This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/curves/intern/curves_ops.cc
Hans Goudey c4b32f1b29 Cleanup: Move mesh legacy conversion to a separate file
It's helpful to make the separation of legacy data formats explicit,
because it declutters actively changed code and makes it clear which
areas do not follow Blender's current design. In this case I separated
the `MFace`/"tessface" conversion code into a separate blenkernel
.cc file and header. This also makes refactoring to remove these
functions simpler because they're easier to find.

In the future, conversions to the `MLoopUV` type and `MVert`
can be implemented here for the same reasons (see T95965).

Differential Revision: https://developer.blender.org/D15396
2022-07-07 22:33:57 -05:00

960 lines
32 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup edcurves
*/
#include <atomic>
#include "BLI_devirtualize_parameters.hh"
#include "BLI_utildefines.h"
#include "BLI_vector_set.hh"
#include "ED_curves.h"
#include "ED_object.h"
#include "ED_screen.h"
#include "ED_select_utils.h"
#include "WM_api.h"
#include "BKE_attribute_math.hh"
#include "BKE_bvhutils.h"
#include "BKE_context.h"
#include "BKE_curves.hh"
#include "BKE_geometry_set.hh"
#include "BKE_layer.h"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_mesh_legacy_convert.h"
#include "BKE_mesh_runtime.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_particle.h"
#include "BKE_report.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "RNA_enum_types.h"
#include "RNA_prototypes.h"
#include "GEO_reverse_uv_sampler.hh"
/**
* The code below uses a suffix naming convention to indicate the coordinate space:
* `cu`: Local space of the curves object that is being edited.
* `su`: Local space of the surface object.
* `wo`: World space.
* `ha`: Local space of an individual hair in the legacy hair system.
*/
namespace blender::ed::curves {
static bool object_has_editable_curves(const Main &bmain, const Object &object)
{
if (object.type != OB_CURVES) {
return false;
}
if (!ELEM(object.mode, OB_MODE_SCULPT_CURVES, OB_MODE_EDIT)) {
return false;
}
if (!BKE_id_is_editable(&bmain, static_cast<const ID *>(object.data))) {
return false;
}
return true;
}
VectorSet<Curves *> get_unique_editable_curves(const bContext &C)
{
VectorSet<Curves *> unique_curves;
const Main &bmain = *CTX_data_main(&C);
Object *object = CTX_data_active_object(&C);
if (object && object_has_editable_curves(bmain, *object)) {
unique_curves.add_new(static_cast<Curves *>(object->data));
}
CTX_DATA_BEGIN (&C, Object *, object, selected_objects) {
if (object_has_editable_curves(bmain, *object)) {
unique_curves.add(static_cast<Curves *>(object->data));
}
}
CTX_DATA_END;
return unique_curves;
}
using bke::CurvesGeometry;
namespace convert_to_particle_system {
static int find_mface_for_root_position(const Mesh &mesh,
const Span<int> possible_mface_indices,
const float3 &root_pos)
{
BLI_assert(possible_mface_indices.size() >= 1);
if (possible_mface_indices.size() == 1) {
return possible_mface_indices.first();
}
/* Find the closest #MFace to #root_pos. */
int mface_i;
float best_distance_sq = FLT_MAX;
for (const int possible_mface_i : possible_mface_indices) {
const MFace &possible_mface = mesh.mface[possible_mface_i];
{
float3 point_in_triangle;
closest_on_tri_to_point_v3(point_in_triangle,
root_pos,
mesh.mvert[possible_mface.v1].co,
mesh.mvert[possible_mface.v2].co,
mesh.mvert[possible_mface.v3].co);
const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
if (distance_sq < best_distance_sq) {
best_distance_sq = distance_sq;
mface_i = possible_mface_i;
}
}
/* Optionally check the second triangle if the #MFace is a quad. */
if (possible_mface.v4) {
float3 point_in_triangle;
closest_on_tri_to_point_v3(point_in_triangle,
root_pos,
mesh.mvert[possible_mface.v1].co,
mesh.mvert[possible_mface.v3].co,
mesh.mvert[possible_mface.v4].co);
const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
if (distance_sq < best_distance_sq) {
best_distance_sq = distance_sq;
mface_i = possible_mface_i;
}
}
}
return mface_i;
}
/**
* \return Barycentric coordinates in the #MFace.
