This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_rotation.c

1945 lines
49 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
* */
/** \file blender/blenlib/intern/math_rotation.c
* \ingroup bli
*/
#include <assert.h>
#include "BLI_math.h"
#include "BLI_strict_flags.h"
/******************************** Quaternions ********************************/
/* used to test is a quat is not normalized (only used for debug prints) */
#ifdef DEBUG
# define QUAT_EPSILON 0.0001
#endif
/* convenience, avoids setting Y axis everywhere */
void unit_axis_angle(float axis[3], float *angle)
{
axis[0] = 0.0f;
axis[1] = 1.0f;
axis[2] = 0.0f;
*angle = 0.0f;
}
void unit_qt(float q[4])
{
q[0] = 1.0f;
q[1] = q[2] = q[3] = 0.0f;
}
void copy_qt_qt(float q1[4], const float q2[4])
{
q1[0] = q2[0];
q1[1] = q2[1];
q1[2] = q2[2];
q1[3] = q2[3];
}
bool is_zero_qt(const float q[4])
{
return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0);
}
void mul_qt_qtqt(float q[4], const float q1[4], const float q2[4])
{
float t0, t1, t2;
t0 = q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2] - q1[3] * q2[3];
t1 = q1[0] * q2[1] + q1[1] * q2[0] + q1[2] * q2[3] - q1[3] * q2[2];
t2 = q1[0] * q2[2] + q1[2] * q2[0] + q1[3] * q2[1] - q1[1] * q2[3];
q[3] = q1[0] * q2[3] + q1[3] * q2[0] + q1[1] * q2[2] - q1[2] * q2[1];
q[0] = t0;
q[1] = t1;
q[2] = t2;
}
/**
* \note:
* Assumes a unit quaternion?
*
* \note: multiplying by 3x3 matrix is ~25% faster.
*
* in fact not, but you may want to use a unit quat, read on...
*
* Shortcut for 'q v q*' when \a v is actually a quaternion.
* This removes the need for converting a vector to a quaternion,
* calculating q's conjugate and converting back to a vector.
* It also happens to be faster (17+,24* vs * 24+,32*).
* If \a q is not a unit quaternion, then \a v will be both rotated by
* the same amount as if q was a unit quaternion, and scaled by the square of
* the length of q.
*
* For people used to python mathutils, its like:
* def mul_qt_v3(q, v): (q * Quaternion((0.0, v[0], v[1], v[2])) * q.conjugated())[1:]
*/
void mul_qt_v3(const float q[4], float v[3])
{
float t0, t1, t2;
t0 = -q[1] * v[0] - q[2] * v[1] - q[3] * v[2];
t1 = q[0] * v[0] + q[2] * v[2] - q[3] * v[1];
t2 = q[0] * v[1] + q[3] * v[0] - q[1] * v[2];
v[2] = q[0] * v[2] + q[1] * v[1] - q[2] * v[0];
v[0] = t1;
v[1] = t2;
t1 = t0 * -q[1] + v[0] * q[0] - v[1] * q[3] + v[2] * q[2];
t2 = t0 * -q[2] + v[1] * q[0] - v[2] * q[1] + v[0] * q[3];
v[2] = t0 * -q[3] + v[2] * q[0] - v[0] * q[2] + v[1] * q[1];
v[0] = t1;
v[1] = t2;
}
void conjugate_qt_qt(float q1[4], const float q2[4])
{
q1[0] = q2[0];
q1[1] = -q2[1];
q1[2] = -q2[2];
q1[3] = -q2[3];
}
void conjugate_qt(float q[4])
{
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
float dot_qtqt(const float q1[4], const float q2[4])
{
return q1[0] * q2[0] + q1[1] * q2[1] + q1[2] * q2[2] + q1[3] * q2[3];
}
void invert_qt(float q[4])
{
float f = dot_qtqt(q, q);
if (f == 0.0f)
return;
conjugate_qt(q);
mul_qt_fl(q, 1.0f / f);
}
void invert_qt_qt(float q1[4], const float q2[4])
{
copy_qt_qt(q1, q2);
invert_qt(q1);
}
/* simple mult */
void mul_qt_fl(float q[4], const float f)
{
q[0] *= f;
q[1] *= f;
q[2] *= f;
q[3] *= f;
}
void sub_qt_qtqt(float q[4], const float q1[4], const float q2[4])
{
float nq2[4];
nq2[0] = -q2[0];
nq2[1] = q2[1];
nq2[2] = q2[2];
nq2[3] = q2[3];
mul_qt_qtqt(q, q1, nq2);
}
/* angular mult factor */
void mul_fac_qt_fl(float q[4], const float fac)
{
const float angle = fac * saacos(q[0]); /* quat[0] = cos(0.5 * angle), but now the 0.5 and 2.0 rule out */
const float co = cosf(angle);
const float si = sinf(angle);
q[0] = co;
normalize_v3(q + 1);
mul_v3_fl(q + 1, si);
}
/* skip error check, currently only needed by mat3_to_quat_is_ok */
static void quat_to_mat3_no_error(float m[3][3], const float q[4])
{
double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
q0 = M_SQRT2 * (double)q[0];
q1 = M_SQRT2 * (double)q[1];
q2 = M_SQRT2 * (double)q[2];
q3 = M_SQRT2 * (double)q[3];
qda = q0 * q1;
qdb = q0 * q2;
qdc = q0 * q3;
qaa = q1 * q1;
qab = q1 * q2;
qac = q1 * q3;
qbb = q2 * q2;
qbc = q2 * q3;
qcc = q3 * q3;
m[0][0] = (float)(1.0 - qbb - qcc);
m[0][1] = (float)(qdc + qab);
m[0][2] = (float)(-qdb + qac);
m[1][0] = (float)(-qdc + qab);
m[1][1] = (float)(1.0 - qaa - qcc);
m[1][2] = (float)(qda + qbc);
m[2][0] = (float)(qdb + qac);
m[2][1] = (float)(-qda + qbc);
m[2][2] = (float)(1.0 - qaa - qbb);
}
void quat_to_mat3(float m[3][3], const float q[4])
{
#ifdef DEBUG
float f;
if (!((f = dot_qtqt(q, q)) == 0.0f || (fabsf(f - 1.0f) < (float)QUAT_EPSILON))) {
fprintf(stderr, "Warning! quat_to_mat3() called with non-normalized: size %.8f *** report a bug ***\n", f);
}
#endif
quat_to_mat3_no_error(m, q);
}
void quat_to_mat4(float m[4][4], const float q[4])
{
double q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
#ifdef DEBUG
if (!((q0 = dot_qtqt(q, q)) == 0.0 || (fabs(q0 - 1.0) < QUAT_EPSILON))) {
fprintf(stderr, "Warning! quat_to_mat4() called with non-normalized: size %.8f *** report a bug ***\n", (float)q0);
}
#endif
q0 = M_SQRT2 * (double)q[0];
q1 = M_SQRT2 * (double)q[1];
q2 = M_SQRT2 * (double)q[2];
