just freed all for now */
if(lt->dvert) {
free_dverts(lt->dvert, lt->pntsu*lt->pntsv*lt->pntsw);
lt->dvert= NULL;
}
while(uNew*vNew*wNew > 32000) {
if( uNew>=vNew && uNew>=wNew) uNew--;
else if( vNew>=uNew && vNew>=wNew) vNew--;
else wNew--;
}
vertexCos = MEM_mallocN(sizeof(*vertexCos)*uNew*vNew*wNew, "tmp_vcos");
calc_lat_fudu(lt->flag, uNew, &fu, &du);
calc_lat_fudu(lt->flag, vNew, &fv, &dv);
calc_lat_fudu(lt->flag, wNew, &fw, &dw);
/* If old size is different then resolution changed in interface,
* try to do clever reinit of points. Pretty simply idea, we just
* deform new verts by old lattice, but scaling them to match old
* size first.
*/
if (ltOb) {
if (uNew!=1 && lt->pntsu!=1) {
fu = lt->fu;
du = (lt->pntsu-1)*lt->du/(uNew-1);
}
if (vNew!=1 && lt->pntsv!=1) {
fv = lt->fv;
dv = (lt->pntsv-1)*lt->dv/(vNew-1);
}
if (wNew!=1 && lt->pntsw!=1) {
fw = lt->fw;
dw = (lt->pntsw-1)*lt->dw/(wNew-1);
}
}
co = vertexCos[0];
for(w=0,wc=fw; w<wNew; w++,wc+=dw) {
for(v=0,vc=fv; v<vNew; v++,vc+=dv) {
for(u=0,uc=fu; u<uNew; u++,co+=3,uc+=du) {
co[0] = uc;
co[1] = vc;
co[2] = wc;
}
}
}
if (ltOb) {
float mat[4][4];
int typeu = lt->typeu, typev = lt->typev, typew = lt->typew;
/* works best if we force to linear type (endpoints match) */
lt->typeu = lt->typev = lt->typew = KEY_LINEAR;
/* prevent using deformed locations */
freedisplist(&ltOb->disp);
Mat4CpyMat4(mat, ltOb->obmat);
Mat4One(ltOb->obmat);
lattice_deform_verts(ltOb, NULL, NULL, vertexCos, uNew*vNew*wNew, NULL);
Mat4CpyMat4(ltOb->obmat, mat);
lt->typeu = typeu;
lt->typev = typev;
lt->typew = typew;
}
lt->fu = fu;
lt->fv = fv;
lt->fw = fw;
lt->du = du;
lt->dv = dv;
lt->dw = dw;
lt->pntsu = uNew;
lt->pntsv = vNew;
lt->pntsw = wNew;
MEM_freeN(lt->def);
lt->def= MEM_callocN(lt->pntsu*lt->pntsv*lt->pntsw*sizeof(BPoint), "lattice bp");
bp= lt->def;
for (i=0; i<lt->pntsu*lt->pntsv*lt->pntsw; i++,bp++) {
VECCOPY(bp->vec, vertexCos[i]);
}
MEM_freeN(vertexCos);
}
Lattice *add_lattice(char *name)
{
Lattice *lt;
lt= alloc_libblock(&G.main->latt, ID_LT, name);
lt->flag= LT_GRID;
lt->typeu= lt->typev= lt->typew= KEY_BSPLINE;
lt->def= MEM_callocN(sizeof(BPoint), "lattvert"); /* temporary */
resizelattice(lt, 2, 2, 2, NULL); /* creates a uniform lattice */
return lt;
}
Lattice *copy_lattice(Lattice *lt)
{
Lattice *ltn;
ltn= copy_libblock(lt);
ltn->def= MEM_dupallocN(lt->def);
id_us_plus((ID *)ltn->ipo);
ltn->key= copy_key(ltn->key);
if(ltn->key) ltn->key->from= (ID *)ltn;
if(lt->dvert) {
int tot= lt->pntsu*lt->pntsv*lt->pntsw;
ltn->dvert = MEM_mallocN (sizeof (MDeformVert)*tot, "Lattice MDeformVert");
copy_dverts(ltn->dvert, lt->dvert, tot);
}
return ltn;
}
void free_lattice(Lattice *lt)
{
if(lt->def) MEM_freeN(lt->def);
if(lt->dvert) free_dverts(lt->dvert, lt->pntsu*lt->pntsv*lt->pntsw);
}