*/
static float4 compute_mface_weights_for_position(const Mesh &mesh,
const MFace &mface,
const float3 &position)
{
float4 mface_weights;
if (mface.v4) {
float mface_verts_su[4][3];
copy_v3_v3(mface_verts_su[0], mesh.mvert[mface.v1].co);
copy_v3_v3(mface_verts_su[1], mesh.mvert[mface.v2].co);
copy_v3_v3(mface_verts_su[2], mesh.mvert[mface.v3].co);
copy_v3_v3(mface_verts_su[3], mesh.mvert[mface.v4].co);
interp_weights_poly_v3(mface_weights, mface_verts_su, 4, position);
}
else {
interp_weights_tri_v3(mface_weights,
mesh.mvert[mface.v1].co,
mesh.mvert[mface.v2].co,
mesh.mvert[mface.v3].co,
position);
mface_weights[3] = 0.0f;
}
return mface_weights;
}
static void try_convert_single_object(Object &curves_ob,
Main &bmain,
Scene &scene,
bool *r_could_not_convert_some_curves)
{
if (curves_ob.type != OB_CURVES) {
return;
}
Curves &curves_id = *static_cast<Curves *>(curves_ob.data);
CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
if (curves_id.surface == nullptr) {
return;
}
Object &surface_ob = *curves_id.surface;
if (surface_ob.type != OB_MESH) {
return;
}
Mesh &surface_me = *static_cast<Mesh *>(surface_ob.data);
BVHTreeFromMesh surface_bvh;
BKE_bvhtree_from_mesh_get(&surface_bvh, &surface_me, BVHTREE_FROM_LOOPTRI, 2);
BLI_SCOPED_DEFER([&]() { free_bvhtree_from_mesh(&surface_bvh); });
const Span<float3> positions_cu = curves.positions();
const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&surface_me),
BKE_mesh_runtime_looptri_len(&surface_me)};
if (looptris.is_empty()) {
*r_could_not_convert_some_curves = true;
}
const int hair_num = curves.curves_num();
if (hair_num == 0) {
return;
}
ParticleSystem *particle_system = nullptr;
LISTBASE_FOREACH (ParticleSystem *, psys, &surface_ob.particlesystem) {
if (STREQ(psys->name, curves_ob.id.name + 2)) {
particle_system = psys;
break;
}
}
if (particle_system == nullptr) {
ParticleSystemModifierData &psmd = *reinterpret_cast<ParticleSystemModifierData *>(
object_add_particle_system(&bmain, &scene, &surface_ob, curves_ob.id.name + 2));
particle_system = psmd.psys;
particle_system->part->draw_step = 3;
}
ParticleSettings &settings = *particle_system->part;
psys_free_particles(particle_system);
settings.type = PART_HAIR;
settings.totpart = 0;
psys_changed_type(&surface_ob, particle_system);
MutableSpan<ParticleData> particles{
static_cast<ParticleData *>(MEM_calloc_arrayN(hair_num, sizeof(ParticleData), __func__)),
hair_num};
/* The old hair system still uses #MFace, so make sure those are available on the mesh. */
BKE_mesh_tessface_calc(&surface_me);
/* Prepare utility data structure to map hair roots to #MFace's. */
const Span<int> mface_to_poly_map{
static_cast<const int *>(CustomData_get_layer(&surface_me.fdata, CD_ORIGINDEX)),
surface_me.totface};
Array<Vector<int>> poly_to_mface_map(surface_me.totpoly);
for (const int mface_i : mface_to_poly_map.index_range()) {
const int poly_i = mface_to_poly_map[mface_i];
poly_to_mface_map[poly_i].append(mface_i);
}
/* Prepare transformation matrices. */
const bke::CurvesSurfaceTransforms transforms{curves_ob, &surface_ob};
for (const int new_hair_i : IndexRange(hair_num)) {
const int curve_i = new_hair_i;
const IndexRange points = curves.points_for_curve(curve_i);
const float3 &root_pos_cu = positions_cu[points.first()];
const float3 root_pos_su = transforms.curves_to_surface * root_pos_cu;
BVHTreeNearest nearest;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(
surface_bvh.tree, root_pos_su, &nearest, surface_bvh.nearest_callback, &surface_bvh);
BLI_assert(nearest.index >= 0);
const int looptri_i = nearest.index;
const MLoopTri &looptri = looptris[looptri_i];