q3 = M_SQRT2 * (double)q[3];
qda = q0 * q1;
qdb = q0 * q2;
qdc = q0 * q3;
qaa = q1 * q1;
qab = q1 * q2;
qac = q1 * q3;
qbb = q2 * q2;
qbc = q2 * q3;
qcc = q3 * q3;
m[0][0] = (float)(1.0 - qbb - qcc);
m[0][1] = (float)(qdc + qab);
m[0][2] = (float)(-qdb + qac);
m[0][3] = 0.0f;
m[1][0] = (float)(-qdc + qab);
m[1][1] = (float)(1.0 - qaa - qcc);
m[1][2] = (float)(qda + qbc);
m[1][3] = 0.0f;
m[2][0] = (float)(qdb + qac);
m[2][1] = (float)(-qda + qbc);
m[2][2] = (float)(1.0 - qaa - qbb);
m[2][3] = 0.0f;
m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
void mat3_to_quat(float q[4], float wmat[3][3])
{
double tr, s;
float mat[3][3];
/* work on a copy */
copy_m3_m3(mat, wmat);
normalize_m3(mat); /* this is needed AND a 'normalize_qt' in the end */
tr = 0.25 * (double)(1.0f + mat[0][0] + mat[1][1] + mat[2][2]);
if (tr > (double)1e-4f) {
s = sqrt(tr);
q[0] = (float)s;
s = 1.0 / (4.0 * s);
q[1] = (float)((double)(mat[1][2] - mat[2][1]) * s);
q[2] = (float)((double)(mat[2][0] - mat[0][2]) * s);
q[3] = (float)((double)(mat[0][1] - mat[1][0]) * s);
}
else {
if (mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) {
s = 2.0f * sqrtf(1.0f + mat[0][0] - mat[1][1] - mat[2][2]);
q[1] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(mat[1][2] - mat[2][1]) * s);
q[2] = (float)((double)(mat[1][0] + mat[0][1]) * s);
q[3] = (float)((double)(mat[2][0] + mat[0][2]) * s);
}
else if (mat[1][1] > mat[2][2]) {
s = 2.0f * sqrtf(1.0f + mat[1][1] - mat[0][0] - mat[2][2]);
q[2] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(mat[2][0] - mat[0][2]) * s);
q[1] = (float)((double)(mat[1][0] + mat[0][1]) * s);
q[3] = (float)((double)(mat[2][1] + mat[1][2]) * s);
}
else {
s = 2.0f * sqrtf(1.0f + mat[2][2] - mat[0][0] - mat[1][1]);
q[3] = (float)(0.25 * s);
s = 1.0 / s;
q[0] = (float)((double)(mat[0][1] - mat[1][0]) * s);
q[1] = (float)((double)(mat[2][0] + mat[0][2]) * s);
q[2] = (float)((double)(mat[2][1] + mat[1][2]) * s);
}
}
normalize_qt(q);
}
void mat4_to_quat(float q[4], float m[4][4])
{
float mat[3][3];
copy_m3_m4(mat, m);
mat3_to_quat(q, mat);
}
void mat3_to_quat_is_ok(float q[4], float wmat[3][3])
{
float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3];
/* work on a copy */
copy_m3_m3(mat, wmat);
normalize_m3(mat);
/* rotate z-axis of matrix to z-axis */
nor[0] = mat[2][1]; /* cross product with (0,0,1) */
nor[1] = -mat[2][0];
nor[2] = 0.0;
normalize_v3(nor);
co = mat[2][2];
angle = 0.5f * saacos(co);
co = cosf(angle);
si = sinf(angle);
q1[0] = co;
q1[1] = -nor[0] * si; /* negative here, but why? */
q1[2] = -nor[1] * si;
q1[3] = -nor[2] * si;
/* rotate back x-axis from mat, using inverse q1 */
quat_to_mat3_no_error(matr, q1);
invert_m3_m3(matn, matr);
mul_m3_v3(matn, mat[0]);
/* and align x-axes */
angle = (float)(0.5 * atan2(mat[0][1], mat[0][0]));
co = cosf(angle);
si = sinf(angle);
q2[0] = co;
q2[1] = 0.0f;
q2[2] = 0.0f;
q2[3] = si;
mul_qt_qtqt(q, q1, q2);
}
float normalize_qt(float q[4])
{
float len;
len = sqrtf(dot_qtqt(q, q));
if (len != 0.0f) {
mul_qt_fl(q, 1.0f / len);
}
else {
q[1] = 1.0f;
q[0] = q[2] = q[3] = 0.0f;
}
return len;
}
float normalize_qt_qt(float r[4], const float q[4])
{
copy_qt_qt(r, q);
return normalize_qt(r);
}
/* note: expects vectors to be normalized */
void rotation_between_vecs_to_quat(float q[4], const float v1[3], const float v2[3])
{
float axis[3];
cross_v3_v3v3(axis, v1, v2);
if (normalize_v3(axis) > FLT_EPSILON) {
float angle;
angle = angle_normalized_v3v3(v1, v2);
axis_angle_normalized_to_quat(q, axis, angle);
}
else {
/* degenerate case */
if (dot_v3v3(v1, v2) > 0.0f) {
/* Same vectors, zero rotation... */
unit_qt(q);
}
else {
/* Colinear but opposed vectors, 180 rotation... */
ortho_v3_v3(axis, v1);
axis_angle_to_quat(q, axis, (float)M_PI);
}
}
}
void rotation_between_quats_to_quat(float q[4], const float q1[4], const float q2[4])
{
float tquat[4];
conjugate_qt_qt(tquat, q1);
mul_qt_fl(tquat, 1.0f / dot_qtqt(tquat, tquat));
mul_qt_qtqt(q, tquat, q2);
}
float angle_normalized_qt(const float q[4])
{
BLI_ASSERT_UNIT_QUAT(q);
return 2.0f * saacos(q[0]);
}
float angle_qt(const float q[4])
{
float tquat[4];
normalize_qt_qt(tquat, q);
return angle_normalized_qt(tquat);
}
float angle_normalized_qtqt(const float q1[4], const float q2[4])
{
float qdelta[4];
BLI_ASSERT_UNIT_QUAT(q1);
BLI_ASSERT_UNIT_QUAT(q2);
rotation_between_quats_to_quat(qdelta, q1, q2);
return angle_normalized_qt(qdelta);
}
float angle_qtqt(const float q1[4], const float q2[4])
{
float quat1[4], quat2[4];
normalize_qt_qt(quat1, q1);
normalize_qt_qt(quat2, q2);
return angle_normalized_qtqt(quat1, quat2);
}
void vec_to_quat(float q[4], const float vec[3], short axis, const short upflag)
{
float nor[3], tvec[3];
float angle, si, co, len;
assert(axis >= 0 && axis <= 5);
assert(upflag >= 0 && upflag <= 2);
/* first set the quat to unit */
unit_qt(q);
len = len_v3(vec);
if (UNLIKELY(len == 0.0f)) {
return;
}
/* rotate to axis */
if (axis > 2) {
copy_v3_v3(tvec, vec);
axis = (short)(axis - 3);
}
else {
negate_v3_v3(tvec, vec);
}
/* nasty! I need a good routine for this...
* problem is a rotation of an Y axis to the negative Y-axis for example.
