This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_field.hh
Hans Goudey 40c3b8836b Geometry Nodes: Make Random ID a builtin attribute, remove sockets
In order to address feedback that the "Stable ID" was not easy enough
to use, remove the "Stable ID" output from the distribution node and
the input from the instance on points node. Instead, the nodes write
or read a builtin named attribute called `id`. In the future we may
add more attributes like `edge_id` and `face_id`.

The downside is that more behavior is invisible, which is les
expected now that most attributes are passed around with node links.
This behavior will have to be explained in the manual.

The random value node's "ID" input that had an implicit index input
is converted to a special implicit input that uses the `id` attribute
if possible, but otherwise defaults to the index. There is no way to
tell in the UI which it uses, except by knowing that rule and checking
in the spreadsheet for the id attribute.

Because it isn't always possible to create stable randomness, this
attribute does not always exist, and it will be possible to remove it
when we have the attribute remove node back, to improve performance.

Differential Revision: https://developer.blender.org/D12903
2021-10-20 10:54:54 -05:00

540 lines
16 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup fn
*
* A #Field represents a function that outputs a value based on an arbitrary number of inputs. The
* inputs for a specific field evaluation are provided by a #FieldContext.
*
* A typical example is a field that computes a displacement vector for every vertex on a mesh
* based on its position.
*
* Fields can be build, composed and evaluated at run-time. They are stored in a directed tree
* graph data structure, whereby each node is a #FieldNode and edges are dependencies. A #FieldNode
* has an arbitrary number of inputs and at least one output and a #Field references a specific
* output of a #FieldNode. The inputs of a #FieldNode are other fields.
*
* There are two different types of field nodes:
* - #FieldInput: Has no input and exactly one output. It represents an input to the entire field
* when it is evaluated. During evaluation, the value of this input is based on a #FieldContext.
* - #FieldOperation: Has an arbitrary number of field inputs and at least one output. Its main
* use is to compose multiple existing fields into new fields.
*
* When fields are evaluated, they are converted into a multi-function procedure which allows
* efficient computation. In the future, we might support different field evaluation mechanisms for
* e.g. the following scenarios:
* - Latency of a single evaluation is more important than throughput.
* - Evaluation should happen on other hardware like GPUs.
*
* Whenever possible, multiple fields should be evaluated together to avoid duplicate work when
* they share common sub-fields and a common context.
*/
#include "BLI_function_ref.hh"
#include "BLI_string_ref.hh"
#include "BLI_vector.hh"
#include "FN_generic_virtual_array.hh"
#include "FN_multi_function_builder.hh"
#include "FN_multi_function_procedure.hh"
#include "FN_multi_function_procedure_builder.hh"
#include "FN_multi_function_procedure_executor.hh"
namespace blender::fn {
class FieldInput;
/**
* A node in a field-tree. It has at least one output that can be referenced by fields.
*/
class FieldNode {
private:
bool is_input_;
/**
* True when this node is a #FieldInput or (potentially indirectly) depends on one. This could
* always be derived again later by traversing the field-tree, but keeping track of it while the
* field is built is cheaper.
*
* If this is false, the field is constant. Note that even when this is true, the field may be
* constant when all inputs are constant.
*/
bool depends_on_input_;
public:
FieldNode(bool is_input, bool depends_on_input);
virtual ~FieldNode() = default;
virtual const CPPType &output_cpp_type(int output_index) const = 0;
bool is_input() const;
bool is_operation() const;
bool depends_on_input() const;
/**
* Invoke callback for every field input. It might be called multiple times for the same input.
* The caller is responsible for deduplication if required.
*/
virtual void foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const = 0;
virtual uint64_t hash() const;
virtual bool is_equal_to(const FieldNode &other) const;
};
/**
* Common base class for fields to avoid declaring the same methods for #GField and #GFieldRef.
*/
template<typename NodePtr> class GFieldBase {
protected:
NodePtr node_ = nullptr;
int node_output_index_ = 0;
GFieldBase(NodePtr node, const int node_output_index)
: node_(std::move(node)), node_output_index_(node_output_index)
{
}
public:
GFieldBase() = default;
operator bool() const
{
return node_ != nullptr;
}
friend bool operator==(const GFieldBase &a, const GFieldBase &b)
{
/* Two nodes can compare equal even when their pointer is not the same. For example, two
* "Position" nodes are the same. */
return *a.node_ == *b.node_ && a.node_output_index_ == b.node_output_index_;
}
uint64_t hash() const
{
return get_default_hash_2(*node_, node_output_index_);
}
const fn::CPPType &cpp_type() const
{
return node_->output_cpp_type(node_output_index_);
}