void make_local_lattice(Lattice *lt)
{
Object *ob;
Lattice *ltn;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(lt->id.lib==0) return;
if(lt->id.us==1) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
}
else if(local && lib) {
ltn= copy_lattice(lt);
ltn->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib==0) {
ob->data= ltn;
ltn->id.us++;
lt->id.us--;
}
}
ob= ob->id.next;
}
}
}
void init_latt_deform(Object *oblatt, Object *ob)
{
/* we make an array with all differences */
Lattice *lt = deformLatt = (oblatt==G.obedit)?editLatt:oblatt->data;
BPoint *bp = lt->def;
DispList *dl = find_displist(&oblatt->disp, DL_VERTS);
float *co = dl?dl->verts:NULL;
float *fp, imat[4][4];
float fu, fv, fw;
int u, v, w;
fp= latticedata= MEM_mallocN(sizeof(float)*3*deformLatt->pntsu*deformLatt->pntsv*deformLatt->pntsw, "latticedata");
/* for example with a particle system: ob==0 */
if(ob==0) {
/* in deformspace, calc matrix */
Mat4Invert(latmat, oblatt->obmat);
/* back: put in deform array */
Mat4Invert(imat, latmat);
}
else {
/* in deformspace, calc matrix */
Mat4Invert(imat, oblatt->obmat);
Mat4MulMat4(latmat, ob->obmat, imat);
/* back: put in deform array */
Mat4Invert(imat, latmat);
}
for(w=0,fw=lt->fw; w<lt->pntsw; w++,fw+=lt->dw) {
for(v=0,fv=lt->fv; v<lt->pntsv; v++, fv+=lt->dv) {
for(u=0,fu=lt->fu; u<lt->pntsu; u++, bp++, co+=3, fp+=3, fu+=lt->du) {
if (dl) {
fp[0] = co[0] - fu;
fp[1] = co[1] - fv;
fp[2] = co[2] - fw;
} else {
fp[0] = bp->vec[0] - fu;
fp[1] = bp->vec[1] - fv;
fp[2] = bp->vec[2] - fw;
}
Mat4Mul3Vecfl(imat, fp);
}
}
}
}
void calc_latt_deform(float *co, float weight)
{
Lattice *lt;
float u, v, w, tu[4], tv[4], tw[4];
float *fpw, *fpv, *fpu, vec[3];
int ui, vi, wi, uu, vv, ww;
if(latticedata==0) return;
lt= deformLatt; /* just for shorter notation! */
/* co is in local coords, treat with latmat */
VECCOPY(vec, co);
Mat4MulVecfl(latmat, vec);
/* u v w coords */
if(lt->pntsu>1) {
u= (vec[0]-lt->fu)/lt->du;
ui= (int)floor(u);
u -= ui;
set_four_ipo(u, tu, lt->typeu);
}
else {
tu[0]= tu[2]= tu[3]= 0.0; tu[1]= 1.0;
ui= 0;
}
if(lt->pntsv>1) {
v= (vec[1]-lt->fv)/lt->dv;
vi= (int)floor(v);
v -= vi;
set_four_ipo(v, tv, lt->typev);
}
else {
tv[0]= tv[2]= tv[3]= 0.0; tv[1]= 1.0;
vi= 0;
}
if(lt->pntsw>1) {
w= (vec[2]-lt->fw)/lt->dw;
wi= (int)floor(w);
w -= wi;
set_four_ipo(w, tw, lt->typew);
}
else {
tw[0]= tw[2]= tw[3]= 0.0; tw[1]= 1.0;
wi= 0;
}
for(ww= wi-1; ww<=wi+2; ww++) {
w= tw[ww-wi+1];
if(w!=0.0) {
if(ww>0) {
if(ww<lt->pntsw) fpw= latticedata + 3*ww*lt->pntsu*lt->pntsv;
else fpw= latticedata + 3*(lt->pntsw-1)*lt->pntsu*lt->pntsv;
}
else fpw= latticedata;
for(vv= vi-1; vv<=vi+2; vv++) {
v= w*tv[vv-vi+1];
if(v!=0.0) {
if(vv>0) {
if(vv<lt->pntsv) fpv= fpw + 3*vv*lt->pntsu;
else fpv= fpw + 3*(lt->pntsv-1)*lt->pntsu;