*/
if (axis == 0) { /* x-axis */
nor[0] = 0.0;
nor[1] = -tvec[2];
nor[2] = tvec[1];
if (fabsf(tvec[1]) + fabsf(tvec[2]) < 0.0001f)
nor[1] = 1.0f;
co = tvec[0];
}
else if (axis == 1) { /* y-axis */
nor[0] = tvec[2];
nor[1] = 0.0;
nor[2] = -tvec[0];
if (fabsf(tvec[0]) + fabsf(tvec[2]) < 0.0001f)
nor[2] = 1.0f;
co = tvec[1];
}
else { /* z-axis */
nor[0] = -tvec[1];
nor[1] = tvec[0];
nor[2] = 0.0;
if (fabsf(tvec[0]) + fabsf(tvec[1]) < 0.0001f)
nor[0] = 1.0f;
co = tvec[2];
}
co /= len;
normalize_v3(nor);
angle = 0.5f * saacos(co);
si = sinf(angle);
q[0] = cosf(angle);
q[1] = nor[0] * si;
q[2] = nor[1] * si;
q[3] = nor[2] * si;
if (axis != upflag) {
float mat[3][3];
float q2[4];
const float *fp = mat[2];
quat_to_mat3(mat, q);
if (axis == 0) {
if (upflag == 1) angle = 0.5f * atan2f(fp[2], fp[1]);
else angle = -0.5f * atan2f(fp[1], fp[2]);
}
else if (axis == 1) {
if (upflag == 0) angle = -0.5f * atan2f(fp[2], fp[0]);
else angle = 0.5f * atan2f(fp[0], fp[2]);
}
else {
if (upflag == 0) angle = 0.5f * atan2f(-fp[1], -fp[0]);
else angle = -0.5f * atan2f(-fp[0], -fp[1]);
}
co = cosf(angle);
si = sinf(angle) / len;
q2[0] = co;
q2[1] = tvec[0] * si;
q2[2] = tvec[1] * si;
q2[3] = tvec[2] * si;
mul_qt_qtqt(q, q2, q);
}
}
#if 0
/* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */
void QuatInterpolW(float *result, float quat1[4], float quat2[4], float t)
{
float omega, cosom, sinom, sc1, sc2;
cosom = quat1[0] * quat2[0] + quat1[1] * quat2[1] + quat1[2] * quat2[2] + quat1[3] * quat2[3];
/* rotate around shortest angle */
if ((1.0f + cosom) > 0.0001f) {
if ((1.0f - cosom) > 0.0001f) {
omega = (float)acos(cosom);
sinom = sinf(omega);
sc1 = sinf((1.0 - t) * omega) / sinom;
sc2 = sinf(t * omega) / sinom;
}
else {
sc1 = 1.0f - t;
sc2 = t;
}
result[0] = sc1 * quat1[0] + sc2 * quat2[0];
result[1] = sc1 * quat1[1] + sc2 * quat2[1];
result[2] = sc1 * quat1[2] + sc2 * quat2[2];
result[3] = sc1 * quat1[3] + sc2 * quat2[3];
}
else {
result[0] = quat2[3];
result[1] = -quat2[2];
result[2] = quat2[1];
result[3] = -quat2[0];
sc1 = sinf((1.0 - t) * M_PI_2);
sc2 = sinf(t * M_PI_2);
result[0] = sc1 * quat1[0] + sc2 * result[0];
result[1] = sc1 * quat1[1] + sc2 * result[1];
result[2] = sc1 * quat1[2] + sc2 * result[2];
result[3] = sc1 * quat1[3] + sc2 * result[3];
}
}
#endif
void interp_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
{
float quat[4], omega, cosom, sinom, sc1, sc2;
cosom = dot_qtqt(quat1, quat2);
/* rotate around shortest angle */
if (cosom < 0.0f) {
cosom = -cosom;
negate_v4_v4(quat, quat1);
}
else {
copy_qt_qt(quat, quat1);
}
if ((1.0f - cosom) > 0.0001f) {
omega = acosf(cosom);
sinom = sinf(omega);
sc1 = sinf((1.0f - t) * omega) / sinom;
sc2 = sinf(t * omega) / sinom;
}
else {
sc1 = 1.0f - t;
sc2 = t;
}
result[0] = sc1 * quat[0] + sc2 * quat2[0];
result[1] = sc1 * quat[1] + sc2 * quat2[1];
result[2] = sc1 * quat[2] + sc2 * quat2[2];
result[3] = sc1 * quat[3] + sc2 * quat2[3];
}
void add_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t)
{
result[0] = quat1[0] + t * quat2[0];
result[1] = quat1[1] + t * quat2[1];
result[2] = quat1[2] + t * quat2[2];
result[3] = quat1[3] + t * quat2[3];
}
/* same as tri_to_quat() but takes pre-computed normal from the triangle
* used for ngons when we know their normal */
void tri_to_quat_ex(float quat[4], const float v1[3], const float v2[3], const float v3[3],
const float no_orig[3])
{
/* imaginary x-axis, y-axis triangle is being rotated */
float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3];
/* move z-axis to face-normal */
#if 0
normal_tri_v3(vec, v1, v2, v3);
#else
copy_v3_v3(vec, no_orig);
(void)v3;
#endif
n[0] = vec[1];
n[1] = -vec[0];
n[2] = 0.0f;
normalize_v3(n);
if (n[0] == 0.0f && n[1] == 0.0f) {
n[0] = 1.0f;
}
angle = -0.5f * saacos(vec[2]);
co = cosf(angle);
si = sinf(angle);
q1[0] = co;
q1[1] = n[0] * si;
q1[2] = n[1] * si;
q1[3] = 0.0f;
/* rotate back line v1-v2 */
quat_to_mat3(mat, q1);
invert_m3_m3(imat, mat);
sub_v3_v3v3(vec, v2, v1);
mul_m3_v3(imat, vec);
/* what angle has this line with x-axis? */
vec[2] = 0.0f;
normalize_v3(vec);
angle = (float)(0.5 * atan2(vec[1], vec[0]));
co = cosf(angle);
si = sinf(angle);
q2[0] = co;
q2[1] = 0.0f;
q2[2] = 0.0f;
q2[3] = si;
mul_qt_qtqt(quat, q1, q2);
}
/**
* \return the length of the normal, use to test for degenerate triangles.
*/
float tri_to_quat(float quat[4], const float v1[3], const float v2[3], const float v3[3])
{
float vec[3];
float len;
len = normal_tri_v3(vec, v1, v2, v3);
tri_to_quat_ex(quat, v1, v2, v3, vec);
return len;
}
void print_qt(const char *str, const float q[4])
{
printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);
}
/******************************** Axis Angle *********************************/
void axis_angle_normalized_to_quat(float q[4], const float axis[3], const float angle)
{
const float phi = 0.5f * angle;
const float si = sinf(phi);
const float co = cosf(phi);
BLI_ASSERT_UNIT_V3(axis);
q[0] = co;
mul_v3_v3fl(q + 1, axis, si);
}
void axis_angle_to_quat(float q[4], const float axis[3], const float angle)
{
float nor[3];
if (LIKELY(normalize_v3_v3(nor, axis) != 0.0f)) {
axis_angle_normalized_to_quat(q, nor, angle);
}
else {
unit_qt(q);
}
}
/* Quaternions to Axis Angle */
void quat_to_axis_angle(float axis[3], float *angle, const float q[4])
{
float ha, si;
#ifdef DEBUG
if (!((ha = dot_qtqt(q, q)) == 0.0f || (fabsf(ha - 1.0f) < (float)QUAT_EPSILON))) {
fprintf(stderr, "Warning! quat_to_axis_angle() called with non-normalized: size %.8f *** report a bug ***\n", ha);
}
#endif
/* calculate angle/2, and sin(angle/2) */
ha = acosf(q[0]);
si = sinf(ha);
/* from half-angle to angle */
*angle = ha * 2;
/* prevent division by zero for axis conversion */
if (fabsf(si) < 0.0005f)
si = 1.0f;
axis[0] = q[1] / si;
axis[1] = q[2] / si;
axis[2] = q[3] / si;
}
/* Axis Angle to Euler Rotation */
void axis_angle_to_eulO(float eul[3], const short order, const float axis[3], const float angle)
{
float q[4];
/* use quaternions as intermediate representation for now... */
axis_angle_to_quat(q, axis, angle);
quat_to_eulO(eul, order, q);
}
/* Euler Rotation to Axis Angle */
void eulO_to_axis_angle(float axis[3], float *angle, const float eul[3], const short order)
{
float q[4];
/* use quaternions as intermediate representation for now... */
eulO_to_quat(q, eul, order);
quat_to_axis_angle(axis, angle, q);
}
/* axis angle to 3x3 matrix - note: requires that axis is normalized */
void axis_angle_normalized_to_mat3(float mat[3][3], const float nor[3], const float angle)
{
float nsi[3], co, si, ico;
BLI_ASSERT_UNIT_V3(nor);
/* now convert this to a 3x3 matrix */
co = cosf(angle);
si = sinf(angle);
ico = (1.0f - co);
nsi[0] = nor[0] * si;
nsi[1] = nor[1] * si;
nsi[2] = nor[2] * si;
