was actually due to a numerical issue in the matrix to quaternion conversion code (which was from siggraph '85), now uses an improved version. I hope nothing depends on the previous behavior.. though it should only affect corner cases.
4242 lines
95 KiB
C
4242 lines
95 KiB
C
/* arithb.c
|
|
*
|
|
* simple math for blender code
|
|
*
|
|
* sort of cleaned up mar-01 nzc
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/* ************************ FUNKTIES **************************** */
|
|
|
|
#include <math.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <float.h>
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#if defined(__sun__) || defined( __sun ) || defined (__sparc) || defined (__sparc__)
|
|
#include <strings.h>
|
|
#endif
|
|
|
|
#if !defined(__sgi) && !defined(WIN32)
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include "BLI_arithb.h"
|
|
|
|
/* A few small defines. Keep'em local! */
|
|
#define SMALL_NUMBER 1.e-8
|
|
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
|
#define SWAP(type, a, b) { type sw_ap; sw_ap=(a); (a)=(b); (b)=sw_ap; }
|
|
|
|
|
|
#if defined(WIN32) || defined(__APPLE__)
|
|
#include <stdlib.h>
|
|
#define M_PI 3.14159265358979323846
|
|
#define M_SQRT2 1.41421356237309504880
|
|
|
|
#endif /* defined(WIN32) || defined(__APPLE__) */
|
|
|
|
|
|
float saacos(float fac)
|
|
{
|
|
if(fac<= -1.0f) return (float)M_PI;
|
|
else if(fac>=1.0f) return 0.0;
|
|
else return (float)acos(fac);
|
|
}
|
|
|
|
float saasin(float fac)
|
|
{
|
|
if(fac<= -1.0f) return (float)-M_PI/2.0f;
|
|
else if(fac>=1.0f) return (float)M_PI/2.0f;
|
|
else return (float)asin(fac);
|
|
}
|
|
|
|
float sasqrt(float fac)
|
|
{
|
|
if(fac<=0.0) return 0.0;
|
|
return (float)sqrt(fac);
|
|
}
|
|
|
|
float Normalize(float *n)
|
|
{
|
|
float d;
|
|
|
|
d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
|
|
/* A larger value causes normalize errors in a scaled down models with camera xtreme close */
|
|
if(d>1.0e-35F) {
|
|
d= (float)sqrt(d);
|
|
|
|
n[0]/=d;
|
|
n[1]/=d;
|
|
n[2]/=d;
|
|
} else {
|
|
n[0]=n[1]=n[2]= 0.0;
|
|
d= 0.0;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
void Crossf(float *c, float *a, float *b)
|
|
{
|
|
c[0] = a[1] * b[2] - a[2] * b[1];
|
|
c[1] = a[2] * b[0] - a[0] * b[2];
|
|
c[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
|
|
/* Inpf returns the dot product, also called the scalar product and inner product */
|
|
float Inpf( float *v1, float *v2)
|
|
{
|
|
return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
|
|
}
|
|
|
|
/* Project v1 on v2 */
|
|
void Projf(float *c, float *v1, float *v2)
|
|
{
|
|
float mul;
|
|
mul = Inpf(v1, v2) / Inpf(v2, v2);
|
|
|
|
c[0] = mul * v2[0];
|
|
c[1] = mul * v2[1];
|
|
c[2] = mul * v2[2];
|
|
}
|
|
|
|
void Mat3Transp(float mat[][3])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1] ;
|
|
mat[0][1] = mat[1][0] ;
|
|
mat[1][0] = t;
|
|
t = mat[0][2] ;
|
|
mat[0][2] = mat[2][0] ;
|
|
mat[2][0] = t;
|
|
t = mat[1][2] ;
|
|
mat[1][2] = mat[2][1] ;
|
|
mat[2][1] = t;
|
|
}
|
|
|
|
void Mat4Transp(float mat[][4])
|
|
{
|
|
float t;
|
|
|
|
t = mat[0][1] ;
|
|
mat[0][1] = mat[1][0] ;
|
|
mat[1][0] = t;
|
|
t = mat[0][2] ;
|
|
mat[0][2] = mat[2][0] ;
|
|
mat[2][0] = t;
|
|
t = mat[0][3] ;
|
|
mat[0][3] = mat[3][0] ;
|
|
mat[3][0] = t;
|
|
|
|
t = mat[1][2] ;
|
|
mat[1][2] = mat[2][1] ;
|
|
mat[2][1] = t;
|
|
t = mat[1][3] ;
|
|
mat[1][3] = mat[3][1] ;
|
|
mat[3][1] = t;
|
|
|
|
t = mat[2][3] ;
|
|
mat[2][3] = mat[3][2] ;
|
|
mat[3][2] = t;
|
|
}
|
|
|
|
|
|
/*
|
|
* invertmat -
|
|
* computes the inverse of mat and puts it in inverse. Returns
|
|
* TRUE on success (i.e. can always find a pivot) and FALSE on failure.
|
|
* Uses Gaussian Elimination with partial (maximal column) pivoting.
|
|
*
|
|
* Mark Segal - 1992
|
|
*/
|
|
|
|
int Mat4Invert(float inverse[][4], float mat[][4])
|
|
{
|
|
int i, j, k;
|
|
double temp;
|
|
float tempmat[4][4];
|
|
float max;
|
|
int maxj;
|
|
|
|
/* Set inverse to identity */
|
|
for (i=0; i<4; i++)
|
|
for (j=0; j<4; j++)
|
|
inverse[i][j] = 0;
|
|
for (i=0; i<4; i++)
|
|
inverse[i][i] = 1;
|
|
|
|
/* Copy original matrix so we don't mess it up */
|
|
for(i = 0; i < 4; i++)
|
|
for(j = 0; j <4; j++)
|
|
tempmat[i][j] = mat[i][j];
|
|
|
|
for(i = 0; i < 4; i++) {
|
|
/* Look for row with max pivot */
|
|
max = ABS(tempmat[i][i]);
|
|
maxj = i;
|
|
for(j = i + 1; j < 4; j++) {
|
|
if(ABS(tempmat[j][i]) > max) {
|
|
max = ABS(tempmat[j][i]);
|
|
maxj = j;
|
|
}
|
|
}
|
|
/* Swap rows if necessary */
|
|
if (maxj != i) {
|
|
for( k = 0; k < 4; k++) {
|
|
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
|
|
SWAP(float, inverse[i][k], inverse[maxj][k]);
|
|
}
|
|
}
|
|
|
|
temp = tempmat[i][i];
|
|
if (temp == 0)
|
|
return 0; /* No non-zero pivot */
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[i][k] = (float)(tempmat[i][k]/temp);
|
|
inverse[i][k] = (float)(inverse[i][k]/temp);
|
|
}
|
|
for(j = 0; j < 4; j++) {
|
|
if(j != i) {
|
|
temp = tempmat[j][i];
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[j][k] -= (float)(tempmat[i][k]*temp);
|
|
inverse[j][k] -= (float)(inverse[i][k]*temp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
void Mat4InvertSimp(float inverse[][4], float mat[][4])
|
|
{
|
|
/* only for Matrices that have a rotation */
|
|
/* based at GG IV pag 205 */
|
|
float scale;
|
|
|
|
scale= mat[0][0]*mat[0][0] + mat[1][0]*mat[1][0] + mat[2][0]*mat[2][0];
|
|
if(scale==0.0) return;
|
|
|
|
scale= 1.0/scale;
|
|
|
|
/* transpose and scale */
|
|
inverse[0][0]= scale*mat[0][0];
|
|
inverse[1][0]= scale*mat[0][1];
|
|
inverse[2][0]= scale*mat[0][2];
|
|
inverse[0][1]= scale*mat[1][0];
|
|
inverse[1][1]= scale*mat[1][1];
|
|
inverse[2][1]= scale*mat[1][2];
|
|
inverse[0][2]= scale*mat[2][0];
|
|
inverse[1][2]= scale*mat[2][1];
|
|
inverse[2][2]= scale*mat[2][2];
|
|
|
|
inverse[3][0]= -(inverse[0][0]*mat[3][0] + inverse[1][0]*mat[3][1] + inverse[2][0]*mat[3][2]);
|
|
inverse[3][1]= -(inverse[0][1]*mat[3][0] + inverse[1][1]*mat[3][1] + inverse[2][1]*mat[3][2]);
|
|
inverse[3][2]= -(inverse[0][2]*mat[3][0] + inverse[1][2]*mat[3][1] + inverse[2][2]*mat[3][2]);
|
|
|
|
inverse[0][3]= inverse[1][3]= inverse[2][3]= 0.0;
|
|
inverse[3][3]= 1.0;
|
|
}
|
|
#endif
|
|
/* struct Matrix4; */
|
|
|
|
#ifdef TEST_ACTIVE
|
|
/* this seems to be unused.. */
|
|
|
|
void Mat4Inv(float *m1, float *m2)
|
|
{
|
|
|
|
/* This gets me into trouble: */
|
|
float mat1[3][3], mat2[3][3];
|
|
|
|
/* void Mat3Inv(); */
|
|
/* void Mat3CpyMat4(); */
|
|
/* void Mat4CpyMat3(); */
|
|
|
|
Mat3CpyMat4((float*)mat2,m2);
|
|
Mat3Inv((float*)mat1, (float*) mat2);
|
|
Mat4CpyMat3(m1, mat1);
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
float Det2x2(float a,float b,float c,float d)
|
|
{
|
|
|
|
return a*d - b*c;
|
|
}
|
|
|
|
|
|
|
|
float Det3x3(float a1, float a2, float a3,
|
|
float b1, float b2, float b3,
|
|
float c1, float c2, float c3 )
|
|
{
|
|
float ans;
|
|
|
|
ans = a1 * Det2x2( b2, b3, c2, c3 )
|
|
- b1 * Det2x2( a2, a3, c2, c3 )
|
|
+ c1 * Det2x2( a2, a3, b2, b3 );
|
|
|
|
return ans;
|
|
}
|
|
|
|
float Det4x4(float m[][4])
|
|
{
|
|
float ans;
|
|
float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
|
|
|
|
a1= m[0][0];
|
|
b1= m[0][1];
|
|
c1= m[0][2];
|
|
d1= m[0][3];
|
|
|
|
a2= m[1][0];
|
|
b2= m[1][1];
|
|
c2= m[1][2];
|
|
d2= m[1][3];
|
|
|
|
a3= m[2][0];
|
|
b3= m[2][1];
|
|
c3= m[2][2];
|
|
d3= m[2][3];
|
|
|
|
a4= m[3][0];
|
|
b4= m[3][1];
|
|
c4= m[3][2];
|
|
d4= m[3][3];
|
|
|
|
ans = a1 * Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
|
|
- b1 * Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
|
|
+ c1 * Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
|
|
- d1 * Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
return ans;
|
|
}
|
|
|
|
|
|
void Mat4Adj(float out[][4], float in[][4]) /* out = ADJ(in) */
|
|
{
|
|
float a1, a2, a3, a4, b1, b2, b3, b4;
|
|
float c1, c2, c3, c4, d1, d2, d3, d4;
|
|
|
|
a1= in[0][0];
|
|
b1= in[0][1];
|
|
c1= in[0][2];
|
|
d1= in[0][3];
|
|
|
|
a2= in[1][0];
|
|
b2= in[1][1];
|
|
c2= in[1][2];
|
|
d2= in[1][3];
|
|
|
|
a3= in[2][0];
|
|
b3= in[2][1];
|
|
c3= in[2][2];
|
|
d3= in[2][3];
|
|
|
|
a4= in[3][0];
|
|
b4= in[3][1];
|
|
c4= in[3][2];
|
|
d4= in[3][3];
|
|
|
|
|
|
out[0][0] = Det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
|
out[1][0] = - Det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
|
out[2][0] = Det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
|
out[3][0] = - Det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
out[0][1] = - Det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
|
out[1][1] = Det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
|
out[2][1] = - Det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
|
out[3][1] = Det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
|
|
|
out[0][2] = Det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
|
out[1][2] = - Det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
|
out[2][2] = Det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
|
out[3][2] = - Det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
|
|
|
out[0][3] = - Det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
|
out[1][3] = Det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
|
out[2][3] = - Det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
|
out[3][3] = Det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
}
|
|
|
|
void Mat4InvGG(float out[][4], float in[][4]) /* from Graphic Gems I, out= INV(in) */
|
|
{
|
|
int i, j;
|
|
float det;
|
|
|
|
/* calculate the adjoint matrix */
|
|
|
|
Mat4Adj(out,in);
|
|
|
|
det = Det4x4(out);
|
|
|
|
if ( fabs( det ) < SMALL_NUMBER) {
|
|
return;
|
|
}
|
|
|
|
/* scale the adjoint matrix to get the inverse */
|
|
|
|
for (i=0; i<4; i++)
|
|
for(j=0; j<4; j++)
|
|
out[i][j] = out[i][j] / det;
|
|
|
|
/* the last factor is not always 1. For that reason an extra division should be implemented? */
|
|
}
|
|
|
|
|
|
void Mat3Inv(float m1[][3], float m2[][3])
|
|
{
|
|
short a,b;
|
|
float det;
|
|
|
|
/* calc adjoint */
|
|
Mat3Adj(m1,m2);
|
|
|
|
/* then determinant old matrix! */
|
|
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
|
|
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
|
|
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
|
|
|
|
if(det==0) det=1;
|
|
det= 1/det;
|
|
for(a=0;a<3;a++) {
|
|
for(b=0;b<3;b++) {
|
|
m1[a][b]*=det;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mat3Adj(float m1[][3], float m[][3])
|
|
{
|
|
m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
|
|
m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
|
|
m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
|
|
|
|
m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
|
|
m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
|
|
m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
|
|
|
|
m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
|
|
m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
|
|
m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
|
|
}
|
|
|
|
void Mat4MulMat4(float m1[][4], float m2[][4], float m3[][4])
|
|
{
|
|
/* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
|
|
|
|
m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
|
|
m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
|
|
m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
|
|
m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
|
|
|
|
m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
|
|
m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
|
|
m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
|
|
m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
|
|
|
|
m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
|
|
m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
|
|
m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
|
|
m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
|
|
|
|
m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
|
|
m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
|
|
m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
|
|
m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
|
|
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
void subMat4MulMat4(float *m1, float *m2, float *m3)
|
|
{
|
|
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
m1+=4;
|
|
m2+=4;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
m1+=4;
|
|
m2+=4;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[4] + m2[2]*m3[8];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[5] + m2[2]*m3[9];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[6] + m2[2]*m3[10];
|
|
m1[3]= m2[0]*m3[3] + m2[1]*m3[7] + m2[2]*m3[11] + m2[3];
|
|
}
|
|
#endif
|
|
|
|
#ifndef TEST_ACTIVE
|
|
void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3])
|
|
#else
|
|
void Mat3MulMat3(float *m1, float *m3, float *m2)
|
|
#endif
|
|
{
|
|
/* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
|
|
#ifndef TEST_ACTIVE
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
#else
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
m1+=3;
|
|
m2+=3;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
m1+=3;
|
|
m2+=3;
|
|
m1[0]= m2[0]*m3[0] + m2[1]*m3[3] + m2[2]*m3[6];
|
|
m1[1]= m2[0]*m3[1] + m2[1]*m3[4] + m2[2]*m3[7];
|
|
m1[2]= m2[0]*m3[2] + m2[1]*m3[5] + m2[2]*m3[8];
|
|
#endif
|
|
} /* end of void Mat3MulMat3(float m1[][3], float m3[][3], float m2[][3]) */
|
|
|
|
void Mat4MulMat43(float (*m1)[4], float (*m3)[4], float (*m2)[3])
|
|
{
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
}
|
|
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
|
|
void Mat3IsMat3MulMat4(float m1[][3], float m2[][3], float m3[][4])
|
|
{
|
|
/* m1[i][j] = m2[i][k] * m3[k][j] */
|
|
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
|
|
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
|
|
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
|
|
|
|
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
|
|
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
|
|
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
|
|
|
|
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
|
|
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
|
|
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
|
|
}
|
|
|
|
|
|
|
|
void Mat4MulMat34(float (*m1)[4], float (*m3)[3], float (*m2)[4])
|
|
{
|
|
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
|
|
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
|
|
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
|
|
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
|
|
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
|
|
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
|
|
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
|
|
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
|
|
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
|
|
}
|
|
|
|
void Mat4CpyMat4(float m1[][4], float m2[][4])
|
|
{
|
|
memcpy(m1, m2, 4*4*sizeof(float));
|
|
}
|
|
|
|
void Mat4SwapMat4(float *m1, float *m2)
|
|
{
|
|
float t;
|
|
int i;
|
|
|
|
for(i=0;i<16;i++) {
|
|
t= *m1;
|
|
*m1= *m2;
|
|
*m2= t;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
}
|
|
|
|
typedef float Mat3Row[3];
|
|
typedef float Mat4Row[4];
|
|
|
|
#ifdef TEST_ACTIVE
|
|
void Mat3CpyMat4(float *m1p, float *m2p)
|
|
#else
|
|
void Mat3CpyMat4(float m1[][3], float m2[][4])
|
|
#endif
|
|
{
|
|
#ifdef TEST_ACTIVE
|
|
int i, j;
|
|
Mat3Row *m1= (Mat3Row *)m1p;
|
|
Mat4Row *m2= (Mat4Row *)m2p;
|
|