const FieldNode &node() const
{
return *node_;
}
int node_output_index() const
{
return node_output_index_;
}
};
/**
* A field whose output type is only known at run-time.
*/
class GField : public GFieldBase<std::shared_ptr<FieldNode>> {
public:
GField() = default;
GField(std::shared_ptr<FieldNode> node, const int node_output_index = 0)
: GFieldBase<std::shared_ptr<FieldNode>>(std::move(node), node_output_index)
{
}
};
/**
* Same as #GField but is cheaper to copy/move around, because it does not contain a
* #std::shared_ptr.
*/
class GFieldRef : public GFieldBase<const FieldNode *> {
public:
GFieldRef() = default;
GFieldRef(const GField &field)
: GFieldBase<const FieldNode *>(&field.node(), field.node_output_index())
{
}
GFieldRef(const FieldNode &node, const int node_output_index = 0)
: GFieldBase<const FieldNode *>(&node, node_output_index)
{
}
};
/**
* A typed version of #GField. It has the same memory layout as #GField.
*/
template<typename T> class Field : public GField {
public:
Field() = default;
Field(GField field) : GField(std::move(field))
{
BLI_assert(this->cpp_type().template is<T>());
}
Field(std::shared_ptr<FieldNode> node, const int node_output_index = 0)
: Field(GField(std::move(node), node_output_index))
{
}
};
/**
* A #FieldNode that allows composing existing fields into new fields.
*/
class FieldOperation : public FieldNode {
/**
* The multi-function used by this node. It is optionally owned.
* Multi-functions with mutable or vector parameters are not supported currently.
*/
std::shared_ptr<const MultiFunction> owned_function_;
const MultiFunction *function_;
/** Inputs to the operation. */
blender::Vector<GField> inputs_;
public:
FieldOperation(std::shared_ptr<const MultiFunction> function, Vector<GField> inputs = {});
FieldOperation(const MultiFunction &function, Vector<GField> inputs = {});
Span<GField> inputs() const;
const MultiFunction &multi_function() const;
const CPPType &output_cpp_type(int output_index) const override;
void foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const override;
};
class FieldContext;
/**
* A #FieldNode that represents an input to the entire field-tree.
*/
class FieldInput : public FieldNode {
protected:
const CPPType *type_;
std::string debug_name_;
public:
FieldInput(const CPPType &type, std::string debug_name = "");
/**
* Get the value of this specific input based on the given context. The returned virtual array,
* should live at least as long as the passed in #scope. May return null.
*/
virtual const GVArray *get_varray_for_context(const FieldContext &context,
IndexMask mask,
ResourceScope &scope) const = 0;
virtual std::string socket_inspection_name() const;
blender::StringRef debug_name() const;
const CPPType &cpp_type() const;
const CPPType &output_cpp_type(int output_index) const override;
void foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const override;
};
/**
* Provides inputs for a specific field evaluation.
*/
class FieldContext {
public:
~FieldContext() = default;
virtual const GVArray *get_varray_for_input(const FieldInput &field_input,
IndexMask mask,
ResourceScope &scope) const;
};
/**
* Utility class that makes it easier to evaluate fields.
*/
class FieldEvaluator : NonMovable, NonCopyable {
private:
struct OutputPointerInfo {
void *dst = nullptr;
/* When a destination virtual array is provided for an input, this is
* unnecessary, otherwise this is used to construct the required virtual array. */
void (*set)(void *dst, const GVArray &varray, ResourceScope &scope) = nullptr;
};
ResourceScope scope_;
const FieldContext &context_;
const IndexMask mask_;
Vector<GField> fields_to_evaluate_;
Vector<GVMutableArray *> dst_varrays_;
Vector<const GVArray *> evaluated_varrays_;
Vector<OutputPointerInfo> output_pointer_infos_;
bool is_evaluated_ = false;
public:
/** Takes #mask by pointer because the mask has to live longer than the evaluator. */
FieldEvaluator(const FieldContext &context, const IndexMask *mask)
: context_(context), mask_(*mask)
{
}
/** Construct a field evaluator for all indices less than #size. */
FieldEvaluator(const FieldContext &context, const int64_t size) : context_(context), mask_(size)
{
}
~FieldEvaluator()
{
/* While this assert isn't strictly necessary, and could be replaced with a warning,
* it will catch cases where someone forgets to call #evaluate(). */
BLI_assert(is_evaluated_);
}
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable virtual array that the evaluated result for this field is be written into.
*/
int add_with_destination(GField field, GVMutableArray &dst);
/** Same as #add_with_destination but typed. */
template<typename T> int add_with_destination(Field<T> field, VMutableArray<T> &dst)
{
GVMutableArray &varray = scope_.construct<GVMutableArray_For_VMutableArray<T>>(dst);
return this->add_with_destination(GField(std::move(field)), varray);
}
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable span that the evaluated result for this field is be written into.
* \note: When the output may only be used as a single value, the version of this function with
* a virtual array result array should be used.
*/
int add_with_destination(GField field, GMutableSpan dst);
/**
* \param field: Field to add to the evaluator.