}
else fpv= fpw;
for(uu= ui-1; uu<=ui+2; uu++) {
u= weight*v*tu[uu-ui+1];
if(u!=0.0) {
if(uu>0) {
if(uu<lt->pntsu) fpu= fpv + 3*uu;
else fpu= fpv + 3*(lt->pntsu-1);
}
else fpu= fpv;
co[0]+= u*fpu[0];
co[1]+= u*fpu[1];
co[2]+= u*fpu[2];
}
}
}
}
}
}
}
void end_latt_deform()
{
MEM_freeN(latticedata);
latticedata= 0;
}
/* calculations is in local space of deformed object
so we store in latmat transform from path coord inside object
*/
typedef struct {
float dmin[3], dmax[3], dsize, dloc[3];
float curvespace[4][4], objectspace[4][4], objectspace3[3][3];
int no_rot_axis;
} CurveDeform;
static void init_curve_deform(Object *par, Object *ob, CurveDeform *cd, int dloc)
{
Mat4Invert(ob->imat, ob->obmat);
Mat4MulMat4(cd->objectspace, par->obmat, ob->imat);
Mat4Invert(cd->curvespace, cd->objectspace);
Mat3CpyMat4(cd->objectspace3, cd->objectspace);
// offset vector for 'no smear'
if(dloc) {
Mat4Invert(par->imat, par->obmat);
VecMat4MulVecfl(cd->dloc, par->imat, ob->obmat[3]);
}
else cd->dloc[0]=cd->dloc[1]=cd->dloc[2]= 0.0f;
cd->no_rot_axis= 0;
}
/* this makes sure we can extend for non-cyclic. *vec needs 4 items! */
static int where_on_path_deform(Object *ob, float ctime, float *vec, float *dir) /* returns OK */
{
Curve *cu= ob->data;
BevList *bl;
float ctime1;
int cycl=0;
/* test for cyclic */
bl= cu->bev.first;
if (!bl->nr) return 0;
if(bl && bl->poly> -1) cycl= 1;
if(cycl==0) {
ctime1= CLAMPIS(ctime, 0.0, 1.0);
}
else ctime1= ctime;
/* vec needs 4 items */
if(where_on_path(ob, ctime1, vec, dir)) {
if(cycl==0) {
Path *path= cu->path;
float dvec[3];
if(ctime < 0.0) {
VecSubf(dvec, path->data+4, path->data);
VecMulf(dvec, ctime*(float)path->len);
VECADD(vec, vec, dvec);
}
else if(ctime > 1.0) {
VecSubf(dvec, path->data+4*path->len-4, path->data+4*path->len-8);
VecMulf(dvec, (ctime-1.0)*(float)path->len);
VECADD(vec, vec, dvec);
}
}
return 1;
}
return 0;
}
/* for each point, rotate & translate to curve */
/* use path, since it has constant distances */
/* co: local coord, result local too */
/* returns quaternion for rotation, using cd->no_rot_axis */
/* axis is using another define!!! */
static float *calc_curve_deform(Object *par, float *co, short axis, CurveDeform *cd)
{
Curve *cu= par->data;
float fac, loc[4], dir[3], cent[3];
short upflag, index;
if(axis==MOD_CURVE_POSX || axis==MOD_CURVE_NEGX) {
upflag= OB_POSZ;
cent[0]= 0.0;
cent[1]= co[1];
cent[2]= co[2];
index= 0;
}
else if(axis==MOD_CURVE_POSY || axis==MOD_CURVE_NEGY) {
upflag= OB_POSZ;
cent[0]= co[0];
cent[1]= 0.0;
cent[2]= co[2];
index= 1;
}
else {
upflag= OB_POSY;
cent[0]= co[0];
cent[1]= co[1];
cent[2]= 0.0;
index= 2;
}
/* to be sure, mostly after file load */
if(cu->path==NULL) {
makeDispListCurveTypes(par, 0);
if(cu->path==NULL) return NULL; // happens on append...