for ( i = 0; i++; i < 3) {
|
|
for (j = 0; j++; j < 3) {
|
|
m1p[3*i + j] = m2p[4*i + j];
|
|
}
|
|
}
|
|
#endif
|
|
m1[0][0]= m2[0][0];
|
|
m1[0][1]= m2[0][1];
|
|
m1[0][2]= m2[0][2];
|
|
|
|
m1[1][0]= m2[1][0];
|
|
m1[1][1]= m2[1][1];
|
|
m1[1][2]= m2[1][2];
|
|
|
|
m1[2][0]= m2[2][0];
|
|
m1[2][1]= m2[2][1];
|
|
m1[2][2]= m2[2][2];
|
|
}
|
|
|
|
/* Butched. See .h for comment */
|
|
/* void Mat4CpyMat3(float m1[][4], float m2[][3]) */
|
|
#ifdef TEST_ACTIVE
|
|
void Mat4CpyMat3(float* m1, float *m2)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
m1[(4*i)] = m2[(3*i)];
|
|
m1[(4*i) + 1]= m2[(3*i) + 1];
|
|
m1[(4*i) + 2]= m2[(3*i) + 2];
|
|
m1[(4*i) + 3]= 0.0;
|
|
i++;
|
|
}
|
|
|
|
m1[12]=m1[13]= m1[14]= 0.0;
|
|
m1[15]= 1.0;
|
|
}
|
|
#else
|
|
|
|
void Mat4CpyMat3(float m1[][4], float m2[][3]) /* no clear */
|
|
{
|
|
m1[0][0]= m2[0][0];
|
|
m1[0][1]= m2[0][1];
|
|
m1[0][2]= m2[0][2];
|
|
|
|
m1[1][0]= m2[1][0];
|
|
m1[1][1]= m2[1][1];
|
|
m1[1][2]= m2[1][2];
|
|
|
|
m1[2][0]= m2[2][0];
|
|
m1[2][1]= m2[2][1];
|
|
m1[2][2]= m2[2][2];
|
|
|
|
/* Reevan's Bugfix */
|
|
m1[0][3]=0.0F;
|
|
m1[1][3]=0.0F;
|
|
m1[2][3]=0.0F;
|
|
|
|
m1[3][0]=0.0F;
|
|
m1[3][1]=0.0F;
|
|
m1[3][2]=0.0F;
|
|
m1[3][3]=1.0F;
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
void Mat3CpyMat3(float m1[][3], float m2[][3])
|
|
{
|
|
/* destination comes first: */
|
|
memcpy(&m1[0], &m2[0], 9*sizeof(float));
|
|
}
|
|
|
|
void Mat3MulSerie(float answ[][3],
|
|
float m1[][3], float m2[][3], float m3[][3],
|
|
float m4[][3], float m5[][3], float m6[][3],
|
|
float m7[][3], float m8[][3])
|
|
{
|
|
float temp[3][3];
|
|
|
|
if(m1==0 || m2==0) return;
|
|
|
|
|
|
Mat3MulMat3(answ, m2, m1);
|
|
if(m3) {
|
|
Mat3MulMat3(temp, m3, answ);
|
|
if(m4) {
|
|
Mat3MulMat3(answ, m4, temp);
|
|
if(m5) {
|
|
Mat3MulMat3(temp, m5, answ);
|
|
if(m6) {
|
|
Mat3MulMat3(answ, m6, temp);
|
|
if(m7) {
|
|
Mat3MulMat3(temp, m7, answ);
|
|
if(m8) {
|
|
Mat3MulMat3(answ, m8, temp);
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
else Mat3CpyMat3(answ, temp);
|
|
}
|
|
}
|
|
|
|
void Mat4MulSerie(float answ[][4], float m1[][4],
|
|
float m2[][4], float m3[][4], float m4[][4],
|
|
float m5[][4], float m6[][4], float m7[][4],
|
|
float m8[][4])
|
|
{
|
|
float temp[4][4];
|
|
|
|
if(m1==0 || m2==0) return;
|
|
|
|
Mat4MulMat4(answ, m2, m1);
|
|
if(m3) {
|
|
Mat4MulMat4(temp, m3, answ);
|
|
if(m4) {
|
|
Mat4MulMat4(answ, m4, temp);
|
|
if(m5) {
|
|
Mat4MulMat4(temp, m5, answ);
|
|
if(m6) {
|
|
Mat4MulMat4(answ, m6, temp);
|
|
if(m7) {
|
|
Mat4MulMat4(temp, m7, answ);
|
|
if(m8) {
|
|
Mat4MulMat4(answ, m8, temp);
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
else Mat4CpyMat4(answ, temp);
|
|
}
|
|
}
|
|
|
|
void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
|
|
{
|
|
float squat[4], dquat[4], fquat[4];
|
|
float ssize[3], dsize[3], fsize[4];
|
|
float sloc[3], dloc[3], floc[3];
|
|
|
|
Mat4ToQuat(dst, dquat);
|
|
Mat4ToSize(dst, dsize);
|
|
VecCopyf(dloc, dst[3]);
|
|
|
|
Mat4ToQuat(src, squat);
|
|
Mat4ToSize(src, ssize);
|
|
VecCopyf(sloc, src[3]);
|
|
|
|
/* do blending */
|
|
VecLerpf(floc, dloc, sloc, srcweight);
|
|
QuatInterpol(fquat, dquat, squat, srcweight);
|
|
VecLerpf(fsize, dsize, ssize, srcweight);
|
|
|
|
/* compose new matrix */
|
|
LocQuatSizeToMat4(out, floc, fquat, fsize);
|
|
}
|
|
|
|
void Mat4Clr(float *m)
|
|
{
|
|
memset(m, 0, 4*4*sizeof(float));
|
|
}
|
|
|
|
void Mat3Clr(float *m)
|
|
{
|
|
memset(m, 0, 3*3*sizeof(float));
|
|
}
|
|
|
|
void Mat4One(float m[][4])
|
|
{
|
|
|
|
m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
|
|
m[0][1]= m[0][2]= m[0][3]= 0.0;
|
|
m[1][0]= m[1][2]= m[1][3]= 0.0;
|
|
m[2][0]= m[2][1]= m[2][3]= 0.0;
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0;
|
|
}
|
|
|
|
void Mat3One(float m[][3])
|
|
{
|
|
|
|
m[0][0]= m[1][1]= m[2][2]= 1.0;
|
|
m[0][1]= m[0][2]= 0.0;
|
|
m[1][0]= m[1][2]= 0.0;
|
|
m[2][0]= m[2][1]= 0.0;
|
|
}
|
|
|
|
void Mat4MulVec( float mat[][4], int *vec)
|
|
{
|
|
int x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]=(int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0]);
|
|
vec[1]=(int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1]);
|
|
vec[2]=(int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2]);
|
|
}
|
|
|
|
void Mat4MulVecfl( float mat[][4], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
|
|
vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
|
|
vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
|
|
}
|
|
|
|
void VecMat4MulVecfl(float *in, float mat[][4], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
|
|
in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
|
|
in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
|
|
}
|
|
|
|
void Mat4Mul3Vecfl( float mat[][4], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x= vec[0];
|
|
y= vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat4MulVec3Project(float mat[][4], float *vec)
|
|
{
|
|
float w;
|
|
|
|
w = vec[0]*mat[0][3] + vec[1]*mat[1][3] + vec[2]*mat[2][3] + mat[3][3];
|
|
Mat4MulVecfl(mat, vec);
|
|
|
|
vec[0] /= w;
|
|
vec[1] /= w;
|
|
vec[2] /= w;
|
|
}
|
|
|
|
void Mat4MulVec4fl( float mat[][4], float *vec)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
z= vec[2];
|
|
vec[0]=x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*vec[3];
|
|
vec[1]=x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*vec[3];
|
|
vec[2]=x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*vec[3];
|
|
vec[3]=x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*vec[3];
|
|
}
|
|
|
|
void Mat3MulVec( float mat[][3], int *vec)
|
|
{
|
|
int x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= (int)(x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2]);
|
|
vec[1]= (int)(x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2]);
|
|
vec[2]= (int)(x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2]);
|
|
}
|
|
|
|
void Mat3MulVecfl( float mat[][3], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3MulVecd( float mat[][3], double *vec)
|
|
{
|
|
double x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
|
|
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
|
|
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3TransMulVecfl( float mat[][3], float *vec)
|
|
{
|
|
float x,y;
|
|
|
|
x=vec[0];
|
|
y=vec[1];
|
|
vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
|
|
vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
|
|
vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
|
|
}
|
|
|
|
void Mat3MulFloat(float *m, float f)
|
|
{
|
|
int i;
|
|
|
|
for(i=0;i<9;i++) m[i]*=f;
|
|
}
|
|
|
|
void Mat4MulFloat(float *m, float f)
|
|
{
|
|
int i;
|
|
|
|
for(i=0;i<16;i++) m[i]*=f; /* count to 12: without vector component */
|
|
}
|
|
|
|
|
|
void Mat4MulFloat3(float *m, float f) /* only scale component */
|
|
{
|
|
int i,j;
|
|
|
|
for(i=0; i<3; i++) {
|
|
for(j=0; j<3; j++) {
|
|
|
|
m[4*i+j] *= f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mat3AddMat3(float m1[][3], float m2[][3], float m3[][3])
|
|
{
|
|
int i, j;
|
|
|
|
for(i=0;i<3;i++)
|
|
for(j=0;j<3;j++)
|
|
m1[i][j]= m2[i][j] + m3[i][j];
|
|
}
|
|
|
|
void Mat4AddMat4(float m1[][4], float m2[][4], float m3[][4])
|
|
{
|
|
int i, j;
|
|
|
|
for(i=0;i<4;i++)
|
|
for(j=0;j<4;j++)
|
|
m1[i][j]= m2[i][j] + m3[i][j];
|
|
}
|
|
|
|
void VecStar(float mat[][3], float *vec)
|
|
{
|
|
|
|
mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
|
|
mat[0][1]= -vec[2];
|
|
mat[0][2]= vec[1];
|
|
mat[1][0]= vec[2];
|
|
mat[1][2]= -vec[0];
|
|
mat[2][0]= -vec[1];
|
|
mat[2][1]= vec[0];
|
|
|
|
}
|
|
#ifdef TEST_ACTIVE
|
|
short EenheidsMat(float mat[][3])
|
|
{
|
|
|
|
if(mat[0][0]==1.0 && mat[0][1]==0.0 && mat[0][2]==0.0)
|
|
if(mat[1][0]==0.0 && mat[1][1]==1.0 && mat[1][2]==0.0)
|
|
if(mat[2][0]==0.0 && mat[2][1]==0.0 && mat[2][2]==1.0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int FloatCompare( float *v1, float *v2, float limit)
|
|
{
|
|
|
|
if( fabs(v1[0]-v2[0])<limit ) {
|
|
if( fabs(v1[1]-v2[1])<limit ) {
|
|
if( fabs(v1[2]-v2[2])<limit ) return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
float FloatLerpf( float target, float origin, float fac)
|
|
{
|
|
return (fac*target) + (1.0f-fac)*origin;
|
|
}
|
|
|
|
void printvecf( char *str, float v[3])
|
|
{
|
|
printf("%s: %.3f %.3f %.3f\n", str, v[0], v[1], v[2]);
|
|
|
|
}
|
|
|
|
void printquat( char *str, float q[4])
|
|
{
|
|
printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
|
|
|
|
}
|
|
|
|
void printvec4f( char *str, float v[4])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f %f\n",v[0],v[1],v[2], v[3]);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
void printmatrix4( char *str, float m[][4])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f %f\n",m[0][0],m[1][0],m[2][0],m[3][0]);
|
|
printf("%f %f %f %f\n",m[0][1],m[1][1],m[2][1],m[3][1]);
|
|
printf("%f %f %f %f\n",m[0][2],m[1][2],m[2][2],m[3][2]);
|
|
printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
void printmatrix3( char *str, float m[][3])
|
|
{
|
|
printf("%s\n", str);
|
|
printf("%f %f %f\n",m[0][0],m[1][0],m[2][0]);
|
|
printf("%f %f %f\n",m[0][1],m[1][1],m[2][1]);
|
|
printf("%f %f %f\n",m[0][2],m[1][2],m[2][2]);
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
/* **************** QUATERNIONS ********** */
|
|
|
|
|
|
void QuatMul(float *q, float *q1, float *q2)
|
|
{
|
|
float t0,t1,t2;
|
|
|
|
t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3];
|
|
t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2];
|
|
t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3];
|
|
q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1];
|
|
q[0]=t0;
|
|
q[1]=t1;
|
|
q[2]=t2;
|
|
}
|
|
|
|
/* Assumes a unit quaternion */
|
|
void QuatMulVecf(float *q, float *v)
|
|
{
|
|
float t0, t1, t2;
|
|
|
|
t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2];
|
|
t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1];
|
|
t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2];
|
|
v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0];
|
|
v[0]=t1;
|
|
v[1]=t2;
|
|
|
|
t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2];
|
|
t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3];
|
|
v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1];
|
|
v[0]=t1;
|
|
v[1]=t2;
|
|
}
|
|
|
|
void QuatConj(float *q)
|
|
{
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
|
|
float QuatDot(float *q1, float *q2)
|
|
{
|
|
return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3];
|
|
}
|
|
|
|
void QuatInv(float *q)
|
|
{
|
|
float f = QuatDot(q, q);
|
|
|
|
if (f == 0.0f)
|
|
return;
|
|
|
|
QuatConj(q);
|
|
QuatMulf(q, 1.0f/f);
|
|
}
|
|
|
|
/* simple mult */
|
|
void QuatMulf(float *q, float f)
|
|
{
|
|
q[0] *= f;
|
|
q[1] *= f;
|
|
q[2] *= f;
|
|
q[3] *= f;
|
|
}
|
|
|
|
void QuatSub(float *q, float *q1, float *q2)
|
|
{
|
|
q2[0]= -q2[0];
|
|
QuatMul(q, q1, q2);
|
|
q2[0]= -q2[0];
|
|
}
|
|
|
|
/* angular mult factor */
|
|
void QuatMulFac(float *q, float fac)
|
|
{
|
|
float angle= fac*saacos(q[0]); /* quat[0]= cos(0.5*angle), but now the 0.5 and 2.0 rule out */
|
|
|
|
float co= (float)cos(angle);
|
|
float si= (float)sin(angle);
|
|
q[0]= co;
|
|
Normalize(q+1);
|
|
q[1]*= si;
|
|
q[2]*= si;
|
|
q[3]*= si;
|
|
|
|
}
|
|
|
|
void QuatToMat3( float *q, float m[][3])
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
}
|
|
|
|
|
|
void QuatToMat4( float *q, float m[][4])
|
|
{
|
|
double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc;
|
|
|
|
q0= M_SQRT2 * q[0];
|
|
q1= M_SQRT2 * q[1];
|
|
q2= M_SQRT2 * q[2];
|
|
q3= M_SQRT2 * q[3];
|
|
|
|
qda= q0*q1;
|
|
qdb= q0*q2;
|
|
qdc= q0*q3;
|
|
qaa= q1*q1;
|
|
qab= q1*q2;
|
|
qac= q1*q3;
|
|
qbb= q2*q2;
|
|
qbc= q2*q3;
|
|
qcc= q3*q3;
|
|
|
|
m[0][0]= (float)(1.0-qbb-qcc);
|
|
m[0][1]= (float)(qdc+qab);
|
|
m[0][2]= (float)(-qdb+qac);
|
|
m[0][3]= 0.0f;
|
|
|
|
m[1][0]= (float)(-qdc+qab);
|
|
m[1][1]= (float)(1.0-qaa-qcc);
|
|
m[1][2]= (float)(qda+qbc);
|
|
m[1][3]= 0.0f;
|
|
|
|
m[2][0]= (float)(qdb+qac);
|
|
m[2][1]= (float)(-qda+qbc);
|
|
m[2][2]= (float)(1.0-qaa-qbb);
|
|
m[2][3]= 0.0f;
|
|
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0f;
|
|
m[3][3]= 1.0f;
|
|
}
|
|
|
|
void Mat3ToQuat(float wmat[][3], float *q)
|
|
{
|
|
double tr, s;
|
|
float mat[3][3];
|
|
|
|
/* work on a copy */
|
|
Mat3CpyMat3(mat, wmat);
|
|
Mat3Ortho(mat); /* this is needed AND a NormalQuat in the end */
|
|
|
|
tr= 0.25*(1.0+mat[0][0]+mat[1][1]+mat[2][2]);
|
|
|
|
if(tr>FLT_EPSILON) {
|
|
s= sqrt( tr);
|
|
q[0]= (float)s;
|
|
s= 1.0/(4.0*s);
|
|
q[1]= (float)((mat[1][2]-mat[2][1])*s);
|
|
q[2]= (float)((mat[2][0]-mat[0][2])*s);
|
|
q[3]= (float)((mat[0][1]-mat[1][0])*s);
|
|
}
|
|
else {
|
|
if(mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
|
|
s= 2.0*sqrtf(1.0 + mat[0][0] - mat[1][1] - mat[2][2]);
|
|
q[1]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[2][1] - mat[1][2])*s);
|
|
q[2]= (float)((mat[1][0] + mat[0][1])*s);
|
|
q[3]= (float)((mat[2][0] + mat[0][2])*s);
|
|
}
|
|
else if(mat[1][1] > mat[2][2]) {
|
|
s= 2.0*sqrtf(1.0 + mat[1][1] - mat[0][0] - mat[2][2]);
|
|
q[2]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[2][0] - mat[0][2])*s);
|
|
q[1]= (float)((mat[1][0] + mat[0][1])*s);
|
|
q[3]= (float)((mat[2][1] + mat[1][2])*s);
|
|
}
|
|
else {
|
|
s= 2.0*sqrtf(1.0 + mat[2][2] - mat[0][0] - mat[1][1]);
|
|
q[3]= (float)(0.25*s);
|
|
|
|
s= 1.0/s;
|
|
q[0]= (float)((mat[1][0] - mat[0][1])*s);
|
|
q[1]= (float)((mat[2][0] + mat[0][2])*s);
|
|
q[2]= (float)((mat[2][1] + mat[1][2])*s);
|
|
}
|
|
}
|
|
NormalQuat(q);
|
|
}
|
|
|
|
void Mat3ToQuat_is_ok( float wmat[][3], float *q)
|
|
{
|
|
float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
|
|
|
|
/* work on a copy */
|
|
Mat3CpyMat3(mat, wmat);
|
|
Mat3Ortho(mat);
|
|
|
|
/* rotate z-axis of matrix to z-axis */
|
|
|
|
nor[0] = mat[2][1]; /* cross product with (0,0,1) */
|
|
nor[1] = -mat[2][0];
|
|
nor[2] = 0.0;
|
|
Normalize(nor);
|
|
|
|
co= mat[2][2];
|
|
angle= 0.5f*saacos(co);
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q1[0]= co;
|
|
q1[1]= -nor[0]*si; /* negative here, but why? */
|
|
q1[2]= -nor[1]*si;
|
|
q1[3]= -nor[2]*si;
|
|
|
|
/* rotate back x-axis from mat, using inverse q1 */
|
|
QuatToMat3(q1, matr);
|
|
Mat3Inv(matn, matr);
|
|
Mat3MulVecfl(matn, mat[0]);
|
|
|
|
/* and align x-axes */
|
|
angle= (float)(0.5*atan2(mat[0][1], mat[0][0]));
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
QuatMul(q, q1, q2);
|
|
}
|
|
|
|
|
|
void Mat4ToQuat( float m[][4], float *q)
|
|
{
|
|
float mat[3][3];
|
|
|
|
Mat3CpyMat4(mat, m);
|
|
Mat3ToQuat(mat, q);
|
|
|
|
}
|
|
|
|
void QuatOne(float *q)
|
|
{
|
|
q[0]= q[2]= q[3]= 0.0;
|
|
q[1]= 1.0;
|
|
}
|
|
|
|
void NormalQuat(float *q)
|
|
{
|
|
float len;
|
|
|
|
len= (float)sqrt(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]);
|
|
if(len!=0.0) {
|
|
q[0]/= len;
|
|
q[1]/= len;
|
|
q[2]/= len;
|
|
q[3]/= len;
|
|
} else {
|
|
q[1]= 1.0f;
|
|
q[0]= q[2]= q[3]= 0.0f;
|
|
}
|
|
}
|
|
|
|
float *vectoquat( float *vec, short axis, short upflag)
|
|
{
|
|
static float q1[4];
|
|
float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1;
|
|
|
|
/* first rotate to axis */
|
|
if(axis>2) {
|
|
x2= vec[0] ; y2= vec[1] ; z2= vec[2];
|
|
axis-= 3;
|
|
}
|
|
else {
|
|
x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2];
|
|
}
|
|
|
|
q1[0]=1.0;
|
|
q1[1]=q1[2]=q1[3]= 0.0;
|
|
|
|
len1= (float)sqrt(x2*x2+y2*y2+z2*z2);
|
|
if(len1 == 0.0) return(q1);
|
|
|
|
/* nasty! I need a good routine for this...