* \param dst: Mutable span that the evaluated result for this field is be written into.
* \note: When the output may only be used as a single value, the version of this function with
* a virtual array result array should be used.
*/
template<typename T> int add_with_destination(Field<T> field, MutableSpan<T> dst)
{
GVMutableArray &varray = scope_.construct<GVMutableArray_For_MutableSpan<T>>(dst);
return this->add_with_destination(std::move(field), varray);
}
int add(GField field, const GVArray **varray_ptr);
/**
* \param field: Field to add to the evaluator.
* \param varray_ptr: Once #evaluate is called, the resulting virtual array will be will be
* assigned to the given position.
* \return Index of the field in the evaluator which can be used in the #get_evaluated methods.
*/
template<typename T> int add(Field<T> field, const VArray<T> **varray_ptr)
{
const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
dst_varrays_.append(nullptr);
output_pointer_infos_.append(
OutputPointerInfo{varray_ptr, [](void *dst, const GVArray &varray, ResourceScope &scope) {
*(const VArray<T> **)dst = &*scope.construct<GVArray_Typed<T>>(varray);
}});
return field_index;
}
/**
* \return Index of the field in the evaluator which can be used in the #get_evaluated methods.
*/
int add(GField field);
/**
* Evaluate all fields on the evaluator. This can only be called once.
*/
void evaluate();
const GVArray &get_evaluated(const int field_index) const
{
BLI_assert(is_evaluated_);
return *evaluated_varrays_[field_index];
}
template<typename T> const VArray<T> &get_evaluated(const int field_index)
{
const GVArray &varray = this->get_evaluated(field_index);
GVArray_Typed<T> &typed_varray = scope_.construct<GVArray_Typed<T>>(varray);
return *typed_varray;
}
/**
* Retrieve the output of an evaluated boolean field and convert it to a mask, which can be used
* to avoid calculations for unnecessary elements later on. The evaluator will own the indices in
* some cases, so it must live at least as long as the returned mask.
*/
IndexMask get_evaluated_as_mask(const int field_index);
};
Vector<const GVArray *> evaluate_fields(ResourceScope &scope,
Span<GFieldRef> fields_to_evaluate,
IndexMask mask,
const FieldContext &context,
Span<GVMutableArray *> dst_varrays = {});
/* -------------------------------------------------------------------- */
/** \name Utility functions for simple field creation and evaluation
* \{ */
void evaluate_constant_field(const GField &field, void *r_value);
template<typename T> T evaluate_constant_field(const Field<T> &field)
{
T value;
value.~T();
evaluate_constant_field(field, &value);
return value;
}
template<typename T> Field<T> make_constant_field(T value)
{
auto constant_fn = std::make_unique<fn::CustomMF_Constant<T>>(std::forward<T>(value));
auto operation = std::make_shared<FieldOperation>(std::move(constant_fn));
return Field<T>{GField{std::move(operation), 0}};
}
GField make_field_constant_if_possible(GField field);
class IndexFieldInput final : public FieldInput {
public:
IndexFieldInput();
static GVArray *get_index_varray(IndexMask mask, ResourceScope &scope);
const GVArray *get_varray_for_context(const FieldContext &context,
IndexMask mask,
ResourceScope &scope) const final;
uint64_t hash() const override;
bool is_equal_to(const fn::FieldNode &other) const override;
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldNode Inline Methods
* \{ */
inline FieldNode::FieldNode(bool is_input, bool depends_on_input)
: is_input_(is_input), depends_on_input_(depends_on_input)
{
}
inline bool FieldNode::is_input() const
{
return is_input_;
}
inline bool FieldNode::is_operation() const
{
return !is_input_;
}
inline bool FieldNode::depends_on_input() const
{
return depends_on_input_;
}
inline uint64_t FieldNode::hash() const
{
return get_default_hash(this);
}
inline bool FieldNode::is_equal_to(const FieldNode &other) const
{
return this == &other;
}
inline bool operator==(const FieldNode &a, const FieldNode &b)
{
return a.is_equal_to(b);
}
inline bool operator!=(const FieldNode &a, const FieldNode &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldOperation Inline Methods
* \{ */
inline Span<GField> FieldOperation::inputs() const
{
return inputs_;
}
inline const MultiFunction &FieldOperation::multi_function() const
{
return *function_;
}
inline const CPPType &FieldOperation::output_cpp_type(int output_index) const
{
int output_counter = 0;
for (const int param_index : function_->param_indices()) {
MFParamType param_type = function_->param_type(param_index);
if (param_type.is_output()) {
if (output_counter == output_index) {
return param_type.data_type().single_type();
}
output_counter++;
}
}
BLI_assert_unreachable();
return CPPType::get<float>();
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldInput Inline Methods
* \{ */
inline std::string FieldInput::socket_inspection_name() const
{
return debug_name_;
}
inline StringRef FieldInput::debug_name() const
{
return debug_name_;
}
inline const CPPType &FieldInput::cpp_type() const
{
return *type_;
}
inline const CPPType &FieldInput::output_cpp_type(int output_index) const
{
BLI_assert(output_index == 0);
UNUSED_VARS_NDEBUG(output_index);
return *type_;
}
/** \} */
} // namespace blender::fn