mat[0][0] = ((nor[0] * nor[0]) * ico) + co;
mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2];
mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1];
mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2];
mat[1][1] = ((nor[1] * nor[1]) * ico) + co;
mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0];
mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1];
mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0];
mat[2][2] = ((nor[2] * nor[2]) * ico) + co;
}
/* axis angle to 3x3 matrix - safer version (normalization of axis performed) */
void axis_angle_to_mat3(float mat[3][3], const float axis[3], const float angle)
{
float nor[3];
/* normalize the axis first (to remove unwanted scaling) */
if (normalize_v3_v3(nor, axis) == 0.0f) {
unit_m3(mat);
return;
}
axis_angle_normalized_to_mat3(mat, nor, angle);
}
/* axis angle to 4x4 matrix - safer version (normalization of axis performed) */
void axis_angle_to_mat4(float mat[4][4], const float axis[3], const float angle)
{
float tmat[3][3];
axis_angle_to_mat3(tmat, axis, angle);
unit_m4(mat);
copy_m4_m3(mat, tmat);
}
/* 3x3 matrix to axis angle (see Mat4ToVecRot too) */
void mat3_to_axis_angle(float axis[3], float *angle, float mat[3][3])
{
float q[4];
/* use quaternions as intermediate representation */
/* TODO: it would be nicer to go straight there... */
mat3_to_quat(q, mat);
quat_to_axis_angle(axis, angle, q);
}
/* 4x4 matrix to axis angle (see Mat4ToVecRot too) */
void mat4_to_axis_angle(float axis[3], float *angle, float mat[4][4])
{
float q[4];
/* use quaternions as intermediate representation */
/* TODO: it would be nicer to go straight there... */
mat4_to_quat(q, mat);
quat_to_axis_angle(axis, angle, q);
}
/* rotation matrix from a single axis */
void axis_angle_to_mat3_single(float mat[3][3], const char axis, const float angle)
{
const float angle_cos = cosf(angle);
const float angle_sin = sinf(angle);
switch (axis) {
case 'X': /* rotation around X */
mat[0][0] = 1.0f;
mat[0][1] = 0.0f;
mat[0][2] = 0.0f;
mat[1][0] = 0.0f;
mat[1][1] = angle_cos;
mat[1][2] = angle_sin;
mat[2][0] = 0.0f;
mat[2][1] = -angle_sin;
mat[2][2] = angle_cos;
break;
case 'Y': /* rotation around Y */
mat[0][0] = angle_cos;
mat[0][1] = 0.0f;
mat[0][2] = -angle_sin;
mat[1][0] = 0.0f;
mat[1][1] = 1.0f;
mat[1][2] = 0.0f;
mat[2][0] = angle_sin;
mat[2][1] = 0.0f;
mat[2][2] = angle_cos;
break;
case 'Z': /* rotation around Z */
mat[0][0] = angle_cos;
mat[0][1] = angle_sin;
mat[0][2] = 0.0f;
mat[1][0] = -angle_sin;
mat[1][1] = angle_cos;
mat[1][2] = 0.0f;
mat[2][0] = 0.0f;
mat[2][1] = 0.0f;
mat[2][2] = 1.0f;
break;
default:
BLI_assert(0);
break;
}
}
void angle_to_mat2(float mat[2][2], const float angle)
{
const float angle_cos = cosf(angle);
const float angle_sin = sinf(angle);
/* 2D rotation matrix */
mat[0][0] = angle_cos;
mat[0][1] = angle_sin;
mat[1][0] = -angle_sin;
mat[1][1] = angle_cos;
}
/******************************** XYZ Eulers *********************************/
/* XYZ order */
void eul_to_mat3(float mat[3][3], const float eul[3])
{
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
ci = cos(eul[0]);
cj = cos(eul[1]);
ch = cos(eul[2]);
si = sin(eul[0]);
sj = sin(eul[1]);
sh = sin(eul[2]);
cc = ci * ch;
cs = ci * sh;
sc = si * ch;
ss = si * sh;
mat[0][0] = (float)(cj * ch);
mat[1][0] = (float)(sj * sc - cs);
mat[2][0] = (float)(sj * cc + ss);
mat[0][1] = (float)(cj * sh);
mat[1][1] = (float)(sj * ss + cc);
mat[2][1] = (float)(sj * cs - sc);
mat[0][2] = (float)-sj;
mat[1][2] = (float)(cj * si);
mat[2][2] = (float)(cj * ci);
}
/* XYZ order */
void eul_to_mat4(float mat[4][4], const float eul[3])
{
double ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
ci = cos(eul[0]);
cj = cos(eul[1]);
ch = cos(eul[2]);
si = sin(eul[0]);
sj = sin(eul[1]);
sh = sin(eul[2]);
cc = ci * ch;
cs = ci * sh;
sc = si * ch;
ss = si * sh;
mat[0][0] = (float)(cj * ch);
mat[1][0] = (float)(sj * sc - cs);
mat[2][0] = (float)(sj * cc + ss);
mat[0][1] = (float)(cj * sh);
mat[1][1] = (float)(sj * ss + cc);
mat[2][1] = (float)(sj * cs - sc);
mat[0][2] = (float)-sj;
mat[1][2] = (float)(cj * si);
mat[2][2] = (float)(cj * ci);
mat[3][0] = mat[3][1] = mat[3][2] = mat[0][3] = mat[1][3] = mat[2][3] = 0.0f;
mat[3][3] = 1.0f;
}
/* returns two euler calculation methods, so we can pick the best */
/* XYZ order */
static void mat3_to_eul2(float tmat[3][3], float eul1[3], float eul2[3])
{
float cy, quat[4], mat[3][3];
mat3_to_quat(quat, tmat);
quat_to_mat3(mat, quat);
copy_m3_m3(mat, tmat);
normalize_m3(mat);
cy = (float)sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1]);
if (cy > 16.0f * FLT_EPSILON) {
eul1[0] = (float)atan2(mat[1][2], mat[2][2]);
eul1[1] = (float)atan2(-mat[0][2], cy);
eul1[2] = (float)atan2(mat[0][1], mat[0][0]);
eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]);
eul2[1] = (float)atan2(-mat[0][2], -cy);
eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]);
}
else {
eul1[0] = (float)atan2(-mat[2][1], mat[1][1]);
eul1[1] = (float)atan2(-mat[0][2], cy);
eul1[2] = 0.0f;
copy_v3_v3(eul2, eul1);
}
}
/* XYZ order */
void mat3_to_eul(float *eul, float tmat[3][3])
{
float eul1[3], eul2[3];
mat3_to_eul2(tmat, eul1, eul2);
/* return best, which is just the one with lowest values it in */
if (fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]) > fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2])) {
copy_v3_v3(eul, eul2);
}
else {
copy_v3_v3(eul, eul1);
}
}
/* XYZ order */
void mat4_to_eul(float *eul, float tmat[4][4])
{
float tempMat[3][3];
copy_m3_m4(tempMat, tmat);
normalize_m3(tempMat);
mat3_to_eul(eul, tempMat);
}
/* XYZ order */
void quat_to_eul(float *eul, const float quat[4])
{
float mat[3][3];
quat_to_mat3(mat, quat);
mat3_to_eul(eul, mat);
}
/* XYZ order */
void eul_to_quat(float quat[4], const float eul[3])
{
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
ti = eul[0] * 0.5f;
tj = eul[1] * 0.5f;
th = eul[2] * 0.5f;
ci = cosf(ti);
cj = cosf(tj);
ch = cosf(th);
si = sinf(ti);
sj = sinf(tj);
sh = sinf(th);
cc = ci * ch;
cs = ci * sh;
sc = si * ch;
ss = si * sh;
quat[0] = cj * cc + sj * ss;
quat[1] = cj * sc - sj * cs;
quat[2] = cj * ss + sj * cc;
quat[3] = cj * cs - sj * sc;
}
/* XYZ order */
void rotate_eul(float beul[3], const char axis, const float ang)
{
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
assert(axis >= 'X' && axis <= 'Z');
eul[0] = eul[1] = eul[2] = 0.0f;
if (axis == 'X') eul[0] = ang;
else if (axis == 'Y') eul[1] = ang;
else eul[2] = ang;
eul_to_mat3(mat1, eul);
eul_to_mat3(mat2, beul);
mul_m3_m3m3(totmat, mat2, mat1);
mat3_to_eul(beul, totmat);
}
/* order independent! */
void compatible_eul(float eul[3], const float oldrot[3])
{
/* we could use M_PI as pi_thresh: which is correct but 5.1 gives better results.