|
|
* problem is a rotation of an Y axis to the negative Y-axis for example.
|
|
*/
|
|
|
|
if(axis==0) { /* x-axis */
|
|
nor[0]= 0.0;
|
|
nor[1]= -z2;
|
|
nor[2]= y2;
|
|
|
|
if( fabs(y2)+fabs(z2)<0.0001 ) {
|
|
nor[1]= 1.0;
|
|
}
|
|
|
|
co= x2;
|
|
}
|
|
else if(axis==1) { /* y-axis */
|
|
nor[0]= z2;
|
|
nor[1]= 0.0;
|
|
nor[2]= -x2;
|
|
|
|
if( fabs(x2)+fabs(z2)<0.0001 ) {
|
|
nor[2]= 1.0;
|
|
}
|
|
|
|
co= y2;
|
|
}
|
|
else { /* z-axis */
|
|
nor[0]= -y2;
|
|
nor[1]= x2;
|
|
nor[2]= 0.0;
|
|
|
|
if( fabs(x2)+fabs(y2)<0.0001 ) {
|
|
nor[0]= 1.0;
|
|
}
|
|
|
|
co= z2;
|
|
}
|
|
co/= len1;
|
|
|
|
Normalize(nor);
|
|
|
|
angle= 0.5f*saacos(co);
|
|
si= (float)sin(angle);
|
|
q1[0]= (float)cos(angle);
|
|
q1[1]= nor[0]*si;
|
|
q1[2]= nor[1]*si;
|
|
q1[3]= nor[2]*si;
|
|
|
|
if(axis!=upflag) {
|
|
QuatToMat3(q1, mat);
|
|
|
|
fp= mat[2];
|
|
if(axis==0) {
|
|
if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1]));
|
|
else angle= (float)(-0.5*atan2(fp[1], fp[2]));
|
|
}
|
|
else if(axis==1) {
|
|
if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0]));
|
|
else angle= (float)(0.5*atan2(fp[0], fp[2]));
|
|
}
|
|
else {
|
|
if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0]));
|
|
else angle= (float)(-0.5*atan2(-fp[0], -fp[1]));
|
|
}
|
|
|
|
co= (float)cos(angle);
|
|
si= (float)(sin(angle)/len1);
|
|
q2[0]= co;
|
|
q2[1]= x2*si;
|
|
q2[2]= y2*si;
|
|
q2[3]= z2*si;
|
|
|
|
QuatMul(q1,q2,q1);
|
|
}
|
|
|
|
return(q1);
|
|
}
|
|
|
|
void VecUpMat3old( float *vec, float mat[][3], short axis)
|
|
{
|
|
float inp, up[3];
|
|
short cox = 0, coy = 0, coz = 0;
|
|
|
|
/* using different up's is not useful, infact there is no real 'up'!
|
|
*/
|
|
|
|
up[0]= 0.0;
|
|
up[1]= 0.0;
|
|
up[2]= 1.0;
|
|
|
|
if(axis==0) {
|
|
cox= 0; coy= 1; coz= 2; /* Y up Z tr */
|
|
}
|
|
if(axis==1) {
|
|
cox= 1; coy= 2; coz= 0; /* Z up X tr */
|
|
}
|
|
if(axis==2) {
|
|
cox= 2; coy= 0; coz= 1; /* X up Y tr */
|
|
}
|
|
if(axis==3) {
|
|
cox= 0; coy= 2; coz= 1; /* */
|
|
}
|
|
if(axis==4) {
|
|
cox= 1; coy= 0; coz= 2; /* */
|
|
}
|
|
if(axis==5) {
|
|
cox= 2; coy= 1; coz= 0; /* Y up X tr */
|
|
}
|
|
|
|
mat[coz][0]= vec[0];
|
|
mat[coz][1]= vec[1];
|
|
mat[coz][2]= vec[2];
|
|
Normalize((float *)mat[coz]);
|
|
|
|
inp= mat[coz][0]*up[0] + mat[coz][1]*up[1] + mat[coz][2]*up[2];
|
|
mat[coy][0]= up[0] - inp*mat[coz][0];
|
|
mat[coy][1]= up[1] - inp*mat[coz][1];
|
|
mat[coy][2]= up[2] - inp*mat[coz][2];
|
|
|
|
Normalize((float *)mat[coy]);
|
|
|
|
Crossf(mat[cox], mat[coy], mat[coz]);
|
|
|
|
}
|
|
|
|
void VecUpMat3(float *vec, float mat[][3], short axis)
|
|
{
|
|
float inp;
|
|
short cox = 0, coy = 0, coz = 0;
|
|
|
|
/* using different up's is not useful, infact there is no real 'up'!
|
|
*/
|
|
|
|
if(axis==0) {
|
|
cox= 0; coy= 1; coz= 2; /* Y up Z tr */
|
|
}
|
|
if(axis==1) {
|
|
cox= 1; coy= 2; coz= 0; /* Z up X tr */
|
|
}
|
|
if(axis==2) {
|
|
cox= 2; coy= 0; coz= 1; /* X up Y tr */
|
|
}
|
|
if(axis==3) {
|
|
cox= 0; coy= 1; coz= 2; /* Y op -Z tr */
|
|
vec[0]= -vec[0];
|
|
vec[1]= -vec[1];
|
|
vec[2]= -vec[2];
|
|
}
|
|
if(axis==4) {
|
|
cox= 1; coy= 0; coz= 2; /* */
|
|
}
|
|
if(axis==5) {
|
|
cox= 2; coy= 1; coz= 0; /* Y up X tr */
|
|
}
|
|
|
|
mat[coz][0]= vec[0];
|
|
mat[coz][1]= vec[1];
|
|
mat[coz][2]= vec[2];
|
|
Normalize((float *)mat[coz]);
|
|
|
|
inp= mat[coz][2];
|
|
mat[coy][0]= - inp*mat[coz][0];
|
|
mat[coy][1]= - inp*mat[coz][1];
|
|
mat[coy][2]= 1.0f - inp*mat[coz][2];
|
|
|
|
Normalize((float *)mat[coy]);
|
|
|
|
Crossf(mat[cox], mat[coy], mat[coz]);
|
|
|
|
}
|
|
|
|
/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
|
|
void QuatInterpolW(float *, float *, float *, float );
|
|
|
|
void QuatInterpolW(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
float omega, cosom, sinom, sc1, sc2;
|
|
|
|
cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
|
|
|
|
/* rotate around shortest angle */
|
|
if ((1.0 + cosom) > 0.0001) {
|
|
|
|
if ((1.0 - cosom) > 0.0001) {
|
|
omega = acos(cosom);
|
|
sinom = sin(omega);
|
|
sc1 = sin((1.0 - t) * omega) / sinom;
|
|
sc2 = sin(t * omega) / sinom;
|
|
}
|
|
else {
|
|
sc1 = 1.0 - t;
|
|
sc2 = t;
|
|
}
|
|
result[0] = sc1*quat1[0] + sc2*quat2[0];
|
|
result[1] = sc1*quat1[1] + sc2*quat2[1];
|
|
result[2] = sc1*quat1[2] + sc2*quat2[2];
|
|
result[3] = sc1*quat1[3] + sc2*quat2[3];
|
|
}
|
|
else {
|
|
result[0] = quat2[3];
|
|
result[1] = -quat2[2];
|
|
result[2] = quat2[1];
|
|
result[3] = -quat2[0];
|
|
|
|
sc1 = sin((1.0 - t)*M_PI_2);
|
|
sc2 = sin(t*M_PI_2);
|
|
|
|
result[0] = sc1*quat1[0] + sc2*result[0];
|
|
result[1] = sc1*quat1[1] + sc2*result[1];
|
|
result[2] = sc1*quat1[2] + sc2*result[2];
|
|
result[3] = sc1*quat1[3] + sc2*result[3];
|
|
}
|
|
}
|
|
|
|
void QuatInterpol(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
float quat[4], omega, cosom, sinom, sc1, sc2;
|
|
|
|
cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ;
|
|
|
|
/* rotate around shortest angle */
|
|
if (cosom < 0.0) {
|
|
cosom = -cosom;
|
|
quat[0]= -quat1[0];
|
|
quat[1]= -quat1[1];
|
|
quat[2]= -quat1[2];
|
|
quat[3]= -quat1[3];
|
|
}
|
|
else {
|
|
quat[0]= quat1[0];
|
|
quat[1]= quat1[1];
|
|
quat[2]= quat1[2];
|
|
quat[3]= quat1[3];
|
|
}
|
|
|
|
if ((1.0 - cosom) > 0.0001) {
|
|
omega = acos(cosom);
|
|
sinom = sin(omega);
|
|
sc1 = sin((1 - t) * omega) / sinom;
|
|
sc2 = sin(t * omega) / sinom;
|
|
} else {
|
|
sc1= 1.0 - t;
|
|
sc2= t;
|
|
}
|
|
|
|
result[0] = sc1 * quat[0] + sc2 * quat2[0];
|
|
result[1] = sc1 * quat[1] + sc2 * quat2[1];
|
|
result[2] = sc1 * quat[2] + sc2 * quat2[2];
|
|
result[3] = sc1 * quat[3] + sc2 * quat2[3];
|
|
}
|
|
|
|
void QuatAdd(float *result, float *quat1, float *quat2, float t)
|
|
{
|
|
result[0]= quat1[0] + t*quat2[0];
|
|
result[1]= quat1[1] + t*quat2[1];
|
|
result[2]= quat1[2] + t*quat2[2];
|
|
result[3]= quat1[3] + t*quat2[3];
|
|
}
|
|
|
|
void QuatCopy(float *q1, float *q2)
|
|
{
|
|
q1[0]= q2[0];
|
|
q1[1]= q2[1];
|
|
q1[2]= q2[2];
|
|
q1[3]= q2[3];
|
|
}
|
|
|
|
/* **************** DUAL QUATERNIONS ************** */
|
|
|
|
/*
|
|
Conversion routines between (regular quaternion, translation) and
|
|
dual quaternion.
