This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/gpu/shaders/material/gpu_shader_material_principled.glsl
Jeroen Bakker be2bc97eba EEVEE: Render Passes
This patch adds new render passes to EEVEE. These passes include:

* Emission
* Diffuse Light
* Diffuse Color
* Glossy Light
* Glossy Color
* Environment
* Volume Scattering
* Volume Transmission
* Bloom
* Shadow

With these passes it will be possible to use EEVEE effectively for
compositing. During development we kept a close eye on how to get similar
results compared to cycles render passes there are some differences that
are related to how EEVEE works. For EEVEE we combined the passes to
`Diffuse` and `Specular`. There are no transmittance or sss passes anymore.
Cycles will be changed accordingly.

Cycles volume transmittance is added to multiple surface col passes. For
EEVEE we left the volume transmittance as a separate pass.

Known Limitations

* All materials that use alpha blending will not be rendered in the render
  passes. Other transparency modes are supported.
* More GPU memory is required to store the render passes. When rendering
  a HD image with all render passes enabled at max extra 570MB GPU memory is
  required.

Implementation Details

An overview of render passes have been described in
https://wiki.blender.org/wiki/Source/Render/EEVEE/RenderPasses

Future Developments

* In this implementation the materials are re-rendered for Diffuse/Glossy
  and Emission passes. We could use multi target rendering to improve the
  render speed.
* Other passes can be added later
* Don't render material based passes when only requesting AO or Shadow.
* Add more passes to the system. These could include Cryptomatte, AOV's, Vector,
  ObjectID, MaterialID, UV.

Reviewed By: Clément Foucault

Differential Revision: https://developer.blender.org/D6331
2020-02-21 11:13:43 +01:00