}
/* options */
if(ELEM3(axis, OB_NEGX, OB_NEGY, OB_NEGZ)) {
if(cu->flag & CU_STRETCH)
fac= (-co[index]-cd->dmax[index])/(cd->dmax[index] - cd->dmin[index]);
else
fac= (cd->dloc[index])/(cu->path->totdist) - (co[index]-cd->dmax[index])/(cu->path->totdist);
}
else {
if(cu->flag & CU_STRETCH)
fac= (co[index]-cd->dmin[index])/(cd->dmax[index] - cd->dmin[index]);
else
fac= (cd->dloc[index])/(cu->path->totdist) + (co[index]-cd->dmin[index])/(cu->path->totdist);
}
/* we want the ipo to work on the default 100 frame range, because there's no
actual time involved in path position */
if(cu->ipo) {
fac*= 100.0f;
if(calc_ipo_spec(cu->ipo, CU_SPEED, &fac)==0)
fac/= 100.0;
}
if( where_on_path_deform(par, fac, loc, dir)) { /* returns OK */
float q[4], mat[3][3];
float *quat;
if(cd->no_rot_axis) /* set by caller */
dir[cd->no_rot_axis-1]= 0.0f;
/* -1 for compatibility with old track defines */
quat= vectoquat(dir, axis-1, upflag); /* gives static quat */
/* the tilt */
if(loc[3]!=0.0) {
Normalize(dir);
q[0]= (float)cos(0.5*loc[3]);
fac= (float)sin(0.5*loc[3]);
q[1]= -fac*dir[0];
q[2]= -fac*dir[1];
q[3]= -fac*dir[2];
QuatMul(quat, q, quat);
}
QuatToMat3(quat, mat);
/* local rotation */
Mat3MulVecfl(mat, cent);
/* translation */
VECADD(co, cent, loc);
return quat;
}
return NULL;
}
void curve_deform_verts(Object *cuOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3], int numVerts, char *vgroup, short defaxis)
{
Curve *cu = cuOb->data;
int a, flag = cu->flag;
CurveDeform cd;
int use_vgroups;
cu->flag |= (CU_PATH|CU_FOLLOW); // needed for path & bevlist
init_curve_deform(cuOb, target, &cd, (cu->flag & CU_STRETCH)==0);
/* check whether to use vertex groups (only possible if target is a Mesh)
* we want either a Mesh with no derived data, or derived data with
* deformverts
*/
if(target && target->type==OB_MESH) {
/* if there's derived data without deformverts, don't use vgroups */
if(dm && !dm->getVertData(dm, 0, CD_MDEFORMVERT))
use_vgroups = 0;
else
use_vgroups = 1;
} else
use_vgroups = 0;
if(vgroup && vgroup[0] && use_vgroups) {
bDeformGroup *curdef;
Mesh *me= target->data;
int index;
/* find the group (weak loop-in-loop) */
for(index = 0, curdef = target->defbase.first; curdef;
curdef = curdef->next, index++)
if (!strcmp(curdef->name, vgroup))
break;
if(curdef && (me->dvert || dm)) {
MDeformVert *dvert = me->dvert;
float vec[3];
int j;
INIT_MINMAX(cd.dmin, cd.dmax);
for(a = 0; a < numVerts; a++, dvert++) {
if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT);
for(j = 0; j < dvert->totweight; j++) {
if(dvert->dw[j].def_nr == index) {
Mat4MulVecfl(cd.curvespace, vertexCos[a]);
DO_MINMAX(vertexCos[a], cd.dmin, cd.dmax);
break;
}
}
}
dvert = me->dvert;