|
|
|
|
Version 1.0.0, February 7th, 2007
|
|
|
|
Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
|
|
Reserved
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the author(s) be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
Author: Ladislav Kavan, kavanl@cs.tcd.ie
|
|
|
|
Changes for Blender:
|
|
- renaming, style changes and optimizations
|
|
- added support for scaling
|
|
*/
|
|
|
|
void Mat4ToDQuat(float basemat[][4], float mat[][4], DualQuat *dq)
|
|
{
|
|
float *t, *q, dscale[3], scale[3], basequat[4];
|
|
float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
|
|
float R[4][4], S[4][4];
|
|
|
|
/* split scaling and rotation, there is probably a faster way to do
|
|
this, it's done like this now to correctly get negative scaling */
|
|
Mat4MulMat4(baseRS, basemat, mat);
|
|
Mat4ToSize(baseRS, scale);
|
|
|
|
VecCopyf(dscale, scale);
|
|
dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f;
|
|
|
|
if((Det4x4(mat) < 0.0f) || VecLength(dscale) > 1e-4) {
|
|
/* extract R and S */
|
|
Mat4ToQuat(baseRS, basequat);
|
|
QuatToMat4(basequat, baseR);
|
|
VecCopyf(baseR[3], baseRS[3]);
|
|
|
|
Mat4Invert(baseinv, basemat);
|
|
Mat4MulMat4(R, baseinv, baseR);
|
|
|
|
Mat4Invert(baseRinv, baseR);
|
|
Mat4MulMat4(S, baseRS, baseRinv);
|
|
|
|
/* set scaling part */
|
|
Mat4MulSerie(dq->scale, basemat, S, baseinv, 0, 0, 0, 0, 0);
|
|
dq->scale_weight= 1.0f;
|
|
}
|
|
else {
|
|
/* matrix does not contain scaling */
|
|
Mat4CpyMat4(R, mat);
|
|
dq->scale_weight= 0.0f;
|
|
}
|
|
|
|
/* non-dual part */
|
|
Mat4ToQuat(R, dq->quat);
|
|
|
|
/* dual part */
|
|
t= R[3];
|
|
q= dq->quat;
|
|
dq->trans[0]= -0.5f*( t[0]*q[1] + t[1]*q[2] + t[2]*q[3]);
|
|
dq->trans[1]= 0.5f*( t[0]*q[0] + t[1]*q[3] - t[2]*q[2]);
|
|
dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]);
|
|
dq->trans[3]= 0.5f*( t[0]*q[2] - t[1]*q[1] + t[2]*q[0]);
|
|
}
|
|
|
|
void DQuatToMat4(DualQuat *dq, float mat[][4])
|
|
{
|
|
float len, *t, q0[4];
|
|
|
|
/* regular quaternion */
|
|
QuatCopy(q0, dq->quat);
|
|
|
|
/* normalize */
|
|
len= sqrt(QuatDot(q0, q0));
|
|
if(len != 0.0f)
|
|
QuatMulf(q0, 1.0f/len);
|
|
|
|
/* rotation */
|
|
QuatToMat4(q0, mat);
|
|
|
|
/* translation */
|
|
t= dq->trans;
|
|
mat[3][0]= 2.0*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]);
|
|
mat[3][1]= 2.0*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]);
|
|
mat[3][2]= 2.0*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]);
|
|
|
|
/* note: this does not handle scaling */
|
|
}
|
|
|
|
void DQuatAddWeighted(DualQuat *dqsum, DualQuat *dq, float weight)
|
|
{
|
|
/* make sure we interpolate quats in the right direction */
|
|
if (QuatDot(dq->quat, dqsum->quat) < 0)
|
|
weight = -weight;
|
|
|
|
/* interpolate rotation and translation */
|
|
dqsum->quat[0] += weight*dq->quat[0];
|
|
dqsum->quat[1] += weight*dq->quat[1];
|
|
dqsum->quat[2] += weight*dq->quat[2];
|
|
dqsum->quat[3] += weight*dq->quat[3];
|
|
|
|
dqsum->trans[0] += weight*dq->trans[0];
|
|
dqsum->trans[1] += weight*dq->trans[1];
|
|
dqsum->trans[2] += weight*dq->trans[2];
|
|
dqsum->trans[3] += weight*dq->trans[3];
|
|
|
|
/* interpolate scale - but only if needed */
|
|
if (dq->scale_weight) {
|
|
float wmat[4][4];
|
|
|
|
Mat4CpyMat4(wmat, dq->scale);
|
|
Mat4MulFloat((float*)wmat, weight);
|
|
Mat4AddMat4(dqsum->scale, dqsum->scale, wmat);
|
|
dqsum->scale_weight += weight;
|
|
}
|
|
}
|
|
|
|
void DQuatNormalize(DualQuat *dq, float totweight)
|
|
{
|
|
float scale= 1.0f/totweight;
|
|
|
|
QuatMulf(dq->quat, scale);
|
|
QuatMulf(dq->trans, scale);
|
|
|
|
if(dq->scale_weight) {
|
|
float addweight= totweight - dq->scale_weight;
|
|
|
|
if(addweight) {
|
|
dq->scale[0][0] += addweight;
|
|
dq->scale[1][1] += addweight;
|
|
dq->scale[2][2] += addweight;
|
|
dq->scale[3][3] += addweight;
|
|
}
|
|
|
|
Mat4MulFloat((float*)dq->scale, scale);
|
|
dq->scale_weight= 1.0f;
|
|
}
|
|
}
|
|
|
|
void DQuatMulVecfl(DualQuat *dq, float *co, float mat[][3])
|
|
{
|
|
float M[3][3], t[3], scalemat[3][3], len2;
|
|
float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3];
|
|
float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3];
|
|
|
|
/* rotation matrix */
|
|
M[0][0]= w*w + x*x - y*y - z*z;
|
|
M[1][0]= 2*(x*y - w*z);
|
|
M[2][0]= 2*(x*z + w*y);
|
|
|
|
M[0][1]= 2*(x*y + w*z);
|
|
M[1][1]= w*w + y*y - x*x - z*z;
|
|
M[2][1]= 2*(y*z - w*x);
|
|
|
|
M[0][2]= 2*(x*z - w*y);
|
|
M[1][2]= 2*(y*z + w*x);
|
|
M[2][2]= w*w + z*z - x*x - y*y;
|
|
|
|
len2= QuatDot(dq->quat, dq->quat);
|
|
if(len2 > 0.0f)
|
|
len2= 1.0f/len2;
|
|
|
|
/* translation */
|
|
t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3);
|
|
t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2);
|
|
t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y);
|
|
|
|
/* apply scaling */
|
|
if(dq->scale_weight)
|
|
Mat4MulVecfl(dq->scale, co);
|
|
|
|
/* apply rotation and translation */
|
|
Mat3MulVecfl(M, co);
|
|
co[0]= (co[0] + t[0])*len2;
|
|
co[1]= (co[1] + t[1])*len2;
|
|
co[2]= (co[2] + t[2])*len2;
|
|
|
|
/* compute crazyspace correction mat */
|
|
if(mat) {
|
|
if(dq->scale_weight) {
|
|
Mat3CpyMat4(scalemat, dq->scale);
|
|
Mat3MulMat3(mat, M, scalemat);
|
|
}
|
|
else
|
|
Mat3CpyMat3(mat, M);
|
|
Mat3MulFloat((float*)mat, len2);
|
|
}
|
|
}
|
|
|
|
void DQuatCpyDQuat(DualQuat *dq1, DualQuat *dq2)
|
|
{
|
|
memcpy(dq1, dq2, sizeof(DualQuat));
|
|
}
|
|
|
|
/* **************** VIEW / PROJECTION ******************************** */
|
|
|
|
|
|
void i_ortho(
|
|
float left, float right,
|
|
float bottom, float top,
|
|
float nearClip, float farClip,
|
|
float matrix[][4]
|
|
){
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
|
|
return;
|
|
}
|
|
Mat4One(matrix);
|
|
matrix[0][0] = 2.0f/Xdelta;
|
|
matrix[3][0] = -(right + left)/Xdelta;
|
|
matrix[1][1] = 2.0f/Ydelta;
|
|
matrix[3][1] = -(top + bottom)/Ydelta;
|
|
matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
|
|
matrix[3][2] = -(farClip + nearClip)/Zdelta;
|
|
}
|
|
|
|
void i_window(
|
|
float left, float right,
|
|
float bottom, float top,
|
|
float nearClip, float farClip,
|
|
float mat[][4]
|
|
){
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
|
|
if (Xdelta == 0.0 || Ydelta == 0.0 || Zdelta == 0.0) {
|
|
return;
|
|
}
|
|
mat[0][0] = nearClip * 2.0f/Xdelta;
|
|
mat[1][1] = nearClip * 2.0f/Ydelta;
|
|
mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
|
|
mat[2][1] = (top + bottom)/Ydelta;
|
|
mat[2][2] = -(farClip + nearClip)/Zdelta;
|
|
mat[2][3] = -1.0f;
|
|
mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
|
|
mat[0][1] = mat[0][2] = mat[0][3] =
|
|
mat[1][0] = mat[1][2] = mat[1][3] =
|
|
mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
|
|
|
|
}
|
|
|
|
void i_translate(float Tx, float Ty, float Tz, float mat[][4])
|
|
{
|
|
mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
|
|
mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
|
|
mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
|
|
}
|
|
|
|
void i_multmatrix( float icand[][4], float Vm[][4])
|
|
{
|
|
int row, col;
|
|
float temp[4][4];
|
|
|
|
for(row=0 ; row<4 ; row++)
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[row][col] = icand[row][0] * Vm[0][col]
|
|
+ icand[row][1] * Vm[1][col]
|
|
+ icand[row][2] * Vm[2][col]
|
|
+ icand[row][3] * Vm[3][col];
|
|
Mat4CpyMat4(Vm, temp);
|
|
}
|
|
|
|
void i_rotate(float angle, char axis, float mat[][4])
|
|
{
|
|
int col;
|
|
float temp[4];
|
|
float cosine, sine;
|
|
|
|
for(col=0; col<4 ; col++) /* init temp to zero matrix */
|
|
temp[col] = 0;
|
|
|
|
angle = (float)(angle*(3.1415926535/180.0));
|
|
cosine = (float)cos(angle);
|
|
sine = (float)sin(angle);
|
|
switch(axis){
|
|
case 'x':
|
|
case 'X':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[1][col] + sine*mat[2][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
|
|
mat[1][col] = temp[col];
|
|
}
|
|
break;
|
|
|
|
case 'y':
|
|
case 'Y':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[0][col] - sine*mat[2][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
|
|
mat[0][col] = temp[col];
|
|
}
|
|
break;
|
|
|
|
case 'z':
|
|
case 'Z':
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[col] = cosine*mat[0][col] + sine*mat[1][col];
|
|
for(col=0 ; col<4 ; col++) {
|
|
mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
|
|
mat[0][col] = temp[col];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void i_polarview(float dist, float azimuth, float incidence, float twist, float Vm[][4])
|
|
{
|
|
|
|
Mat4One(Vm);
|
|
|
|
i_translate(0.0, 0.0, -dist, Vm);
|
|
i_rotate(-twist,'z', Vm);
|
|
i_rotate(-incidence,'x', Vm);
|
|
i_rotate(-azimuth,'z', Vm);
|
|
}
|
|
|
|
void i_lookat(float vx, float vy, float vz, float px, float py, float pz, float twist, float mat[][4])
|
|
{
|
|
float sine, cosine, hyp, hyp1, dx, dy, dz;
|
|
float mat1[4][4];
|
|
|
|
Mat4One(mat);
|
|
Mat4One(mat1);
|
|
|
|
i_rotate(-twist,'z', mat);
|
|
|
|
dx = px - vx;
|
|
dy = py - vy;
|
|
dz = pz - vz;
|
|
hyp = dx * dx + dz * dz; /* hyp squared */
|
|
hyp1 = (float)sqrt(dy*dy + hyp);
|
|
hyp = (float)sqrt(hyp); /* the real hyp */
|
|
|
|
if (hyp1 != 0.0) { /* rotate X */
|
|
sine = -dy / hyp1;
|
|
cosine = hyp /hyp1;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[1][1] = cosine;
|
|
mat1[1][2] = sine;
|
|
mat1[2][1] = -sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
|
|
mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
|
|
mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
|
|
|
|
/* paragraph */
|
|
if (hyp != 0.0f) { /* rotate Y */
|
|
sine = dx / hyp;
|
|
cosine = -dz / hyp;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[0][0] = cosine;
|
|
mat1[0][2] = -sine;
|
|
mat1[2][0] = sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
i_translate(-vx,-vy,-vz, mat); /* translate viewpoint to origin */
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* ************************************************ */
|
|
|
|
void Mat3Ortho(float mat[][3])
|
|
{
|
|
Normalize(mat[0]);
|
|
Normalize(mat[1]);
|
|
Normalize(mat[2]);
|
|
}
|
|
|
|
void Mat4Ortho(float mat[][4])
|
|
{
|
|
float len;
|
|
|
|
len= Normalize(mat[0]);
|
|
if(len!=0.0) mat[0][3]/= len;
|
|
len= Normalize(mat[1]);
|
|
if(len!=0.0) mat[1][3]/= len;
|
|
len= Normalize(mat[2]);
|
|
if(len!=0.0) mat[2][3]/= len;
|
|
}
|
|
|
|
void VecCopyf(float *v1, float *v2)
|
|
{
|
|
v1[0]= v2[0];
|
|
v1[1]= v2[1];
|
|
v1[2]= v2[2];
|
|
}
|
|
|
|
int VecLen( int *v1, int *v2)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=(float)(v1[0]-v2[0]);
|
|
y=(float)(v1[1]-v2[1]);
|
|
z=(float)(v1[2]-v2[2]);
|
|
return (int)floor(sqrt(x*x+y*y+z*z));
|
|
}
|
|
|
|
float VecLenf( float *v1, float *v2)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=v1[0]-v2[0];
|
|
y=v1[1]-v2[1];
|
|
z=v1[2]-v2[2];
|
|
return (float)sqrt(x*x+y*y+z*z);
|
|
}
|
|
|
|
float VecLength(float *v)
|
|
{
|
|
return (float) sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
}
|
|
|
|
void VecAddf(float *v, float *v1, float *v2)
|
|
{
|
|
v[0]= v1[0]+ v2[0];
|
|
v[1]= v1[1]+ v2[1];
|
|
v[2]= v1[2]+ v2[2];
|
|
}
|
|
|
|
void VecSubf(float *v, float *v1, float *v2)
|
|
{
|
|
v[0]= v1[0]- v2[0];
|
|
v[1]= v1[1]- v2[1];
|
|
v[2]= v1[2]- v2[2];
|
|
}
|
|
|
|
void VecLerpf(float *target, float *a, float *b, float t)
|
|
{
|
|
float s = 1.0f-t;
|
|
|
|
target[0]= s*a[0] + t*b[0];
|
|
target[1]= s*a[1] + t*b[1];
|
|
target[2]= s*a[2] + t*b[2];
|
|
}
|
|
|
|
void VecMidf(float *v, float *v1, float *v2)
|
|
{
|
|
v[0]= 0.5f*(v1[0]+ v2[0]);
|
|
v[1]= 0.5f*(v1[1]+ v2[1]);
|
|
v[2]= 0.5f*(v1[2]+ v2[2]);
|
|
}
|
|
|
|
void VecMulf(float *v1, float f)
|
|
{
|
|
|
|
v1[0]*= f;
|
|
v1[1]*= f;
|
|
v1[2]*= f;
|
|
}
|
|
|
|
void VecOrthoBasisf(float *v, float *v1, float *v2)
|
|
{
|
|
if (v[0] == 0.0f && v[1] == 0.0f)
|
|
{
|
|
// degenerate case
|
|
v1[0] = 0.0f; v1[1] = 1.0f; v1[2] = 0.0f;
|
|
if (v[2] > 0.0f) {
|
|
v2[0] = 1.0f; v2[1] = v2[2] = 0.0f;
|
|
}
|
|
else {
|
|
v2[0] = -1.0f; v2[1] = v2[2] = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float f = 1.0f/sqrt(v[0]*v[0] + v[1]*v[1]);
|
|
v1[0] = v[1]*f;
|
|
v1[1] = -v[0]*f;
|
|
v1[2] = 0.0f;
|
|
|
|
Crossf(v2, v, v1);
|
|
}
|
|
}
|
|
|
|
int VecLenCompare(float *v1, float *v2, float limit)
|
|
{
|
|
float x,y,z;
|
|
|
|
x=v1[0]-v2[0];
|
|
y=v1[1]-v2[1];
|
|
z=v1[2]-v2[2];
|
|
|
|
return ((x*x + y*y + z*z) < (limit*limit));
|
|
}
|
|
|
|
int VecCompare( float *v1, float *v2, float limit)
|
|
{
|
|
if( fabs(v1[0]-v2[0])<limit )
|
|
if( fabs(v1[1]-v2[1])<limit )
|
|
if( fabs(v1[2]-v2[2])<limit ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
int VecEqual(float *v1, float *v2)
|
|
{
|
|
return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2]));
|
|
}
|
|
|
|
void CalcNormShort( short *v1, short *v2, short *v3, float *n) /* is also cross product */
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= (float)(v1[0]-v2[0]);
|
|
n2[0]= (float)(v2[0]-v3[0]);
|
|
n1[1]= (float)(v1[1]-v2[1]);
|
|
n2[1]= (float)(v2[1]-v3[1]);
|
|
n1[2]= (float)(v1[2]-v2[2]);
|
|
n2[2]= (float)(v2[2]-v3[2]);
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
Normalize(n);
|
|
}
|
|
|
|
void CalcNormLong( int* v1, int*v2, int*v3, float *n)
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= (float)(v1[0]-v2[0]);
|
|
n2[0]= (float)(v2[0]-v3[0]);
|
|
n1[1]= (float)(v1[1]-v2[1]);
|
|
n2[1]= (float)(v2[1]-v3[1]);
|
|
n1[2]= (float)(v1[2]-v2[2]);
|
|
n2[2]= (float)(v2[2]-v3[2]);
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
Normalize(n);
|
|
}
|
|
|
|
float CalcNormFloat( float *v1, float *v2, float *v3, float *n)
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v2[0];
|
|