const int poly_i = looptri.poly;
const int mface_i = find_mface_for_root_position(
surface_me, poly_to_mface_map[poly_i], root_pos_su);
const MFace &mface = surface_me.mface[mface_i];
const float4 mface_weights = compute_mface_weights_for_position(
surface_me, mface, root_pos_su);
ParticleData &particle = particles[new_hair_i];
const int num_keys = points.size();
MutableSpan<HairKey> hair_keys{
static_cast<HairKey *>(MEM_calloc_arrayN(num_keys, sizeof(HairKey), __func__)), num_keys};
particle.hair = hair_keys.data();
particle.totkey = hair_keys.size();
copy_v4_v4(particle.fuv, mface_weights);
particle.num = mface_i;
/* Not sure if there is a better way to initialize this. */
particle.num_dmcache = DMCACHE_NOTFOUND;
float4x4 hair_to_surface_mat;
psys_mat_hair_to_object(
&surface_ob, &surface_me, PART_FROM_FACE, &particle, hair_to_surface_mat.values);
/* In theory, #psys_mat_hair_to_object should handle this, but it doesn't right now. */
copy_v3_v3(hair_to_surface_mat.values[3], root_pos_su);
const float4x4 surface_to_hair_mat = hair_to_surface_mat.inverted();
for (const int key_i : hair_keys.index_range()) {
const float3 &key_pos_cu = positions_cu[points[key_i]];
const float3 key_pos_su = transforms.curves_to_surface * key_pos_cu;
const float3 key_pos_ha = surface_to_hair_mat * key_pos_su;
HairKey &key = hair_keys[key_i];
copy_v3_v3(key.co, key_pos_ha);
key.time = 100.0f * key_i / (float)(hair_keys.size() - 1);
}
}
particle_system->particles = particles.data();
particle_system->totpart = particles.size();
particle_system->flag |= PSYS_EDITED;
particle_system->recalc |= ID_RECALC_PSYS_RESET;
DEG_id_tag_update(&surface_ob.id, ID_RECALC_GEOMETRY);
DEG_id_tag_update(&settings.id, ID_RECALC_COPY_ON_WRITE);
}
static int curves_convert_to_particle_system_exec(bContext *C, wmOperator *op)
{
Main &bmain = *CTX_data_main(C);
Scene &scene = *CTX_data_scene(C);
bool could_not_convert_some_curves = false;
Object &active_object = *CTX_data_active_object(C);
try_convert_single_object(active_object, bmain, scene, &could_not_convert_some_curves);
CTX_DATA_BEGIN (C, Object *, curves_ob, selected_objects) {
if (curves_ob != &active_object) {
try_convert_single_object(*curves_ob, bmain, scene, &could_not_convert_some_curves);
}
}
CTX_DATA_END;
if (could_not_convert_some_curves) {
BKE_report(op->reports,
RPT_INFO,
"Some curves could not be converted because they were not attached to the surface");
}
WM_main_add_notifier(NC_OBJECT | ND_PARTICLE | NA_EDITED, nullptr);
return OPERATOR_FINISHED;
}
static bool curves_convert_to_particle_system_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
if (ob == nullptr || ob->type != OB_CURVES) {
return false;
}
Curves &curves = *static_cast<Curves *>(ob->data);
return curves.surface != nullptr;
}
} // namespace convert_to_particle_system
static void CURVES_OT_convert_to_particle_system(wmOperatorType *ot)
{
ot->name = "Convert Curves to Particle System";
ot->idname = "CURVES_OT_convert_to_particle_system";
ot->description = "Add a new or update an existing hair particle system on the surface object";
ot->poll = convert_to_particle_system::curves_convert_to_particle_system_poll;
ot->exec = convert_to_particle_system::curves_convert_to_particle_system_exec;
ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
}
namespace convert_from_particle_system {
static bke::CurvesGeometry particles_to_curves(Object &object, ParticleSystem &psys)
{
ParticleSettings &settings = *psys.part;
if (psys.part->type != PART_HAIR) {
return {};
}
const bool transfer_parents = (settings.draw & PART_DRAW_PARENT) || settings.childtype == 0;