* Checked with baking actions to fcurves - campbell */
const float pi_thresh = (5.1f);
const float pi_x2 = (2.0f * (float)M_PI);
float deul[3];
unsigned int i;
/* correct differences of about 360 degrees first */
for (i = 0; i < 3; i++) {
deul[i] = eul[i] - oldrot[i];
if (deul[i] > pi_thresh) {
eul[i] -= floorf(( deul[i] / pi_x2) + 0.5f) * pi_x2;
deul[i] = eul[i] - oldrot[i];
}
else if (deul[i] < -pi_thresh) {
eul[i] += floorf((-deul[i] / pi_x2) + 0.5f) * pi_x2;
deul[i] = eul[i] - oldrot[i];
}
}
/* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */
if (fabsf(deul[0]) > 3.2f && fabsf(deul[1]) < 1.6f && fabsf(deul[2]) < 1.6f) {
if (deul[0] > 0.0f) eul[0] -= pi_x2;
else eul[0] += pi_x2;
}
if (fabsf(deul[1]) > 3.2f && fabsf(deul[2]) < 1.6f && fabsf(deul[0]) < 1.6f) {
if (deul[1] > 0.0f) eul[1] -= pi_x2;
else eul[1] += pi_x2;
}
if (fabsf(deul[2]) > 3.2f && fabsf(deul[0]) < 1.6f && fabsf(deul[1]) < 1.6f) {
if (deul[2] > 0.0f) eul[2] -= pi_x2;
else eul[2] += pi_x2;
}
}
/* uses 2 methods to retrieve eulers, and picks the closest */
/* XYZ order */
void mat3_to_compatible_eul(float eul[3], const float oldrot[3], float mat[3][3])
{
float eul1[3], eul2[3];
float d1, d2;
mat3_to_eul2(mat, eul1, eul2);
compatible_eul(eul1, oldrot);
compatible_eul(eul2, oldrot);
d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
/* return best, which is just the one with lowest difference */
if (d1 > d2) {
copy_v3_v3(eul, eul2);
}
else {
copy_v3_v3(eul, eul1);
}
}
/************************** Arbitrary Order Eulers ***************************/
/* Euler Rotation Order Code:
* was adapted from
* ANSI C code from the article
* "Euler Angle Conversion"
* by Ken Shoemake, shoemake@graphics.cis.upenn.edu
* in "Graphics Gems IV", Academic Press, 1994
* for use in Blender
*/
/* Type for rotation order info - see wiki for derivation details */
typedef struct RotOrderInfo {
short axis[3];
short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */
} RotOrderInfo;
/* Array of info for Rotation Order calculations
* WARNING: must be kept in same order as eEulerRotationOrders
*/
static const RotOrderInfo rotOrders[] = {
/* i, j, k, n */
{{0, 1, 2}, 0}, /* XYZ */
{{0, 2, 1}, 1}, /* XZY */
{{1, 0, 2}, 1}, /* YXZ */
{{1, 2, 0}, 0}, /* YZX */
{{2, 0, 1}, 0}, /* ZXY */
{{2, 1, 0}, 1} /* ZYX */
};
/* Get relevant pointer to rotation order set from the array
* NOTE: since we start at 1 for the values, but arrays index from 0,
* there is -1 factor involved in this process...
*/
#define GET_ROTATIONORDER_INFO(order) (assert(order >= 0 && order <= 6), (order < 1) ? &rotOrders[0] : &rotOrders[(order) - 1])
/* Construct quaternion from Euler angles (in radians). */
void eulO_to_quat(float q[4], const float e[3], const short order)
{
const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
short i = R->axis[0], j = R->axis[1], k = R->axis[2];
double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
double a[3];
ti = e[i] * 0.5f;
tj = e[j] * (R->parity ? -0.5f : 0.5f);
th = e[k] * 0.5f;
ci = cos(ti);
cj = cos(tj);
ch = cos(th);
si = sin(ti);
sj = sin(tj);
sh = sin(th);
cc = ci * ch;
cs = ci * sh;
sc = si * ch;
ss = si * sh;
a[i] = cj * sc - sj * cs;
a[j] = cj * ss + sj * cc;
a[k] = cj * cs - sj * sc;
q[0] = (float)(cj * cc + sj * ss);
q[1] = (float)(a[0]);
q[2] = (float)(a[1]);
q[3] = (float)(a[2]);
if (R->parity) q[j + 1] = -q[j + 1];
}
/* Convert quaternion to Euler angles (in radians). */
void quat_to_eulO(float e[3], short const order, const float q[4])
{
float M[3][3];
quat_to_mat3(M, q);
mat3_to_eulO(e, order, M);
}
/* Construct 3x3 matrix from Euler angles (in radians). */
void eulO_to_mat3(float M[3][3], const float e[3], const short order)
{
const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
short i = R->axis[0], j = R->axis[1], k = R->axis[2];
double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
if (R->parity) {
ti = -e[i];
tj = -e[j];
th = -e[k];
}
else {
ti = e[i];
tj = e[j];
th = e[k];
}
ci = cos(ti);
cj = cos(tj);
ch = cos(th);
si = sin(ti);
sj = sin(tj);
sh = sin(th);
cc = ci * ch;
cs = ci * sh;
sc = si * ch;
ss = si * sh;
M[i][i] = (float)(cj * ch);
M[j][i] = (float)(sj * sc - cs);
M[k][i] = (float)(sj * cc + ss);
M[i][j] = (float)(cj * sh);
M[j][j] = (float)(sj * ss + cc);
M[k][j] = (float)(sj * cs - sc);
M[i][k] = (float)(-sj);
M[j][k] = (float)(cj * si);
M[k][k] = (float)(cj * ci);
}
/* returns two euler calculation methods, so we can pick the best */
static void mat3_to_eulo2(float M[3][3], float e1[3], float e2[3], const short order)
{
const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
short i = R->axis[0], j = R->axis[1], k = R->axis[2];
float m[3][3];
double cy;
/* process the matrix first */
copy_m3_m3(m, M);
normalize_m3(m);
cy = sqrt(m[i][i] * m[i][i] + m[i][j] * m[i][j]);
if (cy > 16.0 * (double)FLT_EPSILON) {
e1[i] = atan2f(m[j][k], m[k][k]);
e1[j] = atan2f(-m[i][k], (float)cy);
e1[k] = atan2f(m[i][j], m[i][i]);
e2[i] = atan2f(-m[j][k], -m[k][k]);
e2[j] = atan2f(-m[i][k], (float)-cy);
e2[k] = atan2f(-m[i][j], -m[i][i]);
}
else {
e1[i] = atan2f(-m[k][j], m[j][j]);
e1[j] = atan2f(-m[i][k], (float)cy);
e1[k] = 0;
copy_v3_v3(e2, e1);
}
if (R->parity) {
e1[0] = -e1[0];
e1[1] = -e1[1];
e1[2] = -e1[2];
e2[0] = -e2[0];
e2[1] = -e2[1];
e2[2] = -e2[2];
}
}
/* Construct 4x4 matrix from Euler angles (in radians). */