for(a = 0; a < numVerts; a++, dvert++) {
if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT);
for(j = 0; j < dvert->totweight; j++) {
if(dvert->dw[j].def_nr == index) {
VECCOPY(vec, vertexCos[a]);
calc_curve_deform(cuOb, vec, defaxis, &cd);
VecLerpf(vertexCos[a], vertexCos[a], vec,
dvert->dw[j].weight);
Mat4MulVecfl(cd.objectspace, vertexCos[a]);
break;
}
}
}
}
} else {
INIT_MINMAX(cd.dmin, cd.dmax);
for(a = 0; a < numVerts; a++) {
Mat4MulVecfl(cd.curvespace, vertexCos[a]);
DO_MINMAX(vertexCos[a], cd.dmin, cd.dmax);
}
for(a = 0; a < numVerts; a++) {
calc_curve_deform(cuOb, vertexCos[a], defaxis, &cd);
Mat4MulVecfl(cd.objectspace, vertexCos[a]);
}
}
cu->flag = flag;
}
/* input vec and orco = local coord in armature space */
/* orco is original not-animated or deformed reference point */
/* result written in vec and mat */
void curve_deform_vector(Object *cuOb, Object *target, float *orco, float *vec, float mat[][3], int no_rot_axis)
{
CurveDeform cd;
float *quat;
init_curve_deform(cuOb, target, &cd, 0); /* 0 no dloc */
cd.no_rot_axis= no_rot_axis; /* option to only rotate for XY, for example */
VECCOPY(cd.dmin, orco);
VECCOPY(cd.dmax, orco);
Mat4MulVecfl(cd.curvespace, vec);
quat= calc_curve_deform(cuOb, vec, target->trackflag+1, &cd);
if(quat) {
float qmat[3][3];
QuatToMat3(quat, qmat);
Mat3MulMat3(mat, qmat, cd.objectspace3);
}
else
Mat3One(mat);
Mat4MulVecfl(cd.objectspace, vec);
}
void lattice_deform_verts(Object *laOb, Object *target, DerivedMesh *dm,
float (*vertexCos)[3], int numVerts, char *vgroup)
{
int a;
int use_vgroups;
init_latt_deform(laOb, target);
/* check whether to use vertex groups (only possible if target is a Mesh)
* we want either a Mesh with no derived data, or derived data with
* deformverts
*/
if(target && target->type==OB_MESH) {
/* if there's derived data without deformverts, don't use vgroups */
if(dm && !dm->getVertData(dm, 0, CD_MDEFORMVERT))
use_vgroups = 0;
else
use_vgroups = 1;
} else
use_vgroups = 0;
if(vgroup && vgroup[0] && use_vgroups) {
bDeformGroup *curdef;
Mesh *me = target->data;
int index = 0;
/* find the group (weak loop-in-loop) */
for(curdef = target->defbase.first; curdef;
curdef = curdef->next, index++)
if(!strcmp(curdef->name, vgroup)) break;
if(curdef && (me->dvert || dm)) {
MDeformVert *dvert = me->dvert;
int j;
for(a = 0; a < numVerts; a++, dvert++) {
if(dm) dvert = dm->getVertData(dm, a, CD_MDEFORMVERT);
for(j = 0; j < dvert->totweight; j++) {
if (dvert->dw[j].def_nr == index) {
calc_latt_deform(vertexCos[a], dvert->dw[j].weight);
}
}
}
}
} else {
for(a = 0; a < numVerts; a++) {
calc_latt_deform(vertexCos[a], 1.0f);
}
}
end_latt_deform();
}
int object_deform_mball(Object *ob)
{