n2[0]= v2[0]-v3[0];
|
|
n1[1]= v1[1]-v2[1];
|
|
n2[1]= v2[1]-v3[1];
|
|
n1[2]= v1[2]-v2[2];
|
|
n2[2]= v2[2]-v3[2];
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
return Normalize(n);
|
|
}
|
|
|
|
float CalcNormFloat4( float *v1, float *v2, float *v3, float *v4, float *n)
|
|
{
|
|
/* real cross! */
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v3[0];
|
|
n1[1]= v1[1]-v3[1];
|
|
n1[2]= v1[2]-v3[2];
|
|
|
|
n2[0]= v2[0]-v4[0];
|
|
n2[1]= v2[1]-v4[1];
|
|
n2[2]= v2[2]-v4[2];
|
|
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
|
|
return Normalize(n);
|
|
}
|
|
|
|
|
|
void CalcCent3f(float *cent, float *v1, float *v2, float *v3)
|
|
{
|
|
|
|
cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
|
|
cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
|
|
cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
|
|
}
|
|
|
|
void CalcCent4f(float *cent, float *v1, float *v2, float *v3, float *v4)
|
|
{
|
|
|
|
cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
|
|
cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
|
|
cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
|
|
}
|
|
|
|
float Sqrt3f(float f)
|
|
{
|
|
if(f==0.0) return 0;
|
|
if(f<0) return (float)(-exp(log(-f)/3));
|
|
else return (float)(exp(log(f)/3));
|
|
}
|
|
|
|
double Sqrt3d(double d)
|
|
{
|
|
if(d==0.0) return 0;
|
|
if(d<0) return -exp(log(-d)/3);
|
|
else return exp(log(d)/3);
|
|
}
|
|
|
|
/* distance v1 to line v2-v3 */
|
|
/* using Hesse formula, NO LINE PIECE! */
|
|
float DistVL2Dfl( float *v1, float *v2, float *v3) {
|
|
float a[2],deler;
|
|
|
|
a[0]= v2[1]-v3[1];
|
|
a[1]= v3[0]-v2[0];
|
|
deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
|
|
if(deler== 0.0f) return 0;
|
|
|
|
return (float)(fabs((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler);
|
|
|
|
}
|
|
|
|
/* distance v1 to line-piece v2-v3 */
|
|
float PdistVL2Dfl( float *v1, float *v2, float *v3)
|
|
{
|
|
float labda, rc[2], pt[2], len;
|
|
|
|
rc[0]= v3[0]-v2[0];
|
|
rc[1]= v3[1]-v2[1];
|
|
len= rc[0]*rc[0]+ rc[1]*rc[1];
|
|
if(len==0.0) {
|
|
rc[0]= v1[0]-v2[0];
|
|
rc[1]= v1[1]-v2[1];
|
|
return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
|
|
}
|
|
|
|
labda= ( rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]) )/len;
|
|
if(labda<=0.0) {
|
|
pt[0]= v2[0];
|
|
pt[1]= v2[1];
|
|
}
|
|
else if(labda>=1.0) {
|
|
pt[0]= v3[0];
|
|
pt[1]= v3[1];
|
|
}
|
|
else {
|
|
pt[0]= labda*rc[0]+v2[0];
|
|
pt[1]= labda*rc[1]+v2[1];
|
|
}
|
|
|
|
rc[0]= pt[0]-v1[0];
|
|
rc[1]= pt[1]-v1[1];
|
|
return (float)sqrt(rc[0]*rc[0]+ rc[1]*rc[1]);
|
|
}
|
|
|
|
float AreaF2Dfl( float *v1, float *v2, float *v3)
|
|
{
|
|
return (float)(0.5*fabs( (v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]) ));
|
|
}
|
|
|
|
|
|
float AreaQ3Dfl( float *v1, float *v2, float *v3, float *v4) /* only convex Quadrilaterals */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
VecSubf(vec1, v2, v1);
|
|
VecSubf(vec2, v4, v1);
|
|
Crossf(n, vec1, vec2);
|
|
len= Normalize(n);
|
|
|
|
VecSubf(vec1, v4, v3);
|
|
VecSubf(vec2, v2, v3);
|
|
Crossf(n, vec1, vec2);
|
|
len+= Normalize(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
float AreaT3Dfl( float *v1, float *v2, float *v3) /* Triangles */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
VecSubf(vec1, v3, v2);
|
|
VecSubf(vec2, v1, v2);
|
|
Crossf(n, vec1, vec2);
|
|
len= Normalize(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
#define MAX2(x,y) ( (x)>(y) ? (x) : (y) )
|
|
#define MAX3(x,y,z) MAX2( MAX2((x),(y)) , (z) )
|
|
|
|
|
|
float AreaPoly3Dfl(int nr, float *verts, float *normal)
|
|
{
|
|
float x, y, z, area, max;
|
|
float *cur, *prev;
|
|
int a, px=0, py=1;
|
|
|
|
/* first: find dominant axis: 0==X, 1==Y, 2==Z */
|
|
x= (float)fabs(normal[0]);
|
|
y= (float)fabs(normal[1]);
|
|
z= (float)fabs(normal[2]);
|
|
max = MAX3(x, y, z);
|
|
if(max==y) py=2;
|
|
else if(max==x) {
|
|
px=1;
|
|
py= 2;
|
|
}
|
|
|
|
/* The Trapezium Area Rule */
|
|
prev= verts+3*(nr-1);
|
|
cur= verts;
|
|
area= 0;
|
|
for(a=0; a<nr; a++) {
|
|
area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
|
|
prev= cur;
|
|
cur+=3;
|
|
}
|
|
|
|
return (float)fabs(0.5*area/max);
|
|
}
|
|
|
|
/* intersect Line-Line, shorts */
|
|
short IsectLL2Ds(short *v1, short *v2, short *v3, short *v4)
|
|
{
|
|
/* return:
|
|
-1: colliniar
|
|
0: no intersection of segments
|
|
1: exact intersection of segments
|
|
2: cross-intersection of segments
|
|
*/
|
|
float div, labda, mu;
|
|
|
|
div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
|
|
if(div==0.0) return -1;
|
|
|
|
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
|
|
|
|
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
|
|
|
|
if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
|
|
if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
|
|
return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* intersect Line-Line, floats */
|
|
short IsectLL2Df(float *v1, float *v2, float *v3, float *v4)
|
|
{
|
|
/* return:
|
|
-1: colliniar
|
|
0: no intersection of segments
|
|
1: exact intersection of segments
|
|
2: cross-intersection of segments
|
|
*/
|
|
float div, labda, mu;
|
|
|
|
div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
|
|
if(div==0.0) return -1;
|
|
|
|
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
|
|
|
|
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
|
|
|
|
if(labda>=0.0 && labda<=1.0 && mu>=0.0 && mu<=1.0) {
|
|
if(labda==0.0 || labda==1.0 || mu==0.0 || mu==1.0) return 1;
|
|
return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
-1: colliniar
|
|
1: intersection
|
|
|
|
*/
|
|
short IsectLLPt2Df(float x0,float y0,float x1,float y1,
|
|
float x2,float y2,float x3,float y3, float *xi,float *yi)
|
|
|
|
{
|
|
/*
|
|
this function computes the intersection of the sent lines
|
|
and returns the intersection point, note that the function assumes
|
|
the lines intersect. the function can handle vertical as well
|
|
as horizontal lines. note the function isn't very clever, it simply
|
|
applies the math, but we don't need speed since this is a
|
|
pre-processing step
|
|
*/
|
|
float c1,c2, // constants of linear equations
|
|
det_inv, // the inverse of the determinant of the coefficient
|
|
m1,m2; // the slopes of each line
|
|
/*
|
|
compute slopes, note the cludge for infinity, however, this will
|
|
be close enough
|
|
*/
|
|
if ( fabs( x1-x0 ) > 0.000001 )
|
|
m1 = ( y1-y0 ) / ( x1-x0 );
|
|
else
|
|
return -1; /*m1 = ( float ) 1e+10;*/ // close enough to infinity
|
|
|
|
if ( fabs( x3-x2 ) > 0.000001 )
|
|
m2 = ( y3-y2 ) / ( x3-x2 );
|
|
else
|
|
return -1; /*m2 = ( float ) 1e+10;*/ // close enough to infinity
|
|
|
|
if (fabs(m1-m2) < 0.000001)
|
|
return -1; /* paralelle lines */
|
|
|
|
// compute constants
|
|
|
|
c1 = ( y0-m1*x0 );
|
|
c2 = ( y2-m2*x2 );
|
|
|
|
// compute the inverse of the determinate
|
|
|
|
det_inv = 1.0f / ( -m1 + m2 );
|
|
|
|
// use Kramers rule to compute xi and yi
|
|
|
|
*xi= ( ( -c2 + c1 ) *det_inv );
|
|
*yi= ( ( m2*c1 - m1*c2 ) *det_inv );
|
|
|
|
return 1;
|
|
} // end Intersect_Lines
|
|
|
|
#define SIDE_OF_LINE(pa,pb,pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
|
|
#define ISECT_EPSILON 1e-6
|
|
|
|
/* point in tri */
|
|
int IsectPT2Df(float pt[2], float v1[2], float v2[2], float v3[2])
|
|
{
|
|
if ((SIDE_OF_LINE(v1,v2,pt)>=-ISECT_EPSILON) &&
|
|
(SIDE_OF_LINE(v2,v3,pt)>=-ISECT_EPSILON) &&
|
|
(SIDE_OF_LINE(v3,v1,pt)>=-ISECT_EPSILON))
|
|
return 1;
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
/* point in quad - only convex quads */
|
|
int IsectPQ2Df(float pt[2], float v1[2], float v2[2], float v3[2], float v4[2])
|
|
{
|
|
if ((SIDE_OF_LINE(v1,v2,pt)>=-ISECT_EPSILON) &&
|
|
(SIDE_OF_LINE(v2,v3,pt)>=-ISECT_EPSILON) &&
|
|
(SIDE_OF_LINE(v3,v4,pt)>=-ISECT_EPSILON) &&
|
|
(SIDE_OF_LINE(v4,v1,pt)>=-ISECT_EPSILON))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/* copied from Geometry.c - todo - move to arithb.c or some other generic place we can reuse */
|
|
#define SIDE_OF_LINE(pa,pb,pp) ((pa[0]-pp[0])*(pb[1]-pp[1]))-((pb[0]-pp[0])*(pa[1]-pp[1]))
|
|
#define POINT_IN_TRI(p0,p1,p2,p3) ((SIDE_OF_LINE(p1,p2,p0)>=0) && (SIDE_OF_LINE(p2,p3,p0)>=0) && (SIDE_OF_LINE(p3,p1,p0)>=0))
|
|
|
|
/**
|
|
*
|
|
* @param min
|
|
* @param max
|
|
* @param vec
|
|
*/
|
|
void MinMax3(float *min, float *max, float *vec)
|
|
{
|
|
if(min[0]>vec[0]) min[0]= vec[0];
|
|
if(min[1]>vec[1]) min[1]= vec[1];
|
|
if(min[2]>vec[2]) min[2]= vec[2];
|
|
|
|
if(max[0]<vec[0]) max[0]= vec[0];
|
|
if(max[1]<vec[1]) max[1]= vec[1];
|
|
if(max[2]<vec[2]) max[2]= vec[2];
|
|
}
|
|
|
|
static float TriSignedArea(float *v1, float *v2, float *v3, int i, int j)
|
|
{
|
|
return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
|
|
}
|
|
|
|
static int BarycentricWeights(float *v1, float *v2, float *v3, float *co, float *n, float *w)
|
|
{
|
|
float xn, yn, zn, a1, a2, a3, asum;
|
|
short i, j;
|
|
|
|
/* find best projection of face XY, XZ or YZ: barycentric weights of
|
|
the 2d projected coords are the same and faster to compute */
|
|
xn= fabs(n[0]);
|
|
yn= fabs(n[1]);
|
|
zn= fabs(n[2]);
|
|
if(zn>=xn && zn>=yn) {i= 0; j= 1;}
|
|
else if(yn>=xn && yn>=zn) {i= 0; j= 2;}
|
|
else {i= 1; j= 2;}
|
|
|
|
a1= TriSignedArea(v2, v3, co, i, j);
|
|
a2= TriSignedArea(v3, v1, co, i, j);
|
|
a3= TriSignedArea(v1, v2, co, i, j);
|
|
|
|
asum= a1 + a2 + a3;
|
|
|
|
if (fabs(asum) < FLT_EPSILON) {
|
|
/* zero area triangle */
|
|
w[0]= w[1]= w[2]= 1.0f/3.0f;
|
|
return 1;
|
|
}
|
|
|
|
asum= 1.0f/asum;
|
|
w[0]= a1*asum;
|
|
w[1]= a2*asum;
|
|
w[2]= a3*asum;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void InterpWeightsQ3Dfl(float *v1, float *v2, float *v3, float *v4, float *co, float *w)
|
|
{
|
|
float w2[3];
|
|
|
|
w[0]= w[1]= w[2]= w[3]= 0.0f;
|
|
|
|
/* first check for exact match */
|
|
if(VecEqual(co, v1))
|
|
w[0]= 1.0f;
|
|
else if(VecEqual(co, v2))
|
|
w[1]= 1.0f;
|
|
else if(VecEqual(co, v3))
|
|
w[2]= 1.0f;
|
|
else if(v4 && VecEqual(co, v4))
|
|
w[3]= 1.0f;
|
|
else {
|
|
/* otherwise compute barycentric interpolation weights */
|
|
float n1[3], n2[3], n[3];
|
|
int degenerate;
|
|
|
|
VecSubf(n1, v1, v3);
|
|
if (v4) {
|
|
VecSubf(n2, v2, v4);
|
|
}
|
|
else {
|
|
VecSubf(n2, v2, v3);
|
|
}
|
|
Crossf(n, n1, n2);
|
|
|
|
/* OpenGL seems to split this way, so we do too */
|
|
if (v4) {
|
|
degenerate= BarycentricWeights(v1, v2, v4, co, n, w);
|
|
SWAP(float, w[2], w[3]);
|
|
|
|
if(degenerate || (w[0] < 0.0f)) {
|
|
/* if w[1] is negative, co is on the other side of the v1-v3 edge,
|
|
so we interpolate using the other triangle */
|
|
degenerate= BarycentricWeights(v2, v3, v4, co, n, w2);
|
|
|
|
if(!degenerate) {
|
|
w[0]= 0.0f;
|
|
w[1]= w2[0];
|
|
w[2]= w2[1];
|
|
w[3]= w2[2];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
BarycentricWeights(v1, v2, v3, co, n, w);
|
|
}
|
|
}
|
|
|
|
/* Mean value weights - smooth interpolation weights for polygons with
|
|
* more than 3 vertices */
|
|
static float MeanValueHalfTan(float *v1, float *v2, float *v3)
|
|
{
|
|
float d2[3], d3[3], cross[3], area, dot, len;
|
|
|
|
VecSubf(d2, v2, v1);
|
|
VecSubf(d3, v3, v1);
|
|
Crossf(cross, d2, d3);
|
|
|
|
area= VecLength(cross);
|
|
dot= Inpf(d2, d3);
|
|
len= VecLength(d2)*VecLength(d3);
|
|
|
|
if(area == 0.0f)
|
|
return 0.0f;
|
|
else
|
|
return (len - dot)/area;
|
|
}
|
|
|
|
void MeanValueWeights(float v[][3], int n, float *co, float *w)
|
|
{
|
|
float totweight, t1, t2, len, *vmid, *vprev, *vnext;
|
|
int i;
|
|
|
|
totweight= 0.0f;
|
|
|
|
for(i=0; i<n; i++) {
|
|
vmid= v[i];
|
|
vprev= (i == 0)? v[n-1]: v[i-1];
|
|
vnext= (i == n-1)? v[0]: v[i+1];
|
|
|
|
t1= MeanValueHalfTan(co, vprev, vmid);
|
|
t2= MeanValueHalfTan(co, vmid, vnext);
|
|
|
|
len= VecLenf(co, vmid);
|
|
w[i]= (t1+t2)/len;
|
|
totweight += w[i];
|
|
}
|
|
|
|
if(totweight != 0.0f)
|
|
for(i=0; i<n; i++)
|
|
w[i] /= totweight;
|
|
}
|
|
|
|
|
|
/* ************ EULER *************** */
|
|
|
|
void EulToMat3( float *eul, float mat[][3])
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
}
|
|
|
|
void EulToMat4( float *eul,float mat[][4])
|
|
{
|
|
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ci = cos(eul[0]);
|
|
cj = cos(eul[1]);
|
|
ch = cos(eul[2]);
|
|
si = sin(eul[0]);
|
|
sj = sin(eul[1]);
|
|
sh = sin(eul[2]);
|
|
cc = ci*ch;
|
|
cs = ci*sh;
|
|
sc = si*ch;
|
|
ss = si*sh;
|
|
|
|
mat[0][0] = (float)(cj*ch);
|
|
mat[1][0] = (float)(sj*sc-cs);
|
|
mat[2][0] = (float)(sj*cc+ss);
|
|
mat[0][1] = (float)(cj*sh);
|
|
mat[1][1] = (float)(sj*ss+cc);
|
|
mat[2][1] = (float)(sj*cs-sc);
|
|
mat[0][2] = (float)-sj;
|
|
mat[1][2] = (float)(cj*si);
|
|
mat[2][2] = (float)(cj*ci);
|
|
|
|
|
|
mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f;
|
|
mat[3][3]= 1.0f;
|
|
}
|
|
|
|
/* returns two euler calculation methods, so we can pick the best */
|
|
static void mat3_to_eul2(float tmat[][3], float *eul1, float *eul2)
|
|
{
|
|
float cy, quat[4], mat[3][3];
|
|
|
|
Mat3ToQuat(tmat, quat);
|
|
QuatToMat3(quat, mat);
|
|
Mat3CpyMat3(mat, tmat);
|
|
Mat3Ortho(mat);
|
|
|
|
cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]);
|
|
|
|
if (cy > 16.0*FLT_EPSILON) {
|
|
|
|
eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
|
|
eul1[1] = (float)atan2(-mat[0][2], cy);
|
|
eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
|
|
|
|
eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
|
|
eul2[1] = (float)atan2(-mat[0][2], -cy);
|
|
eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
|
|
|
|
} else {
|
|
eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
|
|
eul1[1] = (float)atan2(-mat[0][2], cy);