void eulO_to_mat4(float M[4][4], const float e[3], const short order)
{
float m[3][3];
/* for now, we'll just do this the slow way (i.e. copying matrices) */
normalize_m3(m);
eulO_to_mat3(m, e, order);
copy_m4_m3(M, m);
}
/* Convert 3x3 matrix to Euler angles (in radians). */
void mat3_to_eulO(float eul[3], const short order, float M[3][3])
{
float eul1[3], eul2[3];
mat3_to_eulo2(M, eul1, eul2, order);
/* return best, which is just the one with lowest values it in */
if (fabsf(eul1[0]) + fabsf(eul1[1]) + fabsf(eul1[2]) > fabsf(eul2[0]) + fabsf(eul2[1]) + fabsf(eul2[2])) {
copy_v3_v3(eul, eul2);
}
else {
copy_v3_v3(eul, eul1);
}
}
/* Convert 4x4 matrix to Euler angles (in radians). */
void mat4_to_eulO(float e[3], const short order, float M[4][4])
{
float m[3][3];
/* for now, we'll just do this the slow way (i.e. copying matrices) */
copy_m3_m4(m, M);
normalize_m3(m);
mat3_to_eulO(e, order, m);
}
/* uses 2 methods to retrieve eulers, and picks the closest */
void mat3_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float mat[3][3])
{
float eul1[3], eul2[3];
float d1, d2;
mat3_to_eulo2(mat, eul1, eul2, order);
compatible_eul(eul1, oldrot);
compatible_eul(eul2, oldrot);
d1 = fabsf(eul1[0] - oldrot[0]) + fabsf(eul1[1] - oldrot[1]) + fabsf(eul1[2] - oldrot[2]);
d2 = fabsf(eul2[0] - oldrot[0]) + fabsf(eul2[1] - oldrot[1]) + fabsf(eul2[2] - oldrot[2]);
/* return best, which is just the one with lowest difference */
if (d1 > d2)
copy_v3_v3(eul, eul2);
else
copy_v3_v3(eul, eul1);
}
void mat4_to_compatible_eulO(float eul[3], float oldrot[3], const short order, float M[4][4])
{
float m[3][3];
/* for now, we'll just do this the slow way (i.e. copying matrices) */
copy_m3_m4(m, M);
normalize_m3(m);
mat3_to_compatible_eulO(eul, oldrot, order, m);
}
/* rotate the given euler by the given angle on the specified axis */
/* NOTE: is this safe to do with different axis orders? */
void rotate_eulO(float beul[3], const short order, char axis, float ang)
{
float eul[3], mat1[3][3], mat2[3][3], totmat[3][3];
assert(axis >= 'X' && axis <= 'Z');
eul[0] = eul[1] = eul[2] = 0.0f;
if (axis == 'X')
eul[0] = ang;
else if (axis == 'Y')
eul[1] = ang;
else
eul[2] = ang;
eulO_to_mat3(mat1, eul, order);
eulO_to_mat3(mat2, beul, order);
mul_m3_m3m3(totmat, mat2, mat1);
mat3_to_eulO(beul, order, totmat);
}
/* the matrix is written to as 3 axis vectors */
void eulO_to_gimbal_axis(float gmat[3][3], const float eul[3], const short order)
{
const RotOrderInfo *R = GET_ROTATIONORDER_INFO(order);
float mat[3][3];
float teul[3];
/* first axis is local */
eulO_to_mat3(mat, eul, order);
copy_v3_v3(gmat[R->axis[0]], mat[R->axis[0]]);
/* second axis is local minus first rotation */
copy_v3_v3(teul, eul);
teul[R->axis[0]] = 0;
eulO_to_mat3(mat, teul, order);
copy_v3_v3(gmat[R->axis[1]], mat[R->axis[1]]);
/* Last axis is global */
gmat[R->axis[2]][0] = 0;
gmat[R->axis[2]][1] = 0;
gmat[R->axis[2]][2] = 0;
gmat[R->axis[2]][R->axis[2]] = 1;
}
/******************************* Dual Quaternions ****************************/
/**
* Conversion routines between (regular quaternion, translation) and
* dual quaternion.
*
* Version 1.0.0, February 7th, 2007
*
* Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights
* Reserved
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the author(s) be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* \author Ladislav Kavan, kavanl@cs.tcd.ie
*
* Changes for Blender:
* - renaming, style changes and optimization's
* - added support for scaling
*/
void mat4_to_dquat(DualQuat *dq, float basemat[4][4], float mat[4][4])
{
float *t, *q, dscale[3], scale[3], basequat[4];
float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4];
float R[4][4], S[4][4];
/* split scaling and rotation, there is probably a faster way to do
* this, it's done like this now to correctly get negative scaling */
mul_m4_m4m4(baseRS, mat, basemat);
mat4_to_size(scale, baseRS);
dscale[0] = scale[0] - 1.0f;
dscale[1] = scale[1] - 1.0f;
dscale[2] = scale[2] - 1.0f;
if ((determinant_m4(mat) < 0.0f) || len_v3(dscale) > 1e-4f) {
/* extract R and S */
float tmp[4][4];
/* extra orthogonalize, to avoid flipping with stretched bones */
copy_m4_m4(tmp, baseRS);
orthogonalize_m4(tmp, 1);
mat4_to_quat(basequat, tmp);
quat_to_mat4(baseR, basequat);
copy_v3_v3(baseR[3], baseRS[3]);
invert_m4_m4(baseinv, basemat);
mul_m4_m4m4(R, baseR, baseinv);
invert_m4_m4(baseRinv, baseR);
mul_m4_m4m4(S, baseRinv, baseRS);
/* set scaling part */
mul_serie_m4(dq->scale, basemat, S, baseinv, NULL, NULL, NULL, NULL, NULL);
dq->scale_weight = 1.0f;
}
else {
/* matrix does not contain scaling */
copy_m4_m4(R, mat);
dq->scale_weight = 0.0f;
}
/* non-dual part */
mat4_to_quat(dq->quat, R);
/* dual part */
t = R[3];
q = dq->quat;
dq->trans[0] = -0.5f * ( t[0] * q[1] + t[1] * q[2] + t[2] * q[3]);
dq->trans[1] = 0.5f * ( t[0] * q[0] + t[1] * q[3] - t[2] * q[2]);
dq->trans[2] = 0.5f * (-t[0] * q[3] + t[1] * q[0] + t[2] * q[1]);
dq->trans[3] = 0.5f * ( t[0] * q[2] - t[1] * q[1] + t[2] * q[0]);
}
void dquat_to_mat4(float mat[4][4], const DualQuat *dq)
{
float len, q0[4];
const float *t;
/* regular quaternion */
copy_qt_qt(q0, dq->quat);
/* normalize */
len = sqrtf(dot_qtqt(q0, q0));
if (len != 0.0f)
mul_qt_fl(q0, 1.0f / len);
/* rotation */
quat_to_mat4(mat, q0);
/* translation */
t = dq->trans;