453 lines
18 KiB
GLSL

#ifndef VOLUMETRICS
vec3 tint_from_color(vec3 color)
{
float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
return (lum > 0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
}
void convert_metallic_to_specular_tinted(vec3 basecol,
vec3 basecol_tint,
float metallic,
float specular_fac,
float specular_tint,
out vec3 diffuse,
out vec3 f0)
{
vec3 tmp_col = mix(vec3(1.0), basecol_tint, specular_tint);
f0 = mix((0.08 * specular_fac) * tmp_col, basecol, metallic);
diffuse = basecol * (1.0 - metallic);
}
/* Output sheen is to be multiplied by sheen_color. */
void principled_sheen(float NV,
vec3 basecol_tint,
float sheen,
float sheen_tint,
out float out_sheen,
out vec3 sheen_color)
{
float f = 1.0 - NV;
/* Temporary fix for T59784. Normal map seems to contain NaNs for tangent space normal maps,
* therefore we need to clamp value. */
f = clamp(f, 0.0, 1.0);
/* Empirical approximation (manual curve fitting). Can be refined. */
out_sheen = f * f * f * 0.077 + f * 0.01 + 0.00026;
sheen_color = sheen * mix(vec3(1.0), basecol_tint, sheen_tint);
}
void node_bsdf_principled(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
N = normalize(N);
ior = max(ior, 1e-5);
metallic = saturate(metallic);
transmission = saturate(transmission);
float m_transmission = 1.0 - transmission;
float dielectric = 1.0 - metallic;
transmission *= dielectric;
sheen *= dielectric;
subsurface_color *= dielectric;
vec3 diffuse, f0, out_diff, out_spec, out_refr, ssr_spec, sheen_color;
float out_sheen;
vec3 ctint = tint_from_color(base_color.rgb);
convert_metallic_to_specular_tinted(
base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
float NV = dot(N, cameraVec);
principled_sheen(NV, ctint, sheen, sheen_tint, out_sheen, sheen_color);
vec3 f90 = mix(vec3(1.0), f0, (1.0 - specular) * metallic);
/* Far from being accurate, but 2 glossy evaluation is too expensive.
* Most noticeable difference is at grazing angles since the bsdf lut
* f0 color interpolation is done on top of this interpolation. */
vec3 f0_glass = mix(vec3(1.0), base_color.rgb, specular_tint);
float fresnel = F_eta(ior, NV);
vec3 spec_col = F_color_blend(ior, fresnel, f0_glass) * fresnel;
f0 = mix(f0, spec_col, transmission);
f90 = mix(f90, spec_col, transmission);
/* Really poor approximation but needed to workaround issues with renderpasses. */
spec_col = mix(vec3(1.0), spec_col, transmission);
/* Match cycles. */
spec_col += float(clearcoat > 1e-5);
vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
float sss_scalef = avg(sss_scale) * subsurface;
eevee_closure_principled(N,
mixed_ss_base_color,
f0,
f90,
int(ssr_id),
roughness,
CN,
clearcoat * 0.25,
clearcoat_roughness,
1.0,
sss_scalef,
ior,
true,
out_diff,
out_spec,
out_refr,
ssr_spec);
vec3 refr_color = base_color.rgb;
refr_color *= (refractionDepth > 0.0) ? refr_color :
vec3(1.0); /* Simulate 2 transmission event */
refr_color *= saturate(1.0 - fresnel) * transmission;
sheen_color *= m_transmission;
mixed_ss_base_color *= m_transmission;
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(refr_color, out_refr * refr_color);
result.radiance += render_pass_glossy_mask(spec_col, out_spec);
/* Coarse approx. */
result.radiance += render_pass_diffuse_mask(sheen_color, out_diff * out_sheen * sheen_color);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
mixed_ss_base_color *= alpha;
closure_load_sss_data(sss_scalef, out_diff, mixed_ss_base_color, int(sss_id), result);
result.transmittance = vec3(1.0 - alpha);
}
void node_bsdf_principled_dielectric(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
N = normalize(N);
metallic = saturate(metallic);
float dielectric = 1.0 - metallic;
vec3 diffuse, f0, out_diff, out_spec, ssr_spec, sheen_color;
float out_sheen;
vec3 ctint = tint_from_color(base_color.rgb);
convert_metallic_to_specular_tinted(
base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
vec3 f90 = mix(vec3(1.0), f0, (1.0 - specular) * metallic);
float NV = dot(N, cameraVec);
principled_sheen(NV, ctint, sheen, sheen_tint, out_sheen, sheen_color);
eevee_closure_default(
N, diffuse, f0, f90, int(ssr_id), roughness, 1.0, true, out_diff, out_spec, ssr_spec);
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(vec3(1.0), out_spec);
result.radiance += render_pass_diffuse_mask(sheen_color, out_diff * out_sheen * sheen_color);
result.radiance += render_pass_diffuse_mask(diffuse, out_diff * diffuse);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
result.transmittance = vec3(1.0 - alpha);
}
void node_bsdf_principled_metallic(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
N = normalize(N);
vec3 out_spec, ssr_spec;
vec3 f90 = mix(vec3(1.0), base_color.rgb, (1.0 - specular) * metallic);
eevee_closure_glossy(
N, base_color.rgb, f90, int(ssr_id), roughness, 1.0, true, out_spec, ssr_spec);
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(vec3(1.0), out_spec);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
result.transmittance = vec3(1.0 - alpha);
}
void node_bsdf_principled_clearcoat(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
vec3 out_spec, ssr_spec;
N = normalize(N);
vec3 f90 = mix(vec3(1.0), base_color.rgb, (1.0 - specular) * metallic);
eevee_closure_clearcoat(N,
base_color.rgb,
f90,
int(ssr_id),
roughness,
CN,
clearcoat * 0.25,
clearcoat_roughness,
1.0,
true,
out_spec,
ssr_spec);
/* Match cycles. */
float spec_col = 1.0 + float(clearcoat > 1e-5);
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(vec3(spec_col), out_spec);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
result.transmittance = vec3(1.0 - alpha);
}
void node_bsdf_principled_subsurface(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
metallic = saturate(metallic);
N = normalize(N);
vec3 diffuse, f0, out_diff, out_spec, ssr_spec, sheen_color;
float out_sheen;
vec3 ctint = tint_from_color(base_color.rgb);
convert_metallic_to_specular_tinted(
base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
subsurface_color = subsurface_color * (1.0 - metallic);
vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
float sss_scalef = avg(sss_scale) * subsurface;
float NV = dot(N, cameraVec);
principled_sheen(NV, ctint, sheen, sheen_tint, out_sheen, sheen_color);
vec3 f90 = mix(vec3(1.0), base_color.rgb, (1.0 - specular) * metallic);
eevee_closure_skin(N,
mixed_ss_base_color,
f0,
f90,
int(ssr_id),
roughness,
1.0,
sss_scalef,
true,
out_diff,
out_spec,
ssr_spec);
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(vec3(1.0), out_spec);
result.radiance += render_pass_diffuse_mask(sheen_color, out_diff * out_sheen * sheen_color);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
mixed_ss_base_color *= alpha;
closure_load_sss_data(sss_scalef, out_diff, mixed_ss_base_color, int(sss_id), result);
result.transmittance = vec3(1.0 - alpha);
}
void node_bsdf_principled_glass(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
vec3 I,
float ssr_id,
float sss_id,
vec3 sss_scale,
out Closure result)
{
ior = max(ior, 1e-5);
N = normalize(N);
vec3 f0, out_spec, out_refr, ssr_spec;
f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
eevee_closure_glass(N,
vec3(1.0),
vec3(1.0),
int(ssr_id),
roughness,
1.0,
ior,
true,
out_spec,
out_refr,
ssr_spec);
vec3 refr_color = base_color.rgb;
refr_color *= (refractionDepth > 0.0) ? refr_color :
vec3(1.0); /* Simulate 2 transmission events */
float fresnel = F_eta(ior, dot(N, cameraVec));
vec3 spec_col = F_color_blend(ior, fresnel, f0);
spec_col *= fresnel;
refr_color *= (1.0 - fresnel);
ssr_spec *= spec_col;
result = CLOSURE_DEFAULT;
result.radiance = render_pass_glossy_mask(refr_color, out_refr * refr_color);
result.radiance += render_pass_glossy_mask(spec_col, out_spec * spec_col);
result.radiance += render_pass_emission_mask(emission.rgb);
result.radiance *= alpha;
closure_load_ssr_data(ssr_spec * alpha, roughness, N, viewCameraVec, int(ssr_id), result);
result.transmittance = vec3(1.0 - alpha);
}
#else
/* Stub principled because it is not compatible with volumetrics. */
# define node_bsdf_principled
# define node_bsdf_principled_dielectric
# define node_bsdf_principled_metallic
# define node_bsdf_principled_clearcoat
# define node_bsdf_principled_subsurface
# define node_bsdf_principled_glass
#endif