|
|
eul1[2] = 0.0f;
|
|
|
|
VecCopyf(eul2, eul1);
|
|
}
|
|
}
|
|
|
|
void Mat3ToEul(float tmat[][3], float *eul)
|
|
{
|
|
float eul1[3], eul2[3];
|
|
|
|
mat3_to_eul2(tmat, eul1, eul2);
|
|
|
|
/* return best, which is just the one with lowest values it in */
|
|
if( fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) {
|
|
VecCopyf(eul, eul2);
|
|
}
|
|
else {
|
|
VecCopyf(eul, eul1);
|
|
}
|
|
}
|
|
|
|
void Mat4ToEul(float tmat[][4], float *eul)
|
|
{
|
|
float tempMat[3][3];
|
|
|
|
Mat3CpyMat4 (tempMat, tmat);
|
|
Mat3Ortho(tempMat);
|
|
Mat3ToEul(tempMat, eul);
|
|
}
|
|
|
|
void QuatToEul( float *quat, float *eul)
|
|
{
|
|
float mat[3][3];
|
|
|
|
QuatToMat3(quat, mat);
|
|
Mat3ToEul(mat, eul);
|
|
}
|
|
|
|
|
|
void EulToQuat( float *eul, float *quat)
|
|
{
|
|
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
|
|
|
|
ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f;
|
|
ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th);
|
|
si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th);
|
|
cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh;
|
|
|
|
quat[0] = cj*cc + sj*ss;
|
|
quat[1] = cj*sc - sj*cs;
|
|
quat[2] = cj*ss + sj*cc;
|
|
quat[3] = cj*cs - sj*sc;
|
|
}
|
|
|
|
void VecRotToMat3( float *vec, float phi, float mat[][3])
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float vx, vx2, vy, vy2, vz, vz2, co, si;
|
|
|
|
vx= vec[0];
|
|
vy= vec[1];
|
|
vz= vec[2];
|
|
vx2= vx*vx;
|
|
vy2= vy*vy;
|
|
vz2= vz*vz;
|
|
co= (float)cos(phi);
|
|
si= (float)sin(phi);
|
|
|
|
mat[0][0]= vx2+co*(1.0f-vx2);
|
|
mat[0][1]= vx*vy*(1.0f-co)+vz*si;
|
|
mat[0][2]= vz*vx*(1.0f-co)-vy*si;
|
|
mat[1][0]= vx*vy*(1.0f-co)-vz*si;
|
|
mat[1][1]= vy2+co*(1.0f-vy2);
|
|
mat[1][2]= vy*vz*(1.0f-co)+vx*si;
|
|
mat[2][0]= vz*vx*(1.0f-co)+vy*si;
|
|
mat[2][1]= vy*vz*(1.0f-co)-vx*si;
|
|
mat[2][2]= vz2+co*(1.0f-vz2);
|
|
|
|
}
|
|
|
|
void VecRotToMat4( float *vec, float phi, float mat[][4])
|
|
{
|
|
float tmat[3][3];
|
|
|
|
VecRotToMat3(vec, phi, tmat);
|
|
Mat4One(mat);
|
|
Mat4CpyMat3(mat, tmat);
|
|
}
|
|
|
|
void VecRotToQuat( float *vec, float phi, float *quat)
|
|
{
|
|
/* rotation of phi radials around vec */
|
|
float si;
|
|
|
|
quat[1]= vec[0];
|
|
quat[2]= vec[1];
|
|
quat[3]= vec[2];
|
|
|
|
if( Normalize(quat+1) == 0.0) {
|
|
QuatOne(quat);
|
|
}
|
|
else {
|
|
quat[0]= (float)cos( phi/2.0 );
|
|
si= (float)sin( phi/2.0 );
|
|
quat[1] *= si;
|
|
quat[2] *= si;
|
|
quat[3] *= si;
|
|
}
|
|
}
|
|
|
|
/* Return the angle in degrees between vecs 1-2 and 2-3 in degrees
|
|
If v1 is a shoulder, v2 is the elbow and v3 is the hand,
|
|
this would return the angle at the elbow */
|
|
float VecAngle3(float *v1, float *v2, float *v3)
|
|
{
|
|
float vec1[3], vec2[3];
|
|
|
|
VecSubf(vec1, v2, v1);
|
|
VecSubf(vec2, v2, v3);
|
|
Normalize(vec1);
|
|
Normalize(vec2);
|
|
|
|
return NormalizedVecAngle2(vec1, vec2) * 180.0/M_PI;
|
|
}
|
|
|
|
/* Return the shortest angle in degrees between the 2 vectors */
|
|
float VecAngle2(float *v1, float *v2)
|
|
{
|
|
float vec1[3], vec2[3];
|
|
|
|
VecCopyf(vec1, v1);
|
|
VecCopyf(vec2, v2);
|
|
Normalize(vec1);
|
|
Normalize(vec2);
|
|
|
|
return NormalizedVecAngle2(vec1, vec2)* 180.0/M_PI;
|
|
}
|
|
|
|
float NormalizedVecAngle2(float *v1, float *v2)
|
|
{
|
|
/* this is the same as acos(Inpf(v1, v2)), but more accurate */
|
|
if (Inpf(v1, v2) < 0.0f) {
|
|
float vec[3];
|
|
|
|
vec[0]= -v2[0];
|
|
vec[1]= -v2[1];
|
|
vec[2]= -v2[2];
|
|
|
|
return (float)M_PI - 2.0f*saasin(VecLenf(vec, v1)/2.0f);
|
|
}
|
|
else
|
|
return 2.0f*saasin(VecLenf(v2, v1)/2.0);
|
|
}
|
|
|
|
void euler_rot(float *beul, float ang, char axis)
|
|
{
|
|
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
|
|
|
|
eul[0]= eul[1]= eul[2]= 0.0;
|
|
if(axis=='x') eul[0]= ang;
|
|
else if(axis=='y') eul[1]= ang;
|
|
else eul[2]= ang;
|
|
|
|
EulToMat3(eul, mat1);
|
|
EulToMat3(beul, mat2);
|
|
|
|
Mat3MulMat3(totmat, mat2, mat1);
|
|
|
|
Mat3ToEul(totmat, beul);
|
|
|
|
}
|
|
|
|
/* exported to transform.c */
|
|
void compatible_eul(float *eul, float *oldrot)
|
|
{
|
|
float dx, dy, dz;
|
|
|
|
/* correct differences of about 360 degrees first */
|
|
|
|
dx= eul[0] - oldrot[0];
|
|
dy= eul[1] - oldrot[1];
|
|
dz= eul[2] - oldrot[2];
|
|
|
|
while( fabs(dx) > 5.1) {
|
|
if(dx > 0.0) eul[0] -= 2.0*M_PI; else eul[0]+= 2.0*M_PI;
|
|
dx= eul[0] - oldrot[0];
|
|
}
|
|
while( fabs(dy) > 5.1) {
|
|
if(dy > 0.0) eul[1] -= 2.0*M_PI; else eul[1]+= 2.0*M_PI;
|
|
dy= eul[1] - oldrot[1];
|
|
}
|
|
while( fabs(dz) > 5.1 ) {
|
|
if(dz > 0.0) eul[2] -= 2.0*M_PI; else eul[2]+= 2.0*M_PI;
|
|
dz= eul[2] - oldrot[2];
|
|
}
|
|
|
|
/* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
|
|
if( fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6 ) {
|
|
if(dx > 0.0) eul[0] -= 2.0*M_PI; else eul[0]+= 2.0*M_PI;
|
|
}
|
|
if( fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6 ) {
|
|
if(dy > 0.0) eul[1] -= 2.0*M_PI; else eul[1]+= 2.0*M_PI;
|
|
}
|
|
if( fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6 ) {
|
|
if(dz > 0.0) eul[2] -= 2.0*M_PI; else eul[2]+= 2.0*M_PI;
|
|
}
|
|
|
|
/* the method below was there from ancient days... but why! probably because the code sucks :)
|
|
*/
|
|
#if 0
|
|
/* calc again */
|
|
dx= eul[0] - oldrot[0];
|
|
dy= eul[1] - oldrot[1];
|
|
dz= eul[2] - oldrot[2];
|
|
|
|
/* special case, tested for x-z */
|
|
|
|
if( (fabs(dx) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dz) > 3.1 ) ) {
|
|
if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
|
|
if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1];
|
|
if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
|
|
|
|
}
|
|
else if( (fabs(dx) > 3.1 && fabs(dy) > 1.5 ) || ( fabs(dx) > 1.5 && fabs(dy) > 3.1 ) ) {
|
|
if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI;
|
|
if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
|
|
if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2];
|
|
}
|
|
else if( (fabs(dy) > 3.1 && fabs(dz) > 1.5 ) || ( fabs(dy) > 1.5 && fabs(dz) > 3.1 ) ) {
|
|
if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0];
|
|
if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI;
|
|
if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* uses 2 methods to retrieve eulers, and picks the closest */
|
|
void Mat3ToCompatibleEul(float mat[][3], float *eul, float *oldrot)
|
|
{
|
|
float eul1[3], eul2[3];
|
|
float d1, d2;
|
|
|
|
mat3_to_eul2(mat, eul1, eul2);
|
|
|
|
compatible_eul(eul1, oldrot);
|
|
compatible_eul(eul2, oldrot);
|
|
|
|
d1= fabs(eul1[0]-oldrot[0]) + fabs(eul1[1]-oldrot[1]) + fabs(eul1[2]-oldrot[2]);
|
|
d2= fabs(eul2[0]-oldrot[0]) + fabs(eul2[1]-oldrot[1]) + fabs(eul2[2]-oldrot[2]);
|
|
|
|
/* return best, which is just the one with lowest difference */
|
|
if( d1 > d2) {
|
|
VecCopyf(eul, eul2);
|
|
}
|
|
else {
|
|
VecCopyf(eul, eul1);
|
|
}
|
|
|
|
}
|
|
|
|
/* ******************************************** */
|
|
|
|
void SizeToMat3( float *size, float mat[][3])
|
|
{
|
|
mat[0][0]= size[0];
|
|
mat[0][1]= 0.0;
|
|
mat[0][2]= 0.0;
|
|
mat[1][1]= size[1];
|
|
mat[1][0]= 0.0;
|
|
mat[1][2]= 0.0;
|
|
mat[2][2]= size[2];
|
|
mat[2][1]= 0.0;
|
|
mat[2][0]= 0.0;
|
|
}
|
|
|
|
void SizeToMat4( float *size, float mat[][4])
|
|
{
|
|
float tmat[3][3];
|
|
|
|
SizeToMat3(size, tmat);
|
|
Mat4One(mat);
|
|
Mat4CpyMat3(mat, tmat);
|
|
}
|
|
|
|
void Mat3ToSize( float mat[][3], float *size)
|
|
{
|
|
size[0]= VecLength(mat[0]);
|
|
size[1]= VecLength(mat[1]);
|
|
size[2]= VecLength(mat[2]);
|
|
}
|
|
|
|
void Mat4ToSize( float mat[][4], float *size)
|
|
{
|
|
size[0]= VecLength(mat[0]);
|
|
size[1]= VecLength(mat[1]);
|
|
size[2]= VecLength(mat[2]);
|
|
}
|
|
|
|
/* this gets the average scale of a matrix, only use when your scaling
|
|
* data that has no idea of scale axis, examples are bone-envelope-radius
|
|
* and curve radius */
|
|
float Mat3ToScalef(float mat[][3])
|
|
{
|
|
/* unit length vector */
|
|
float unit_vec[3] = {0.577350269189626, 0.577350269189626, 0.577350269189626};
|
|
Mat3MulVecfl(mat, unit_vec);
|
|
return VecLength(unit_vec);
|
|
}
|
|
|
|
float Mat4ToScalef(float mat[][4])
|
|
{
|
|
float tmat[3][3];
|
|
Mat3CpyMat4(tmat, mat);
|
|
return Mat3ToScalef(tmat);
|
|
}
|
|
|
|
|
|
/* ************* SPECIALS ******************* */
|
|
|
|
void triatoquat( float *v1, float *v2, float *v3, float *quat)
|
|
{
|
|
/* imaginary x-axis, y-axis triangle is being rotated */
|
|
float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
|
|
|
|
/* move z-axis to face-normal */
|
|
CalcNormFloat(v1, v2, v3, vec);
|
|
|
|
n[0]= vec[1];
|
|
n[1]= -vec[0];
|
|
n[2]= 0.0;
|
|
Normalize(n);
|
|
|
|
if(n[0]==0.0 && n[1]==0.0) n[0]= 1.0;
|
|
|
|
angle= -0.5f*saacos(vec[2]);
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q1[0]= co;
|
|
q1[1]= n[0]*si;
|
|
q1[2]= n[1]*si;
|
|
q1[3]= 0.0f;
|
|
|
|
/* rotate back line v1-v2 */
|
|
QuatToMat3(q1, mat);
|
|
Mat3Inv(imat, mat);
|
|
VecSubf(vec, v2, v1);
|
|
Mat3MulVecfl(imat, vec);
|
|
|
|
/* what angle has this line with x-axis? */
|
|
vec[2]= 0.0;
|
|
Normalize(vec);
|
|
|
|
angle= (float)(0.5*atan2(vec[1], vec[0]));
|
|
co= (float)cos(angle);
|
|
si= (float)sin(angle);
|
|
q2[0]= co;
|
|
q2[1]= 0.0f;
|
|
q2[2]= 0.0f;
|
|
q2[3]= si;
|
|
|
|
QuatMul(quat, q1, q2);
|
|
}
|
|
|
|
void MinMaxRGB(short c[])
|
|
{
|
|
if(c[0]>255) c[0]=255;
|
|
else if(c[0]<0) c[0]=0;
|
|
if(c[1]>255) c[1]=255;
|
|
else if(c[1]<0) c[1]=0;
|
|
if(c[2]>255) c[2]=255;
|
|
else if(c[2]<0) c[2]=0;
|
|
}
|
|
|
|
float Vec2Lenf(float *v1, float *v2)
|
|
{
|
|
float x, y;
|
|
|
|
x = v1[0]-v2[0];
|
|
y = v1[1]-v2[1];
|
|
return (float)sqrt(x*x+y*y);
|
|
}
|
|
|
|
float Vec2Length(float *v)
|
|
{
|
|
return (float)sqrt(v[0]*v[0] + v[1]*v[1]);
|
|
}
|
|
|
|
void Vec2Mulf(float *v1, float f)
|
|
{
|
|
v1[0]*= f;
|
|
v1[1]*= f;
|
|
}
|
|
|
|
void Vec2Addf(float *v, float *v1, float *v2)
|
|
{
|
|
v[0]= v1[0]+ v2[0];
|
|
v[1]= v1[1]+ v2[1];
|
|
}
|
|
|
|
void Vec2Subf(float *v, float *v1, float *v2)
|
|
{
|
|
v[0]= v1[0]- v2[0];
|
|
v[1]= v1[1]- v2[1];
|
|
}
|
|
|
|
void Vec2Copyf(float *v1, float *v2)
|
|
{
|
|
v1[0]= v2[0];
|
|
v1[1]= v2[1];
|
|
}
|
|
|
|
float Inp2f(float *v1, float *v2)
|
|
{
|
|
return v1[0]*v2[0]+v1[1]*v2[1];
|
|
}
|
|
|
|
float Normalize2(float *n)
|
|
{
|
|
float d;
|
|
|
|
d= n[0]*n[0]+n[1]*n[1];
|
|
|
|
if(d>1.0e-35F) {
|
|
d= (float)sqrt(d);
|
|
|
|
n[0]/=d;
|
|
n[1]/=d;
|
|
} else {
|
|
n[0]=n[1]= 0.0;
|
|
d= 0.0;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
void hsv_to_rgb(float h, float s, float v, float *r, float *g, float *b)
|
|
{
|
|
int i;
|
|
float f, p, q, t;
|
|
|
|
h *= 360.0f;
|
|
|
|
if(s==0.0) {
|
|
*r = v;
|
|
*g = v;
|
|
*b = v;
|
|
}
|
|
else {
|
|
if(h==360) h = 0;
|
|
|
|
h /= 60;
|
|
i = (int)floor(h);
|
|
f = h - i;
|
|
p = v*(1.0f-s);
|
|
q = v*(1.0f-(s*f));
|
|
t = v*(1.0f-(s*(1.0f-f)));
|
|
|
|
switch (i) {
|
|
case 0 :
|
|
*r = v;
|
|
*g = t;
|
|
*b = p;
|
|
break;
|
|
case 1 :
|
|
*r = q;
|
|
*g = v;
|
|
*b = p;
|
|
break;
|
|
case 2 :
|
|
*r = p;
|
|
*g = v;
|
|
*b = t;
|
|
break;
|
|
case 3 :
|
|
*r = p;
|
|
*g = q;
|
|
*b = v;
|
|
break;
|
|
case 4 :
|
|
*r = t;
|
|
*g = p;
|
|
*b = v;
|
|
break;
|
|
case 5 :
|
|
*r = v;
|
|
*g = p;
|
|
*b = q;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void rgb_to_yuv(float r, float g, float b, float *ly, float *lu, float *lv)
|
|
{
|
|
float y, u, v;
|
|
y= 0.299*r + 0.587*g + 0.114*b;
|
|
u=-0.147*r - 0.289*g + 0.436*b;
|
|
v= 0.615*r - 0.515*g - 0.100*b;
|
|
|
|
*ly=y;
|
|
*lu=u;
|
|
*lv=v;
|
|
}
|
|
|
|
void yuv_to_rgb(float y, float u, float v, float *lr, float *lg, float *lb)
|
|
{
|
|
float r, g, b;
|
|
r=y+1.140*v;
|
|
g=y-0.394*u - 0.581*v;
|
|
b=y+2.032*u;
|
|
|
|
*lr=r;
|
|
*lg=g;
|
|
*lb=b;
|
|
}
|
|
|
|
void rgb_to_ycc(float r, float g, float b, float *ly, float *lcb, float *lcr)
|
|
{
|
|
float sr,sg, sb;
|
|
float y, cr, cb;
|
|
|
|
sr=255.0*r;
|
|
sg=255.0*g;
|
|
sb=255.0*b;
|
|
|
|
|
|
y=(0.257*sr)+(0.504*sg)+(0.098*sb)+16.0;
|
|
cb=(-0.148*sr)-(0.291*sg)+(0.439*sb)+128.0;
|
|
cr=(0.439*sr)-(0.368*sg)-(0.071*sb)+128.0;
|
|
|
|
*ly=y;
|
|
*lcb=cb;
|
|
*lcr=cr;
|
|
}
|
|
|
|
void ycc_to_rgb(float y, float cb, float cr, float *lr, float *lg, float *lb)
|
|
{
|
|
float r,g,b;
|
|
|
|
r=1.164*(y-16)+1.596*(cr-128);
|
|
g=1.164*(y-16)-0.813*(cr-128)-0.392*(cb-128);
|
|
b=1.164*(y-16)+2.017*(cb-128);
|
|
|
|
*lr=r/255.0;
|
|
*lg=g/255.0;
|
|
*lb=b/255.0;
|
|
}
|
|
|
|
void hex_to_rgb(char *hexcol, float *r, float *g, float *b)
|
|
{
|
|
unsigned int ri, gi, bi;
|
|
|
|
if (hexcol[0] == '#') hexcol++;
|
|
|
|
if (sscanf(hexcol, "%02x%02x%02x", &ri, &gi, &bi)) {
|
|
*r = ri / 255.0;
|
|
*g = gi / 255.0;
|
|
*b = bi / 255.0;
|
|
}
|
|
}
|
|
|
|
void rgb_to_hsv(float r, float g, float b, float *lh, float *ls, float *lv)
|
|
{
|
|
float h, s, v;
|
|
float cmax, cmin, cdelta;
|
|
float rc, gc, bc;
|
|
|
|
cmax = r;
|
|
cmin = r;
|
|
cmax = (g>cmax ? g:cmax);
|
|
cmin = (g<cmin ? g:cmin);
|
|
cmax = (b>cmax ? b:cmax);
|
|
cmin = (b<cmin ? b:cmin);
|
|
|
|
v = cmax; /* value */
|
|
if (cmax!=0.0)
|
|
s = (cmax - cmin)/cmax;
|
|
else {
|
|
s = 0.0;
|
|
h = 0.0;
|
|
}
|
|
if (s == 0.0)
|
|
h = -1.0;
|
|
else {
|
|
cdelta = cmax-cmin;
|
|
rc = (cmax-r)/cdelta;
|
|
gc = (cmax-g)/cdelta;
|
|
bc = (cmax-b)/cdelta;
|
|
if (r==cmax)
|
|
h = bc-gc;
|
|
else
|
|
if (g==cmax)
|
|
h = 2.0f+rc-bc;
|
|
else
|
|
h = 4.0f+gc-rc;
|
|
h = h*60.0f;
|
|
if (h<0.0f)
|
|
h += 360.0f;
|
|
}
|
|
|
|
*ls = s;
|
|
*lh = h/360.0f;
|
|
if( *lh < 0.0) *lh= 0.0;
|
|
*lv = v;
|
|
}
|
|
|
|
|
|
/* we define a 'cpack' here as a (3 byte color code) number that can be expressed like 0xFFAA66 or so.