const Span<ParticleCacheKey *> parents_cache{psys.pathcache, psys.totcached};
const Span<ParticleCacheKey *> children_cache{psys.childcache, psys.totchildcache};
int points_num = 0;
Vector<int> curve_offsets;
Vector<int> parents_to_transfer;
Vector<int> children_to_transfer;
if (transfer_parents) {
for (const int parent_i : parents_cache.index_range()) {
const int segments = parents_cache[parent_i]->segments;
if (segments <= 0) {
continue;
}
parents_to_transfer.append(parent_i);
curve_offsets.append(points_num);
points_num += segments + 1;
}
}
for (const int child_i : children_cache.index_range()) {
const int segments = children_cache[child_i]->segments;
if (segments <= 0) {
continue;
}
children_to_transfer.append(child_i);
curve_offsets.append(points_num);
points_num += segments + 1;
}
const int curves_num = parents_to_transfer.size() + children_to_transfer.size();
curve_offsets.append(points_num);
BLI_assert(curve_offsets.size() == curves_num + 1);
bke::CurvesGeometry curves(points_num, curves_num);
curves.offsets_for_write().copy_from(curve_offsets);
const float4x4 object_to_world_mat = object.obmat;
const float4x4 world_to_object_mat = object_to_world_mat.inverted();
MutableSpan<float3> positions = curves.positions_for_write();
const auto copy_hair_to_curves = [&](const Span<ParticleCacheKey *> hair_cache,
const Span<int> indices_to_transfer,
const int curve_index_offset) {
threading::parallel_for(indices_to_transfer.index_range(), 256, [&](const IndexRange range) {
for (const int i : range) {
const int hair_i = indices_to_transfer[i];
const int curve_i = i + curve_index_offset;
const IndexRange points = curves.points_for_curve(curve_i);
const Span<ParticleCacheKey> keys{hair_cache[hair_i], points.size()};
for (const int key_i : keys.index_range()) {
const float3 key_pos_wo = keys[key_i].co;
positions[points[key_i]] = world_to_object_mat * key_pos_wo;
}
}
});
};
if (transfer_parents) {
copy_hair_to_curves(parents_cache, parents_to_transfer, 0);
}
copy_hair_to_curves(children_cache, children_to_transfer, parents_to_transfer.size());
curves.update_curve_types();
curves.tag_topology_changed();
return curves;
}
static int curves_convert_from_particle_system_exec(bContext *C, wmOperator *UNUSED(op))
{
Main &bmain = *CTX_data_main(C);
ViewLayer &view_layer = *CTX_data_view_layer(C);
Depsgraph &depsgraph = *CTX_data_depsgraph_pointer(C);
Object *ob_from_orig = ED_object_active_context(C);
ParticleSystem *psys_orig = static_cast<ParticleSystem *>(
CTX_data_pointer_get_type(C, "particle_system", &RNA_ParticleSystem).data);
if (psys_orig == nullptr) {
psys_orig = psys_get_current(ob_from_orig);
}
if (psys_orig == nullptr) {
return OPERATOR_CANCELLED;
}
Object *ob_from_eval = DEG_get_evaluated_object(&depsgraph, ob_from_orig);
ParticleSystem *psys_eval = nullptr;
LISTBASE_FOREACH (ModifierData *, md, &ob_from_eval->modifiers) {
if (md->type != eModifierType_ParticleSystem) {
continue;
}
ParticleSystemModifierData *psmd = reinterpret_cast<ParticleSystemModifierData *>(md);
if (!STREQ(psmd->psys->name, psys_orig->name)) {
continue;
}
psys_eval = psmd->psys;
}
Object *ob_new = BKE_object_add(&bmain, &view_layer, OB_CURVES, psys_eval->name);
ob_new->dtx |= OB_DRAWBOUNDOX; /* TODO: Remove once there is actual drawing. */
Curves *curves_id = static_cast<Curves *>(ob_new->data);
BKE_object_apply_mat4(ob_new, ob_from_orig->obmat, true, false);
bke::CurvesGeometry::wrap(curves_id->geometry) = particles_to_curves(*ob_from_eval, *psys_eval);
DEG_relations_tag_update(&bmain);
WM_main_add_notifier(NC_OBJECT | ND_DRAW, nullptr);