mat[3][0] = 2.0f * (-t[0] * q0[1] + t[1] * q0[0] - t[2] * q0[3] + t[3] * q0[2]);
mat[3][1] = 2.0f * (-t[0] * q0[2] + t[1] * q0[3] + t[2] * q0[0] - t[3] * q0[1]);
mat[3][2] = 2.0f * (-t[0] * q0[3] - t[1] * q0[2] + t[2] * q0[1] + t[3] * q0[0]);
/* note: this does not handle scaling */
}
void add_weighted_dq_dq(DualQuat *dqsum, const DualQuat *dq, float weight)
{
int flipped = 0;
/* make sure we interpolate quats in the right direction */
if (dot_qtqt(dq->quat, dqsum->quat) < 0) {
flipped = 1;
weight = -weight;
}
/* interpolate rotation and translation */
dqsum->quat[0] += weight * dq->quat[0];
dqsum->quat[1] += weight * dq->quat[1];
dqsum->quat[2] += weight * dq->quat[2];
dqsum->quat[3] += weight * dq->quat[3];
dqsum->trans[0] += weight * dq->trans[0];
dqsum->trans[1] += weight * dq->trans[1];
dqsum->trans[2] += weight * dq->trans[2];
dqsum->trans[3] += weight * dq->trans[3];
/* interpolate scale - but only if needed */
if (dq->scale_weight) {
float wmat[4][4];
if (flipped) /* we don't want negative weights for scaling */
weight = -weight;
copy_m4_m4(wmat, (float(*)[4])dq->scale);
mul_m4_fl(wmat, weight);
add_m4_m4m4(dqsum->scale, dqsum->scale, wmat);
dqsum->scale_weight += weight;
}
}
void normalize_dq(DualQuat *dq, float totweight)
{
float scale = 1.0f / totweight;
mul_qt_fl(dq->quat, scale);
mul_qt_fl(dq->trans, scale);
if (dq->scale_weight) {
float addweight = totweight - dq->scale_weight;
if (addweight) {
dq->scale[0][0] += addweight;
dq->scale[1][1] += addweight;
dq->scale[2][2] += addweight;
dq->scale[3][3] += addweight;
}
mul_m4_fl(dq->scale, scale);
dq->scale_weight = 1.0f;
}
}
void mul_v3m3_dq(float co[3], float mat[3][3], DualQuat *dq)
{
float M[3][3], t[3], scalemat[3][3], len2;
float w = dq->quat[0], x = dq->quat[1], y = dq->quat[2], z = dq->quat[3];
float t0 = dq->trans[0], t1 = dq->trans[1], t2 = dq->trans[2], t3 = dq->trans[3];
/* rotation matrix */
M[0][0] = w * w + x * x - y * y - z * z;
M[1][0] = 2 * (x * y - w * z);
M[2][0] = 2 * (x * z + w * y);
M[0][1] = 2 * (x * y + w * z);
M[1][1] = w * w + y * y - x * x - z * z;
M[2][1] = 2 * (y * z - w * x);
M[0][2] = 2 * (x * z - w * y);
M[1][2] = 2 * (y * z + w * x);
M[2][2] = w * w + z * z - x * x - y * y;
len2 = dot_qtqt(dq->quat, dq->quat);
if (len2 > 0.0f)
len2 = 1.0f / len2;
/* translation */
t[0] = 2 * (-t0 * x + w * t1 - t2 * z + y * t3);
t[1] = 2 * (-t0 * y + t1 * z - x * t3 + w * t2);
t[2] = 2 * (-t0 * z + x * t2 + w * t3 - t1 * y);
/* apply scaling */
if (dq->scale_weight)
mul_m4_v3(dq->scale, co);
/* apply rotation and translation */
mul_m3_v3(M, co);
co[0] = (co[0] + t[0]) * len2;
co[1] = (co[1] + t[1]) * len2;
co[2] = (co[2] + t[2]) * len2;
/* compute crazyspace correction mat */
if (mat) {
if (dq->scale_weight) {
copy_m3_m4(scalemat, dq->scale);
mul_m3_m3m3(mat, M, scalemat);
}
else
copy_m3_m3(mat, M);
mul_m3_fl(mat, len2);
}
}
void copy_dq_dq(DualQuat *dq1, const DualQuat *dq2)
{
memcpy(dq1, dq2, sizeof(DualQuat));
}
/* axis matches eTrackToAxis_Modes */
void quat_apply_track(float quat[4], short axis, short upflag)
{
/* rotations are hard coded to match vec_to_quat */
const float sqrt_1_2 = (float)M_SQRT1_2;
const float quat_track[][4] = {
{sqrt_1_2, 0.0, -sqrt_1_2, 0.0}, /* pos-y90 */
{0.5, 0.5, 0.5, 0.5}, /* Quaternion((1,0,0), radians(90)) * Quaternion((0,1,0), radians(90)) */
{sqrt_1_2, 0.0, 0.0, sqrt_1_2}, /* pos-z90 */
{sqrt_1_2, 0.0, sqrt_1_2, 0.0}, /* neg-y90 */
{0.5, -0.5, -0.5, 0.5}, /* Quaternion((1,0,0), radians(-90)) * Quaternion((0,1,0), radians(-90)) */
{0.0, sqrt_1_2, sqrt_1_2, 0.0} /* no rotation */
};
assert(axis >= 0 && axis <= 5);
assert(upflag >= 0 && upflag <= 2);
mul_qt_qtqt(quat, quat, quat_track[axis]);
if (axis > 2) {
axis = (short)(axis - 3);
}
/* there are 2 possible up-axis for each axis used, the 'quat_track' applies so the first
* up axis is used X->Y, Y->X, Z->X, if this first up axis isn't used then rotate 90d
* the strange bit shift below just find the low axis {X:Y, Y:X, Z:X} */
if (upflag != (2 - axis) >> 1) {
float q[4] = {sqrt_1_2, 0.0, 0.0, 0.0}; /* assign 90d rotation axis */
q[axis + 1] = ((axis == 1)) ? sqrt_1_2 : -sqrt_1_2; /* flip non Y axis */
mul_qt_qtqt(quat, quat, q);
}
}
void vec_apply_track(float vec[3], short axis)
{
float tvec[3];
assert(axis >= 0 && axis <= 5);
copy_v3_v3(tvec, vec);
switch (axis) {
case 0: /* pos-x */
/* vec[0] = 0.0; */
vec[1] = tvec[2];
vec[2] = -tvec[1];
break;
case 1: /* pos-y */
/* vec[0] = tvec[0]; */
/* vec[1] = 0.0; */
/* vec[2] = tvec[2]; */
break;
case 2: /* pos-z */
/* vec[0] = tvec[0]; */
/* vec[1] = tvec[1]; */
/* vec[2] = 0.0; */
break;
case 3: /* neg-x */
/* vec[0] = 0.0; */
vec[1] = tvec[2];
vec[2] = -tvec[1];
break;
case 4: /* neg-y */
vec[0] = -tvec[2];
/* vec[1] = 0.0; */
vec[2] = tvec[0];
break;
case 5: /* neg-z */
vec[0] = -tvec[0];
vec[1] = -tvec[1];
/* vec[2] = 0.0; */
break;
}
}
/* lens/angle conversion (radians) */
float focallength_to_fov(float focal_length, float sensor)
{
return 2.0f * atanf((sensor / 2.0f) / focal_length);
}
float fov_to_focallength(float hfov, float sensor)
{
return (sensor / 2.0f) / tanf(hfov * 0.5f);
}
/* 'mod_inline(-3, 4)= 1', 'fmod(-3, 4)= -3' */
static float mod_inline(float a, float b)
{
return a - (b * floorf(a / b));
}
float angle_wrap_rad(float angle)
{
return mod_inline(angle + (float)M_PI, (float)M_PI * 2.0f) - (float)M_PI;
}
float angle_wrap_deg(float angle)
{