|
|
for that reason it is sensitive for endianness... with this function it works correctly
|
|
*/
|
|
|
|
unsigned int hsv_to_cpack(float h, float s, float v)
|
|
{
|
|
short r, g, b;
|
|
float rf, gf, bf;
|
|
unsigned int col;
|
|
|
|
hsv_to_rgb(h, s, v, &rf, &gf, &bf);
|
|
|
|
r= (short)(rf*255.0f);
|
|
g= (short)(gf*255.0f);
|
|
b= (short)(bf*255.0f);
|
|
|
|
col= ( r + (g*256) + (b*256*256) );
|
|
return col;
|
|
}
|
|
|
|
|
|
unsigned int rgb_to_cpack(float r, float g, float b)
|
|
{
|
|
int ir, ig, ib;
|
|
|
|
ir= (int)floor(255.0*r);
|
|
if(ir<0) ir= 0; else if(ir>255) ir= 255;
|
|
ig= (int)floor(255.0*g);
|
|
if(ig<0) ig= 0; else if(ig>255) ig= 255;
|
|
ib= (int)floor(255.0*b);
|
|
if(ib<0) ib= 0; else if(ib>255) ib= 255;
|
|
|
|
return (ir+ (ig*256) + (ib*256*256));
|
|
}
|
|
|
|
void cpack_to_rgb(unsigned int col, float *r, float *g, float *b)
|
|
{
|
|
|
|
*r= (float)((col)&0xFF);
|
|
*r /= 255.0f;
|
|
|
|
*g= (float)(((col)>>8)&0xFF);
|
|
*g /= 255.0f;
|
|
|
|
*b= (float)(((col)>>16)&0xFF);
|
|
*b /= 255.0f;
|
|
}
|
|
|
|
|
|
/* *************** PROJECTIONS ******************* */
|
|
|
|
void tubemap(float x, float y, float z, float *u, float *v)
|
|
{
|
|
float len;
|
|
|
|
*v = (z + 1.0) / 2.0;
|
|
|
|
len= sqrt(x*x+y*y);
|
|
if(len>0) {
|
|
*u = (1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0;
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
void spheremap(float x, float y, float z, float *u, float *v)
|
|
{
|
|
float len;
|
|
|
|
len= sqrt(x*x+y*y+z*z);
|
|
if(len>0.0) {
|
|
|
|
if(x==0.0 && y==0.0) *u= 0.0; /* othwise domain error */
|
|
else *u = (1.0 - atan2(x,y)/M_PI )/2.0;
|
|
|
|
z/=len;
|
|
*v = 1.0- saacos(z)/M_PI;
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* ***************** m1 = m2 ***************** */
|
|
void cpy_m3_m3(float m1[][3], float m2[][3])
|
|
{
|
|
memcpy(m1[0], m2[0], 9*sizeof(float));
|
|
}
|
|
|
|
/* ***************** m1 = m2 ***************** */
|
|
void cpy_m4_m4(float m1[][4], float m2[][4])
|
|
{
|
|
memcpy(m1[0], m2[0], 16*sizeof(float));
|
|
}
|
|
|
|
/* ***************** identity matrix ***************** */
|
|
void ident_m4(float m[][4])
|
|
{
|
|
|
|
m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
|
|
m[0][1]= m[0][2]= m[0][3]= 0.0;
|
|
m[1][0]= m[1][2]= m[1][3]= 0.0;
|
|
m[2][0]= m[2][1]= m[2][3]= 0.0;
|
|
m[3][0]= m[3][1]= m[3][2]= 0.0;
|
|
}
|
|
|
|
|
|
/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
|
|
void mul_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
|
|
{
|
|
float m[3][3];
|
|
|
|
m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2];
|
|
m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2];
|
|
m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2];
|
|
|
|
m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2];
|
|
m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2];
|
|
m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2];
|
|
|
|
m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2];
|
|
m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2];
|
|
m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2];
|
|
|
|
cpy_m3_m3(m1, m2);
|
|
}
|
|
|
|
/* ***************** m1 = m2 (pre) * m3 (post) ***************** */
|
|
void mul_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
|
|
{
|
|
float m[4][4];
|
|
|
|
m[0][0]= m2[0][0]*m3[0][0] + m2[1][0]*m3[0][1] + m2[2][0]*m3[0][2] + m2[3][0]*m3[0][3];
|
|
m[0][1]= m2[0][1]*m3[0][0] + m2[1][1]*m3[0][1] + m2[2][1]*m3[0][2] + m2[3][1]*m3[0][3];
|
|
m[0][2]= m2[0][2]*m3[0][0] + m2[1][2]*m3[0][1] + m2[2][2]*m3[0][2] + m2[3][2]*m3[0][3];
|
|
m[0][3]= m2[0][3]*m3[0][0] + m2[1][3]*m3[0][1] + m2[2][3]*m3[0][2] + m2[3][3]*m3[0][3];
|
|
|
|
m[1][0]= m2[0][0]*m3[1][0] + m2[1][0]*m3[1][1] + m2[2][0]*m3[1][2] + m2[3][0]*m3[1][3];
|
|
m[1][1]= m2[0][1]*m3[1][0] + m2[1][1]*m3[1][1] + m2[2][1]*m3[1][2] + m2[3][1]*m3[1][3];
|
|
m[1][2]= m2[0][2]*m3[1][0] + m2[1][2]*m3[1][1] + m2[2][2]*m3[1][2] + m2[3][2]*m3[1][3];
|
|
m[1][3]= m2[0][3]*m3[1][0] + m2[1][3]*m3[1][1] + m2[2][3]*m3[1][2] + m2[3][3]*m3[1][3];
|
|
|
|
m[2][0]= m2[0][0]*m3[2][0] + m2[1][0]*m3[2][1] + m2[2][0]*m3[2][2] + m2[3][0]*m3[2][3];
|
|
m[2][1]= m2[0][1]*m3[2][0] + m2[1][1]*m3[2][1] + m2[2][1]*m3[2][2] + m2[3][1]*m3[2][3];
|
|
m[2][2]= m2[0][2]*m3[2][0] + m2[1][2]*m3[2][1] + m2[2][2]*m3[2][2] + m2[3][2]*m3[2][3];
|
|
m[2][3]= m2[0][3]*m3[2][0] + m2[1][3]*m3[2][1] + m2[2][3]*m3[2][2] + m2[3][3]*m3[2][3];
|
|
|
|
m[3][0]= m2[0][0]*m3[3][0] + m2[1][0]*m3[3][1] + m2[2][0]*m3[3][2] + m2[3][0]*m3[3][3];
|
|
m[3][1]= m2[0][1]*m3[3][0] + m2[1][1]*m3[3][1] + m2[2][1]*m3[3][2] + m2[3][1]*m3[3][3];
|
|
m[3][2]= m2[0][2]*m3[3][0] + m2[1][2]*m3[3][1] + m2[2][2]*m3[3][2] + m2[3][2]*m3[3][3];
|
|
m[3][3]= m2[0][3]*m3[3][0] + m2[1][3]*m3[3][1] + m2[2][3]*m3[3][2] + m2[3][3]*m3[3][3];
|
|
|
|
cpy_m4_m4(m1, m2);
|
|
}
|
|
|
|
/* ***************** m1 = inverse(m2) ***************** */
|
|
void inv_m3_m3(float m1[][3], float m2[][3])
|
|
{
|
|
short a,b;
|
|
float det;
|
|
|
|
/* calc adjoint */
|
|
Mat3Adj(m1, m2);
|
|
|
|
/* then determinant old matrix! */
|
|
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
|
|
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
|
|
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
|
|
|
|
if(det==0.0f) det=1.0f;
|
|
det= 1.0f/det;
|
|
for(a=0;a<3;a++) {
|
|
for(b=0;b<3;b++) {
|
|
m1[a][b]*=det;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ***************** m1 = inverse(m2) ***************** */
|
|
int inv_m4_m4(float inverse[][4], float mat[][4])
|
|
{
|
|
int i, j, k;
|
|
double temp;
|
|
float tempmat[4][4];
|
|
float max;
|
|
int maxj;
|
|
|
|
/* Set inverse to identity */
|
|
ident_m4(inverse);
|
|
|
|
/* Copy original matrix so we don't mess it up */
|
|
cpy_m4_m4(tempmat, mat);
|
|
|
|
for(i = 0; i < 4; i++) {
|
|
/* Look for row with max pivot */
|
|
max = ABS(tempmat[i][i]);
|
|
maxj = i;
|
|
for(j = i + 1; j < 4; j++) {
|
|
if(ABS(tempmat[j][i]) > max) {
|
|
max = ABS(tempmat[j][i]);
|
|
maxj = j;
|
|
}
|
|
}
|
|
/* Swap rows if necessary */
|
|
if (maxj != i) {
|
|
for( k = 0; k < 4; k++) {
|
|
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
|
|
SWAP(float, inverse[i][k], inverse[maxj][k]);
|
|
}
|
|
}
|
|
|
|
temp = tempmat[i][i];
|
|
if (temp == 0)
|
|
return 0; /* No non-zero pivot */
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[i][k] = (float)(tempmat[i][k]/temp);
|
|
inverse[i][k] = (float)(inverse[i][k]/temp);
|
|
}
|
|
for(j = 0; j < 4; j++) {
|
|
if(j != i) {
|
|
temp = tempmat[j][i];
|
|
for(k = 0; k < 4; k++) {
|
|
tempmat[j][k] -= (float)(tempmat[i][k]*temp);
|
|
inverse[j][k] -= (float)(inverse[i][k]*temp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* ***************** v1 = v2 * mat ***************** */
|
|
void mul_v3_v3m4(float *v1, float *v2, float mat[][4])
|
|
{
|
|
float x, y;
|
|
|
|
x= v2[0]; /* work with a copy, v1 can be same as v2 */
|
|
y= v2[1];
|
|
v1[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*v2[2] + mat[3][0];
|
|
v1[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*v2[2] + mat[3][1];
|
|
v1[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*v2[2] + mat[3][2];
|
|
|
|
}
|
|
|
|
/* moved from effect.c
|
|
test if the line starting at p1 ending at p2 intersects the triangle v0..v2
|
|
return non zero if it does
|
|
*/
|
|
int LineIntersectsTriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda, float *uv)
|
|
{
|
|
|
|
float p[3], s[3], d[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
|
|
VecSubf(e1, v1, v0);
|
|
VecSubf(e2, v2, v0);
|
|
VecSubf(d, p2, p1);
|
|
|
|
Crossf(p, d, e2);
|
|
a = Inpf(e1, p);
|
|
if ((a > -0.000001) && (a < 0.000001)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
VecSubf(s, p1, v0);
|
|
|
|
Crossf(q, s, e1);
|
|
*lambda = f * Inpf(e2, q);
|
|
if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
|
|
|
|
u = f * Inpf(s, p);
|
|
if ((u < 0.0)||(u > 1.0)) return 0;
|
|
|
|
v = f * Inpf(d, q);
|
|
if ((v < 0.0)||((u + v) > 1.0)) return 0;
|
|
|
|
if(uv) {
|
|
uv[0]= u;
|
|
uv[1]= v;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Adapted from the paper by Kasper Fauerby */
|
|
/* "Improved Collision detection and Response" */
|
|
int SweepingSphereIntersectsTriangleUV(float p1[3], float p2[3], float radius, float v0[3], float v1[3], float v2[3], float *lambda, float *ipoint)
|
|
{
|
|
float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
|
|
float a, b, c, d, e, x, y, z, t, t0, t1, radius2=radius*radius;
|
|
float elen2,edotv,edotbv,nordotv,vel2;
|
|
int embedded_in_plane=0, found_by_sweep=0;
|
|
|
|
VecSubf(e1,v1,v0);
|
|
VecSubf(e2,v2,v0);
|
|
VecSubf(vel,p2,p1);
|
|
|
|
/*---test plane of tri---*/
|
|
Crossf(nor,e1,e2);
|
|
Normalize(nor);
|
|
/* flip normal */
|
|
if(Inpf(nor,vel)>0.0f) VecMulf(nor,-1.0f);
|
|
|
|
a=Inpf(p1,nor)-Inpf(v0,nor);
|
|
|
|
nordotv=Inpf(nor,vel);
|
|
|
|
if ((nordotv > -0.000001) && (nordotv < 0.000001)) {
|
|
if(fabs(a)>=1.0f)
|
|
return 0;
|
|
else{
|
|
embedded_in_plane=1;
|
|
t0=0.0f;
|
|
t1=1.0f;
|
|
}
|
|
}
|
|
else{
|
|
t0=(radius-a)/nordotv;
|
|
t1=(-radius-a)/nordotv;
|
|
/* make t0<t1 */
|
|
if(t0>t1){b=t1; t1=t0; t0=b;}
|
|
|
|
if(t0>1.0f || t1<0.0f) return 0;
|
|
|
|
/* clamp to [0,1] */
|
|
t0=(t0<0.0f)?0.0f:((t0>1.0f)?1.0:t0);
|
|
t1=(t1<0.0f)?0.0f:((t1>1.0f)?1.0:t1);
|
|
}
|
|
|
|
/*---test inside of tri---*/
|
|
if(embedded_in_plane==0){
|
|
/* plane intersection point */
|
|
VecCopyf(point,vel);
|
|
VecMulf(point,t0);
|
|
VecAddf(point,point,p1);
|
|
VecCopyf(temp,nor);
|
|
VecMulf(temp,radius);
|
|
VecSubf(point,point,temp);
|
|
|
|
/* is the point in the tri? */
|
|
a=Inpf(e1,e1);
|
|
b=Inpf(e1,e2);
|
|
c=Inpf(e2,e2);
|
|
|
|
VecSubf(temp,point,v0);
|
|
d=Inpf(temp,e1);
|
|
e=Inpf(temp,e2);
|
|
|
|
x=d*c-e*b;
|
|
y=e*a-d*b;
|
|
z=x+y-(a*c-b*b);
|
|
|
|
if(( ((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y)) ) & 0x80000000){
|
|
*lambda=t0;
|
|
VecCopyf(ipoint,point);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
*lambda=1.0f;
|
|
/*---test points---*/
|
|
a=vel2=Inpf(vel,vel);
|
|
|
|
/*v0*/
|
|
VecSubf(temp,p1,v0);
|
|
b=2.0f*Inpf(vel,temp);
|
|
c=Inpf(temp,temp)-radius2;
|
|
d=b*b-4*a*c;
|
|
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,v0);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
|
|
/*v1*/
|
|
VecSubf(temp,p1,v1);
|
|
b=2.0f*Inpf(vel,temp);
|
|
c=Inpf(temp,temp)-radius2;
|
|
d=b*b-4*a*c;
|
|
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,v1);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
/*v2*/
|
|
VecSubf(temp,p1,v2);
|
|
b=2.0f*Inpf(vel,temp);
|
|
c=Inpf(temp,temp)-radius2;
|
|
d=b*b-4*a*c;
|
|
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,v2);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
|
|
/*---test edges---*/
|
|
/*e1*/
|
|
VecSubf(bv,v0,p1);
|
|
elen2 = Inpf(e1,e1);
|
|
edotv = Inpf(e1,vel);
|
|
edotbv = Inpf(e1,bv);
|
|
|
|
a=elen2*(-Inpf(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
|
|
d=b*b-4*a*c;
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
e=(edotv*t-edotbv)/elen2;
|
|
|
|
if((e>=0.0f) && (e<=1.0f)){
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,e1);
|
|
VecMulf(ipoint,e);
|
|
VecAddf(ipoint,ipoint,v0);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*e2*/
|
|
/*bv is same*/
|
|
elen2 = Inpf(e2,e2);
|
|
edotv = Inpf(e2,vel);
|
|
edotbv = Inpf(e2,bv);
|
|
|
|
a=elen2*(-Inpf(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
|
|
d=b*b-4*a*c;
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
e=(edotv*t-edotbv)/elen2;
|
|
|
|
if((e>=0.0f) && (e<=1.0f)){