return OPERATOR_FINISHED;
}
static bool curves_convert_from_particle_system_poll(bContext *C)
{
return ED_object_active_context(C) != nullptr;
}
} // namespace convert_from_particle_system
static void CURVES_OT_convert_from_particle_system(wmOperatorType *ot)
{
ot->name = "Convert Particle System to Curves";
ot->idname = "CURVES_OT_convert_from_particle_system";
ot->description = "Add a new curves object based on the current state of the particle system";
ot->poll = convert_from_particle_system::curves_convert_from_particle_system_poll;
ot->exec = convert_from_particle_system::curves_convert_from_particle_system_exec;
ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
}
namespace snap_curves_to_surface {
enum class AttachMode {
Nearest,
Deform,
};
static bool snap_curves_to_surface_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
if (ob == nullptr || ob->type != OB_CURVES) {
return false;
}
if (!ED_operator_object_active_editable_ex(C, ob)) {
return false;
}
Curves &curves = *static_cast<Curves *>(ob->data);
if (curves.surface == nullptr) {
return false;
}
return true;
}
static void snap_curves_to_surface_exec_object(Object &curves_ob,
const Object &surface_ob,
const AttachMode attach_mode,
bool *r_invalid_uvs,
bool *r_missing_uvs)
{
Curves &curves_id = *static_cast<Curves *>(curves_ob.data);
CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
Mesh &surface_mesh = *static_cast<Mesh *>(surface_ob.data);
MeshComponent surface_mesh_component;
surface_mesh_component.replace(&surface_mesh, GeometryOwnershipType::ReadOnly);
VArraySpan<float2> surface_uv_map;
if (curves_id.surface_uv_map != nullptr) {
surface_uv_map = surface_mesh_component
.attribute_try_get_for_read(
curves_id.surface_uv_map, ATTR_DOMAIN_CORNER, CD_PROP_FLOAT2)
.typed<float2>();
}
MutableSpan<float3> positions_cu = curves.positions_for_write();
MutableSpan<float2> surface_uv_coords = curves.surface_uv_coords_for_write();
const Span<MLoopTri> surface_looptris = {BKE_mesh_runtime_looptri_ensure(&surface_mesh),
BKE_mesh_runtime_looptri_len(&surface_mesh)};
const bke::CurvesSurfaceTransforms transforms{curves_ob, &surface_ob};
switch (attach_mode) {
case AttachMode::Nearest: {
BVHTreeFromMesh surface_bvh;
BKE_bvhtree_from_mesh_get(&surface_bvh, &surface_mesh, BVHTREE_FROM_LOOPTRI, 2);
BLI_SCOPED_DEFER([&]() { free_bvhtree_from_mesh(&surface_bvh); });
threading::parallel_for(curves.curves_range(), 256, [&](const IndexRange curves_range) {
for (const int curve_i : curves_range) {
const IndexRange points = curves.points_for_curve(curve_i);
const int first_point_i = points.first();
const float3 old_first_point_pos_cu = positions_cu[first_point_i];
const float3 old_first_point_pos_su = transforms.curves_to_surface *
old_first_point_pos_cu;
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(surface_bvh.tree,
old_first_point_pos_su,
&nearest,
surface_bvh.nearest_callback,
&surface_bvh);
const int looptri_index = nearest.index;
if (looptri_index == -1) {
continue;
}
const float3 new_first_point_pos_su = nearest.co;
const float3 new_first_point_pos_cu = transforms.surface_to_curves *
new_first_point_pos_su;
const float3 pos_diff_cu = new_first_point_pos_cu - old_first_point_pos_cu;
for (float3 &pos_cu : positions_cu.slice(points)) {
pos_cu += pos_diff_cu;
}
if (!surface_uv_map.is_empty()) {
const MLoopTri &looptri = surface_looptris[looptri_index];
const int corner0 = looptri.tri[0];
const int corner1 = looptri.tri[1];
const int corner2 = looptri.tri[2];
const float2 &uv0 = surface_uv_map[corner0];
const float2 &uv1 = surface_uv_map[corner1];