if(ob->parent && ob->parent->type==OB_LATTICE && ob->partype==PARSKEL) {
DispList *dl;
for (dl=ob->disp.first; dl; dl=dl->next) {
lattice_deform_verts(ob->parent, ob, NULL,
(float(*)[3]) dl->verts, dl->nr, NULL);
}
return 1;
} else {
return 0;
}
}
static BPoint *latt_bp(Lattice *lt, int u, int v, int w)
{
return lt->def+ u + v*lt->pntsu + w*lt->pntsu*lt->pntsv;
}
void outside_lattice(Lattice *lt)
{
BPoint *bp, *bp1, *bp2;
int u, v, w;
float fac1, du=0.0, dv=0.0, dw=0.0;
bp= lt->def;
if(lt->pntsu>1) du= 1.0f/((float)lt->pntsu-1);
if(lt->pntsv>1) dv= 1.0f/((float)lt->pntsv-1);
if(lt->pntsw>1) dw= 1.0f/((float)lt->pntsw-1);
for(w=0; w<lt->pntsw; w++) {
for(v=0; v<lt->pntsv; v++) {
for(u=0; u<lt->pntsu; u++, bp++) {
if(u==0 || v==0 || w==0 || u==lt->pntsu-1 || v==lt->pntsv-1 || w==lt->pntsw-1);
else {
bp->hide= 1;
bp->f1 &= ~SELECT;
/* u extrema */
bp1= latt_bp(lt, 0, v, w);
bp2= latt_bp(lt, lt->pntsu-1, v, w);
fac1= du*u;
bp->vec[0]= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* v extrema */
bp1= latt_bp(lt, u, 0, w);
bp2= latt_bp(lt, u, lt->pntsv-1, w);
fac1= dv*v;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* w extrema */
bp1= latt_bp(lt, u, v, 0);
bp2= latt_bp(lt, u, v, lt->pntsw-1);
fac1= dw*w;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
VecMulf(bp->vec, 0.3333333f);
}
}
}
}
}
float (*lattice_getVertexCos(struct Object *ob, int *numVerts_r))[3]
{
Lattice *lt = (G.obedit==ob)?editLatt:ob->data;
int i, numVerts = *numVerts_r = lt->pntsu*lt->pntsv*lt->pntsw;
float (*vertexCos)[3] = MEM_mallocN(sizeof(*vertexCos)*numVerts,"lt_vcos");
for (i=0; i<numVerts; i++) {
VECCOPY(vertexCos[i], lt->def[i].vec);
}
return vertexCos;
}
void lattice_applyVertexCos(struct Object *ob, float (*vertexCos)[3])
{
Lattice *lt = ob->data;
int i, numVerts = lt->pntsu*lt->pntsv*lt->pntsw;
for (i=0; i<numVerts; i++) {
VECCOPY(lt->def[i].vec, vertexCos[i]);
}
}
void lattice_calc_modifiers(Object *ob)
{
float (*vertexCos)[3] = NULL;
ModifierData *md = modifiers_getVirtualModifierList(ob);
int numVerts, editmode = G.obedit==ob;
freedisplist(&ob->disp);
if (!editmode) {
do_ob_key(ob);
}
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!(md->mode&eModifierMode_Realtime)) continue;
if (editmode && !(md->mode&eModifierMode_Editmode)) continue;
if (mti->isDisabled && mti->isDisabled(md)) continue;
if (mti->type!=eModifierTypeType_OnlyDeform) continue;
if (!vertexCos) vertexCos = lattice_getVertexCos(ob, &numVerts);
mti->deformVerts(md, ob, NULL, vertexCos, numVerts);
}
if (vertexCos) {
DispList *dl = MEM_callocN(sizeof(*dl), "lt_dl");
dl->type = DL_VERTS;
dl->parts = 1;
dl->nr = numVerts;
dl->verts = (float*) vertexCos;
BLI_addtail(&ob->disp, dl);
}
}