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,e2);
|
|
VecMulf(ipoint,e);
|
|
VecAddf(ipoint,ipoint,v0);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*e3*/
|
|
VecSubf(e3,v2,v1);
|
|
VecSubf(bv,v1,p1);
|
|
elen2 = Inpf(e3,e3);
|
|
edotv = Inpf(e3,vel);
|
|
edotbv = Inpf(e3,bv);
|
|
|
|
a=elen2*(-Inpf(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*Inpf(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-Inpf(bv,bv))+edotbv*edotbv;
|
|
d=b*b-4*a*c;
|
|
if(d>=0.0f){
|
|
if(d==0.0f)
|
|
t=-b/2*a;
|
|
else{
|
|
z=sqrt(d);
|
|
x=(-b-z)*0.5/a;
|
|
y=(-b+z)*0.5/a;
|
|
t=x<y?x:y;
|
|
}
|
|
|
|
e=(edotv*t-edotbv)/elen2;
|
|
|
|
if((e>=0.0f) && (e<=1.0f)){
|
|
if(t>0.0 && t < *lambda){
|
|
*lambda=t;
|
|
VecCopyf(ipoint,e3);
|
|
VecMulf(ipoint,e);
|
|
VecAddf(ipoint,ipoint,v1);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return found_by_sweep;
|
|
}
|
|
int AxialLineIntersectsTriangle(int axis, float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *lambda)
|
|
{
|
|
float p[3], e1[3], e2[3];
|
|
float u, v, f;
|
|
int a0=axis, a1=(axis+1)%3, a2=(axis+2)%3;
|
|
|
|
//return LineIntersectsTriangle(p1,p2,v0,v1,v2,lambda);
|
|
|
|
///* first a simple bounding box test */
|
|
//if(MIN3(v0[a1],v1[a1],v2[a1]) > p1[a1]) return 0;
|
|
//if(MIN3(v0[a2],v1[a2],v2[a2]) > p1[a2]) return 0;
|
|
//if(MAX3(v0[a1],v1[a1],v2[a1]) < p1[a1]) return 0;
|
|
//if(MAX3(v0[a2],v1[a2],v2[a2]) < p1[a2]) return 0;
|
|
|
|
///* then a full intersection test */
|
|
|
|
VecSubf(e1,v1,v0);
|
|
VecSubf(e2,v2,v0);
|
|
VecSubf(p,v0,p1);
|
|
|
|
f= (e2[a1]*e1[a2]-e2[a2]*e1[a1]);
|
|
if ((f > -0.000001) && (f < 0.000001)) return 0;
|
|
|
|
v= (p[a2]*e1[a1]-p[a1]*e1[a2])/f;
|
|
if ((v < 0.0)||(v > 1.0)) return 0;
|
|
|
|
f= e1[a1];
|
|
if((f > -0.000001) && (f < 0.000001)){
|
|
f= e1[a2];
|
|
if((f > -0.000001) && (f < 0.000001)) return 0;
|
|
u= (-p[a2]-v*e2[a2])/f;
|
|
}
|
|
else
|
|
u= (-p[a1]-v*e2[a1])/f;
|
|
|
|
if ((u < 0.0)||((u + v) > 1.0)) return 0;
|
|
|
|
*lambda = (p[a0]+u*e1[a0]+v*e2[a0])/(p2[a0]-p1[a0]);
|
|
|
|
if ((*lambda < 0.0)||(*lambda > 1.0)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int AabbIntersectAabb(float min1[3], float max1[3], float min2[3], float max2[3])
|
|
{
|
|
return (min1[0]<max2[0] && min1[1]<max2[1] && min1[2]<max2[2] &&
|
|
min2[0]<max1[0] && min2[1]<max1[1] && min2[2]<max1[2]);
|
|
}
|
|
|
|
/* find closest point to p on line through l1,l2 and return lambda,
|
|
* where (0 <= lambda <= 1) when cp is in the line segement l1,l2
|
|
*/
|
|
float lambda_cp_line_ex(float p[3], float l1[3], float l2[3], float cp[3])
|
|
{
|
|
float h[3],u[3],lambda;
|
|
VecSubf(u, l2, l1);
|
|
VecSubf(h, p, l1);
|
|
lambda =Inpf(u,h)/Inpf(u,u);
|
|
cp[0] = l1[0] + u[0] * lambda;
|
|
cp[1] = l1[1] + u[1] * lambda;
|
|
cp[2] = l1[2] + u[2] * lambda;
|
|
return lambda;
|
|
}
|
|
|
|
/* little sister we only need to know lambda */
|
|
float lambda_cp_line(float p[3], float l1[3], float l2[3])
|
|
{
|
|
float h[3],u[3];
|
|
VecSubf(u, l2, l1);
|
|
VecSubf(h, p, l1);
|
|
return(Inpf(u,h)/Inpf(u,u));
|
|
}
|
|
|
|
/* Similar to LineIntersectsTriangleUV, except it operates on a quad and in 2d, assumes point is in quad */
|
|
void PointInQuad2DUV(float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
|
|
{
|
|
float x0,y0, x1,y1, wtot, v2d[2], w1, w2;
|
|
|
|
/* used for paralelle lines */
|
|
float pt3d[3], l1[3], l2[3], pt_on_line[3];
|
|
|
|
/* compute 2 edges of the quad intersection point */
|
|
if (IsectLLPt2Df(v0[0],v0[1],v1[0],v1[1], v2[0],v2[1],v3[0],v3[1], &x0,&y0) == 1) {
|
|
/* the intersection point between the quad-edge intersection and the point in the quad we want the uv's for */
|
|
/* should never be paralle !! */
|
|
/*printf("\tnot paralelle 1\n");*/
|
|
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v3[0],v3[1], &x1,&y1);
|
|
|
|
/* Get the weights from the new intersection point, to each edge */
|
|
v2d[0] = x1-v0[0];
|
|
v2d[1] = y1-v0[1];
|
|
w1 = Vec2Length(v2d);
|
|
|
|
v2d[0] = x1-v3[0]; /* some but for the other vert */
|
|
v2d[1] = y1-v3[1];
|
|
w2 = Vec2Length(v2d);
|
|
wtot = w1+w2;
|
|
/*w1 = w1/wtot;*/
|
|
/*w2 = w2/wtot;*/
|
|
uv[0] = w1/wtot;
|
|
} else {
|
|
/* lines are paralelle, lambda_cp_line_ex is 3d grrr */
|
|
/*printf("\tparalelle1\n");*/
|
|
pt3d[0] = pt[0];
|
|
pt3d[1] = pt[1];
|
|
pt3d[2] = l1[2] = l2[2] = 0.0f;
|
|
|
|
l1[0] = v0[0]; l1[1] = v0[1];
|
|
l2[0] = v1[0]; l2[1] = v1[1];
|
|
lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w1 = Vec2Length(v2d);
|
|
|
|
l1[0] = v2[0]; l1[1] = v2[1];
|
|
l2[0] = v3[0]; l2[1] = v3[1];
|
|
lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w2 = Vec2Length(v2d);
|
|
wtot = w1+w2;
|
|
uv[0] = w1/wtot;
|
|
}
|
|
|
|
/* Same as above to calc the uv[1] value, alternate calculation */
|
|
|
|
if (IsectLLPt2Df(v0[0],v0[1],v3[0],v3[1], v1[0],v1[1],v2[0],v2[1], &x0,&y0) == 1) { /* was v0,v1 v2,v3 now v0,v3 v1,v2*/
|
|
/* never paralle if above was not */
|
|
/*printf("\tnot paralelle2\n");*/
|
|
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v1[0],v1[1], &x1,&y1);/* was v0,v3 now v0,v1*/
|
|
|
|
v2d[0] = x1-v0[0];
|
|
v2d[1] = y1-v0[1];
|
|
w1 = Vec2Length(v2d);
|
|
|
|
v2d[0] = x1-v1[0];
|
|
v2d[1] = y1-v1[1];
|
|
w2 = Vec2Length(v2d);
|
|
wtot = w1+w2;
|
|
uv[1] = w1/wtot;
|
|
} else {
|
|
/* lines are paralelle, lambda_cp_line_ex is 3d grrr */
|
|
/*printf("\tparalelle2\n");*/
|
|
pt3d[0] = pt[0];
|
|
pt3d[1] = pt[1];
|
|
pt3d[2] = l1[2] = l2[2] = 0.0f;
|
|
|
|
|
|
l1[0] = v0[0]; l1[1] = v0[1];
|
|
l2[0] = v3[0]; l2[1] = v3[1];
|
|
lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w1 = Vec2Length(v2d);
|
|
|
|
l1[0] = v1[0]; l1[1] = v1[1];
|
|
l2[0] = v2[0]; l2[1] = v2[1];
|
|
lambda_cp_line_ex(pt3d, l1, l2, pt_on_line);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w2 = Vec2Length(v2d);
|
|
wtot = w1+w2;
|
|
uv[1] = w1/wtot;
|
|
}
|
|
/* may need to flip UV's here */
|
|
}
|
|
|
|
/* same as above but does tri's and quads, tri's are a bit of a hack */
|
|
void PointInFace2DUV(int isquad, float v0[2], float v1[2], float v2[2], float v3[2], float pt[2], float *uv)
|
|
{
|
|
if (isquad) {
|
|
PointInQuad2DUV(v0, v1, v2, v3, pt, uv);
|
|
}
|
|
else {
|
|
/* not for quads, use for our abuse of LineIntersectsTriangleUV */
|
|
float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3], lambda;
|
|
|
|
p1_3d[0] = p2_3d[0] = uv[0];
|
|
p1_3d[1] = p2_3d[1] = uv[1];
|
|
p1_3d[2] = 1.0f;
|
|
p2_3d[2] = -1.0f;
|
|
v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
|
|
|
|
/* generate a new fuv, (this is possibly a non optimal solution,
|
|
* since we only need 2d calculation but use 3d func's)
|
|
*
|
|
* this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
|
|
* Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
|
|
* This means the new values will be correct in relation to the derived meshes face.
|
|
*/
|
|
Vec2Copyf(v0_3d, v0);
|
|
Vec2Copyf(v1_3d, v1);
|
|
Vec2Copyf(v2_3d, v2);
|
|
|
|
/* Doing this in 3D is not nice */
|
|
LineIntersectsTriangle(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
|
|
}
|
|
}
|
|
|
|
/* (x1,v1)(t1=0)------(x2,v2)(t2=1), 0<t<1 --> (x,v)(t) */
|
|
void VecfCubicInterpol(float *x1, float *v1, float *x2, float *v2, float t, float *x, float *v)
|
|
{
|
|
float a[3],b[3];
|
|
float t2= t*t;
|
|
float t3= t2*t;
|
|
|
|
/* cubic interpolation */
|
|
a[0]= v1[0] + v2[0] + 2*(x1[0] - x2[0]);
|
|
a[1]= v1[1] + v2[1] + 2*(x1[1] - x2[1]);
|
|
a[2]= v1[2] + v2[2] + 2*(x1[2] - x2[2]);
|
|
|
|
b[0]= -2*v1[0] - v2[0] - 3*(x1[0] - x2[0]);
|
|
b[1]= -2*v1[1] - v2[1] - 3*(x1[1] - x2[1]);
|
|
b[2]= -2*v1[2] - v2[2] - 3*(x1[2] - x2[2]);
|
|
|
|
x[0]= a[0]*t3 + b[0]*t2 + v1[0]*t + x1[0];
|
|
x[1]= a[1]*t3 + b[1]*t2 + v1[1]*t + x1[1];
|
|
x[2]= a[2]*t3 + b[2]*t2 + v1[2]*t + x1[2];
|
|
|
|
v[0]= 3*a[0]*t2 + 2*b[0]*t + v1[0];
|
|
v[1]= 3*a[1]*t2 + 2*b[1]*t + v1[1];
|
|
v[2]= 3*a[2]*t2 + 2*b[2]*t + v1[2];
|
|
}
|
|
|
|
int point_in_slice(float p[3], float v1[3], float l1[3], float l2[3])
|
|
{
|
|
/*
|
|
what is a slice ?
|
|
some maths:
|
|
a line including l1,l2 and a point not on the line
|
|
define a subset of R3 delimeted by planes parallel to the line and orthogonal
|
|
to the (point --> line) distance vector,one plane on the line one on the point,
|
|
the room inside usually is rather small compared to R3 though still infinte
|
|
useful for restricting (speeding up) searches
|
|
e.g. all points of triangular prism are within the intersection of 3 'slices'
|
|
onother trivial case : cube
|
|
but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
|
|
*/
|
|
float h,rp[3],cp[3],q[3];
|
|
|
|
lambda_cp_line_ex(v1,l1,l2,cp);
|
|
VecSubf(q,cp,v1);
|
|
|
|
VecSubf(rp,p,v1);
|
|
h=Inpf(q,rp)/Inpf(q,q);
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*adult sister defining the slice planes by the origin and the normal
|
|
NOTE |normal| may not be 1 but defining the thickness of the slice*/
|
|
int point_in_slice_as(float p[3],float origin[3],float normal[3])
|
|
{
|
|
float h,rp[3];
|
|
VecSubf(rp,p,origin);
|
|
h=Inpf(normal,rp)/Inpf(normal,normal);
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*mama (knowing the squared lenght of the normal)*/
|
|
int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
|
|
{
|
|
float h,rp[3];
|
|
VecSubf(rp,p,origin);
|
|
h=Inpf(normal,rp)/lns;
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
int point_in_tri_prism(float p[3], float v1[3], float v2[3], float v3[3])
|
|
{
|
|
if(!point_in_slice(p,v1,v2,v3)) return 0;
|
|
if(!point_in_slice(p,v2,v3,v1)) return 0;
|
|
if(!point_in_slice(p,v3,v1,v2)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* point closest to v1 on line v2-v3 in 3D */
|
|
void PclosestVL3Dfl(float *closest, float *v1, float *v2, float *v3)
|
|
{
|
|
float lambda, cp[3];
|
|
|
|
lambda= lambda_cp_line_ex(v1, v2, v3, cp);
|
|
|
|
if(lambda <= 0.0f)
|
|
VecCopyf(closest, v2);
|
|
else if(lambda >= 1.0f)
|
|
VecCopyf(closest, v3);
|
|
else
|
|
VecCopyf(closest, cp);
|
|
}
|
|
|
|
/* distance v1 to line-piece v2-v3 in 3D */
|
|
float PdistVL3Dfl(float *v1, float *v2, float *v3)
|
|
{
|
|
float closest[3];
|
|
|
|
PclosestVL3Dfl(closest, v1, v2, v3);
|
|
|
|
return VecLenf(closest, v1);
|
|
}
|
|
|
|
/********************************************************/
|
|
|
|
/* make a 4x4 matrix out of 3 transform components */
|
|
/* matrices are made in the order: scale * rot * loc */
|
|
void LocEulSizeToMat4(float mat[][4], float loc[3], float eul[3], float size[3])
|
|
{
|
|
float rmat[3][3], smat[3][3], tmat[3][3];
|
|
|
|
/* initialise new matrix */
|
|
Mat4One(mat);
|
|
|
|
/* make rotation + scaling part */
|
|
EulToMat3(eul, rmat);
|
|
SizeToMat3(size, smat);
|
|
Mat3MulMat3(tmat, rmat, smat);
|
|
|
|
/* copy rot/scale part to output matrix*/
|
|
Mat4CpyMat3(mat, tmat);
|
|
|
|
/* copy location to matrix */
|
|
mat[3][0] = loc[0];
|
|
mat[3][1] = loc[1];
|
|
mat[3][2] = loc[2];
|
|
}
|
|
|
|
/* make a 4x4 matrix out of 3 transform components */
|
|
/* matrices are made in the order: scale * rot * loc */
|
|
void LocQuatSizeToMat4(float mat[][4], float loc[3], float quat[4], float size[3])
|
|
{
|
|
float rmat[3][3], smat[3][3], tmat[3][3];
|
|
|
|
/* initialise new matrix */
|
|
Mat4One(mat);
|
|
|
|
/* make rotation + scaling part */
|
|
QuatToMat3(quat, rmat);
|
|
SizeToMat3(size, smat);
|
|
Mat3MulMat3(tmat, rmat, smat);
|
|
|
|
/* copy rot/scale part to output matrix*/
|
|
Mat4CpyMat3(mat, tmat);
|
|
|
|
/* copy location to matrix */
|
|
mat[3][0] = loc[0];
|
|
mat[3][1] = loc[1];
|
|
mat[3][2] = loc[2];
|
|
}
|