const float2 &uv2 = surface_uv_map[corner2];
const float3 &p0_su = surface_mesh.mvert[surface_mesh.mloop[corner0].v].co;
const float3 &p1_su = surface_mesh.mvert[surface_mesh.mloop[corner1].v].co;
const float3 &p2_su = surface_mesh.mvert[surface_mesh.mloop[corner2].v].co;
float3 bary_coords;
interp_weights_tri_v3(bary_coords, p0_su, p1_su, p2_su, new_first_point_pos_su);
const float2 uv = attribute_math::mix3(bary_coords, uv0, uv1, uv2);
surface_uv_coords[curve_i] = uv;
}
}
});
break;
}
case AttachMode::Deform: {
if (surface_uv_map.is_empty()) {
*r_missing_uvs = true;
break;
}
using geometry::ReverseUVSampler;
ReverseUVSampler reverse_uv_sampler{surface_uv_map, surface_looptris};
threading::parallel_for(curves.curves_range(), 256, [&](const IndexRange curves_range) {
for (const int curve_i : curves_range) {
const IndexRange points = curves.points_for_curve(curve_i);
const int first_point_i = points.first();
const float3 old_first_point_pos_cu = positions_cu[first_point_i];
const float2 uv = surface_uv_coords[curve_i];
ReverseUVSampler::Result lookup_result = reverse_uv_sampler.sample(uv);
if (lookup_result.type != ReverseUVSampler::ResultType::Ok) {
*r_invalid_uvs = true;
continue;
}
const MLoopTri &looptri = *lookup_result.looptri;
const float3 &bary_coords = lookup_result.bary_weights;
const float3 &p0_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[0]].v].co;
const float3 &p1_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[1]].v].co;
const float3 &p2_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[2]].v].co;
float3 new_first_point_pos_su;
interp_v3_v3v3v3(new_first_point_pos_su, p0_su, p1_su, p2_su, bary_coords);
const float3 new_first_point_pos_cu = transforms.surface_to_curves *
new_first_point_pos_su;
const float3 pos_diff_cu = new_first_point_pos_cu - old_first_point_pos_cu;
for (float3 &pos_cu : positions_cu.slice(points)) {
pos_cu += pos_diff_cu;
}
}
});
break;
}
}
DEG_id_tag_update(&curves_id.id, ID_RECALC_GEOMETRY);
}
static int snap_curves_to_surface_exec(bContext *C, wmOperator *op)
{
const AttachMode attach_mode = static_cast<AttachMode>(RNA_enum_get(op->ptr, "attach_mode"));
bool found_invalid_uvs = false;
bool found_missing_uvs = false;
CTX_DATA_BEGIN (C, Object *, curves_ob, selected_objects) {
if (curves_ob->type != OB_CURVES) {
continue;
}
Curves &curves_id = *static_cast<Curves *>(curves_ob->data);
if (curves_id.surface == nullptr) {
continue;
}
if (curves_id.surface->type != OB_MESH) {
continue;
}
snap_curves_to_surface_exec_object(
*curves_ob, *curves_id.surface, attach_mode, &found_invalid_uvs, &found_missing_uvs);
}
CTX_DATA_END;
if (found_missing_uvs) {
BKE_report(op->reports,
RPT_ERROR,
"Curves do not have attachment information that can be used for deformation");
}
if (found_invalid_uvs) {
BKE_report(op->reports, RPT_INFO, "Could not snap some curves to the surface");
}
WM_main_add_notifier(NC_OBJECT | ND_DRAW, nullptr);
return OPERATOR_FINISHED;
}
} // namespace snap_curves_to_surface
static void CURVES_OT_snap_curves_to_surface(wmOperatorType *ot)
{
using namespace snap_curves_to_surface;
ot->name = "Snap Curves to Surface";
ot->idname = "CURVES_OT_snap_curves_to_surface";
ot->description = "Move curves so that the first point is exactly on the surface mesh";
ot->poll = snap_curves_to_surface_poll;
ot->exec = snap_curves_to_surface_exec;
ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
static const EnumPropertyItem attach_mode_items[] = {
{static_cast<int>(AttachMode::Nearest),
"NEAREST",
0,
"Nearest",
"Find the closest point on the surface for the root point of every curve and move the root "
"there"},
{static_cast<int>(AttachMode::Deform),
"DEFORM",
0,
"Deform",
"Re-attach curves to a deformed surface using the existing attachment information. This "
"only works when the topology of the surface mesh has not changed"},
{0, nullptr, 0, nullptr, nullptr},
};
RNA_def_enum(ot->srna,
"attach_mode",
attach_mode_items,
static_cast<int>(AttachMode::Nearest),
"Attach Mode",
"How to find the point on the surface to attach to");
}
bool selection_operator_poll(bContext *C)
{
const Object *object = CTX_data_active_object(C);
if (object == nullptr) {
return false;
}
if (object->type != OB_CURVES) {
return false;
}
if (!BKE_id_is_editable(CTX_data_main(C), static_cast<const ID *>(object->data))) {
return false;
}
return true;
}
namespace set_selection_domain {
static int curves_set_selection_domain_exec(bContext *C, wmOperator *op)
{
const eAttrDomain domain = eAttrDomain(RNA_enum_get(op->ptr, "domain"));
for (Curves *curves_id : get_unique_editable_curves(*C)) {
if (curves_id->selection_domain == domain && (curves_id->flag & CV_SCULPT_SELECTION_ENABLED)) {
continue;
}
const eAttrDomain old_domain = eAttrDomain(curves_id->selection_domain);
curves_id->selection_domain = domain;
curves_id->flag |= CV_SCULPT_SELECTION_ENABLED;
CurveComponent component;
component.replace(curves_id, GeometryOwnershipType::Editable);
CurvesGeometry &curves = CurvesGeometry::wrap(curves_id->geometry);
if (old_domain == ATTR_DOMAIN_POINT && domain == ATTR_DOMAIN_CURVE) {
VArray<float> curve_selection = curves.adapt_domain(
curves.selection_point_float(), ATTR_DOMAIN_POINT, ATTR_DOMAIN_CURVE);
curve_selection.materialize(curves.selection_curve_float_for_write());
component.attribute_try_delete(".selection_point_float");
}
else if (old_domain == ATTR_DOMAIN_CURVE && domain == ATTR_DOMAIN_POINT) {
VArray<float> point_selection = curves.adapt_domain(
curves.selection_curve_float(), ATTR_DOMAIN_CURVE, ATTR_DOMAIN_POINT);
point_selection.materialize(curves.selection_point_float_for_write());
component.attribute_try_delete(".selection_curve_float");
}
/* Use #ID_RECALC_GEOMETRY instead of #ID_RECALC_SELECT because it is handled as a generic
* attribute for now. */
DEG_id_tag_update(&curves_id->id, ID_RECALC_GEOMETRY);
WM_event_add_notifier(C, NC_GEOM | ND_DATA, curves_id);
}
WM_main_add_notifier(NC_SPACE | ND_SPACE_VIEW3D, nullptr);
return OPERATOR_FINISHED;
}
} // namespace set_selection_domain
static void CURVES_OT_set_selection_domain(wmOperatorType *ot)
{
PropertyRNA *prop;
ot->name = "Set Select Mode";
ot->idname = __func__;
ot->description = "Change the mode used for selection masking in curves sculpt mode";
ot->exec = set_selection_domain::curves_set_selection_domain_exec;
ot->poll = selection_operator_poll;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
ot->prop = prop = RNA_def_enum(
ot->srna, "domain", rna_enum_attribute_curves_domain_items, 0, "Domain", "");
RNA_def_property_flag(prop, (PropertyFlag)(PROP_HIDDEN | PROP_SKIP_SAVE));
}
namespace disable_selection {
static int curves_disable_selection_exec(bContext *C, wmOperator *UNUSED(op))
{
for (Curves *curves_id : get_unique_editable_curves(*C)) {
curves_id->flag &= ~CV_SCULPT_SELECTION_ENABLED;
/* Use #ID_RECALC_GEOMETRY instead of #ID_RECALC_SELECT because it is handled as a generic
* attribute for now. */
DEG_id_tag_update(&curves_id->id, ID_RECALC_GEOMETRY);
WM_event_add_notifier(C, NC_GEOM | ND_DATA, curves_id);
}
WM_main_add_notifier(NC_SPACE | ND_SPACE_VIEW3D, nullptr);
return OPERATOR_FINISHED;
}
} // namespace disable_selection
static void CURVES_OT_disable_selection(wmOperatorType *ot)
{
ot->name = "Disable Selection";
ot->idname = __func__;
ot->description = "Disable the drawing of influence of selection in sculpt mode";
ot->exec = disable_selection::curves_disable_selection_exec;
ot->poll = selection_operator_poll;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
}
static bool varray_contains_nonzero(const VArray<float> &data)
{
bool contains_nonzero = false;
devirtualize_varray(data, [&](const auto array) {
for (const int i : data.index_range()) {
if (array[i] != 0.0f) {
contains_nonzero = true;
break;
}
}
});
return contains_nonzero;
}
bool has_anything_selected(const Curves &curves_id)
{
const CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
switch (curves_id.selection_domain) {
case ATTR_DOMAIN_POINT:
return varray_contains_nonzero(curves.selection_point_float());
case ATTR_DOMAIN_CURVE:
return varray_contains_nonzero(curves.selection_curve_float());
}
BLI_assert_unreachable();
return false;
}
static bool any_point_selected(const CurvesGeometry &curves)
{
return varray_contains_nonzero(curves.selection_point_float());
}
static bool any_point_selected(const Span<Curves *> curves_ids)
{
for (const Curves *curves_id : curves_ids) {
if (any_point_selected(CurvesGeometry::wrap(curves_id->geometry))) {
return true;
}
}
return false;
}
namespace select_all {
static void invert_selection(MutableSpan<float> selection)
{
threading::parallel_for(selection.index_range(), 2048, [&](IndexRange range) {
for (const int i : range) {
selection[i] = 1.0f - selection[i];
}
});
}
static int select_all_exec(bContext *C, wmOperator *op)
{
int action = RNA_enum_get(op->ptr, "action");
VectorSet<Curves *> unique_curves = get_unique_editable_curves(*C);
if (action == SEL_TOGGLE) {
action = any_point_selected(unique_curves) ? SEL_DESELECT : SEL_SELECT;
}
for (Curves *curves_id : unique_curves) {
if (action == SEL_SELECT) {
/* As an optimization, just remove the selection attributes when everything is selected. */
CurveComponent component;
component.replace(curves_id, GeometryOwnershipType::Editable);
component.attribute_try_delete(".selection_point_float");
component.attribute_try_delete(".selection_curve_float");
}
else {
CurvesGeometry &curves = CurvesGeometry::wrap(curves_id->geometry);
MutableSpan<float> selection = curves_id->selection_domain == ATTR_DOMAIN_POINT ?
curves.selection_point_float_for_write() :
curves.selection_curve_float_for_write();
if (action == SEL_DESELECT) {
selection.fill(0.0f);
}
else if (action == SEL_INVERT) {
invert_selection(selection);
}
}
/* Use #ID_RECALC_GEOMETRY instead of #ID_RECALC_SELECT because it is handled as a generic
* attribute for now. */
DEG_id_tag_update(&curves_id->id, ID_RECALC_GEOMETRY);
WM_event_add_notifier(C, NC_GEOM | ND_DATA, curves_id);
}
return OPERATOR_FINISHED;
}
} // namespace select_all
static void SCULPT_CURVES_OT_select_all(wmOperatorType *ot)
{
ot->name = "(De)select All";
ot->idname = __func__;
ot->description = "(De)select all control points";
ot->exec = select_all::select_all_exec;
ot->poll = selection_operator_poll;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
WM_operator_properties_select_all(ot);
}
} // namespace blender::ed::curves
void ED_operatortypes_curves()
{
using namespace blender::ed::curves;
WM_operatortype_append(CURVES_OT_convert_to_particle_system);
WM_operatortype_append(CURVES_OT_convert_from_particle_system);
WM_operatortype_append(CURVES_OT_snap_curves_to_surface);
WM_operatortype_append(CURVES_OT_set_selection_domain);
WM_operatortype_append(SCULPT_CURVES_OT_select_all);
WM_operatortype_append(CURVES_OT_disable_selection);
}