return mod_inline(angle + 180.0f, 360.0f) - 180.0f;
}
/* returns an angle compatible with angle_compat */
float angle_compat_rad(float angle, float angle_compat)
{
return angle + (floorf(((angle_compat - angle) / (float)M_PI) + 0.5f)) * (float)M_PI;
}
/* axis conversion */
static float _axis_convert_matrix[23][3][3] = {
{{-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}},
{{-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}},
{{-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}},
{{-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}},
{{0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
{{0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
{{0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
{{0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
{{0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}},
{{0.0, 0.0, -1.0}, {0.0, -1.0, 0.0}, {-1.0, 0.0, 0.0}},
{{0.0, 0.0, 1.0}, {0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}},
{{0.0, 1.0, 0.0}, {0.0, 0.0, -1.0}, {-1.0, 0.0, 0.0}},
{{0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}},
{{0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}},
{{0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}},
{{0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}},
{{0.0, -1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}},
{{0.0, 0.0, -1.0}, {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}},
{{0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}},
{{0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}},
{{1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, -1.0}},
{{1.0, 0.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, -1.0, 0.0}},
{{1.0, 0.0, 0.0}, {0.0, 0.0, -1.0}, {0.0, 1.0, 0.0}},
};
static int _axis_convert_lut[23][24] = {
{0x8C8, 0x4D0, 0x2E0, 0xAE8, 0x701, 0x511, 0x119, 0xB29, 0x682, 0x88A,
0x09A, 0x2A2, 0x80B, 0x413, 0x223, 0xA2B, 0x644, 0x454, 0x05C, 0xA6C,
0x745, 0x94D, 0x15D, 0x365},
{0xAC8, 0x8D0, 0x4E0, 0x2E8, 0x741, 0x951, 0x159, 0x369, 0x702, 0xB0A,
0x11A, 0x522, 0xA0B, 0x813, 0x423, 0x22B, 0x684, 0x894, 0x09C, 0x2AC,
0x645, 0xA4D, 0x05D, 0x465},
{0x4C8, 0x2D0, 0xAE0, 0x8E8, 0x681, 0x291, 0x099, 0x8A9, 0x642, 0x44A,
0x05A, 0xA62, 0x40B, 0x213, 0xA23, 0x82B, 0x744, 0x354, 0x15C, 0x96C,
0x705, 0x50D, 0x11D, 0xB25},
{0x2C8, 0xAD0, 0x8E0, 0x4E8, 0x641, 0xA51, 0x059, 0x469, 0x742, 0x34A,
0x15A, 0x962, 0x20B, 0xA13, 0x823, 0x42B, 0x704, 0xB14, 0x11C, 0x52C,
0x685, 0x28D, 0x09D, 0x8A5},
{0x708, 0xB10, 0x120, 0x528, 0x8C1, 0xAD1, 0x2D9, 0x4E9, 0x942, 0x74A,
0x35A, 0x162, 0x64B, 0xA53, 0x063, 0x46B, 0x804, 0xA14, 0x21C, 0x42C,
0x885, 0x68D, 0x29D, 0x0A5},
{0xB08, 0x110, 0x520, 0x728, 0x941, 0x151, 0x359, 0x769, 0x802, 0xA0A,
0x21A, 0x422, 0xA4B, 0x053, 0x463, 0x66B, 0x884, 0x094, 0x29C, 0x6AC,
0x8C5, 0xACD, 0x2DD, 0x4E5},
{0x508, 0x710, 0xB20, 0x128, 0x881, 0x691, 0x299, 0x0A9, 0x8C2, 0x4CA,
0x2DA, 0xAE2, 0x44B, 0x653, 0xA63, 0x06B, 0x944, 0x754, 0x35C, 0x16C,
0x805, 0x40D, 0x21D, 0xA25},
{0x108, 0x510, 0x720, 0xB28, 0x801, 0x411, 0x219, 0xA29, 0x882, 0x08A,
0x29A, 0x6A2, 0x04B, 0x453, 0x663, 0xA6B, 0x8C4, 0x4D4, 0x2DC, 0xAEC,
0x945, 0x14D, 0x35D, 0x765},
{0x748, 0x350, 0x160, 0x968, 0xAC1, 0x2D1, 0x4D9, 0x8E9, 0xA42, 0x64A,
0x45A, 0x062, 0x68B, 0x293, 0x0A3, 0x8AB, 0xA04, 0x214, 0x41C, 0x82C,
0xB05, 0x70D, 0x51D, 0x125},
{0x948, 0x750, 0x360, 0x168, 0xB01, 0x711, 0x519, 0x129, 0xAC2, 0x8CA,
0x4DA, 0x2E2, 0x88B, 0x693, 0x2A3, 0x0AB, 0xA44, 0x654, 0x45C, 0x06C,
0xA05, 0x80D, 0x41D, 0x225},
{0x348, 0x150, 0x960, 0x768, 0xA41, 0x051, 0x459, 0x669, 0xA02, 0x20A,
0x41A, 0x822, 0x28B, 0x093, 0x8A3, 0x6AB, 0xB04, 0x114, 0x51C, 0x72C,
0xAC5, 0x2CD, 0x4DD, 0x8E5},
{0x148, 0x950, 0x760, 0x368, 0xA01, 0x811, 0x419, 0x229, 0xB02, 0x10A,
0x51A, 0x722, 0x08B, 0x893, 0x6A3, 0x2AB, 0xAC4, 0x8D4, 0x4DC, 0x2EC,
0xA45, 0x04D, 0x45D, 0x665},
{0x688, 0x890, 0x0A0, 0x2A8, 0x4C1, 0x8D1, 0xAD9, 0x2E9, 0x502, 0x70A,
0xB1A, 0x122, 0x74B, 0x953, 0x163, 0x36B, 0x404, 0x814, 0xA1C, 0x22C,
0x445, 0x64D, 0xA5D, 0x065},
{0x888, 0x090, 0x2A0, 0x6A8, 0x501, 0x111, 0xB19, 0x729, 0x402, 0x80A,
0xA1A, 0x222, 0x94B, 0x153, 0x363, 0x76B, 0x444, 0x054, 0xA5C, 0x66C,
0x4C5, 0x8CD, 0xADD, 0x2E5},
{0x288, 0x690, 0x8A0, 0x0A8, 0x441, 0x651, 0xA59, 0x069, 0x4C2, 0x2CA,
0xADA, 0x8E2, 0x34B, 0x753, 0x963, 0x16B, 0x504, 0x714, 0xB1C, 0x12C,
0x405, 0x20D, 0xA1D, 0x825},
{0x088, 0x290, 0x6A0, 0x8A8, 0x401, 0x211, 0xA19, 0x829, 0x442, 0x04A,
0xA5A, 0x662, 0x14B, 0x353, 0x763, 0x96B, 0x4C4, 0x2D4, 0xADC, 0x8EC,
0x505, 0x10D, 0xB1D, 0x725},
{0x648, 0x450, 0x060, 0xA68, 0x2C1, 0x4D1, 0x8D9, 0xAE9, 0x282, 0x68A,
0x89A, 0x0A2, 0x70B, 0x513, 0x123, 0xB2B, 0x204, 0x414, 0x81C, 0xA2C,
0x345, 0x74D, 0x95D, 0x165},
{0xA48, 0x650, 0x460, 0x068, 0x341, 0x751, 0x959, 0x169, 0x2C2, 0xACA,
0x8DA, 0x4E2, 0xB0B, 0x713, 0x523, 0x12B, 0x284, 0x694, 0x89C, 0x0AC,
0x205, 0xA0D, 0x81D, 0x425},
{0x448, 0x050, 0xA60, 0x668, 0x281, 0x091, 0x899, 0x6A9, 0x202, 0x40A,
0x81A, 0xA22, 0x50B, 0x113, 0xB23, 0x72B, 0x344, 0x154, 0x95C, 0x76C,
0x2C5, 0x4CD, 0x8DD, 0xAE5},
{0x048, 0xA50, 0x660, 0x468, 0x201, 0xA11, 0x819, 0x429, 0x342, 0x14A,
0x95A, 0x762, 0x10B, 0xB13, 0x723, 0x52B, 0x2C4, 0xAD4, 0x8DC, 0x4EC,
0x285, 0x08D, 0x89D, 0x6A5},
{0x808, 0xA10, 0x220, 0x428, 0x101, 0xB11, 0x719, 0x529, 0x142, 0x94A,
0x75A, 0x362, 0x8CB, 0xAD3, 0x2E3, 0x4EB, 0x044, 0xA54, 0x65C, 0x46C,
0x085, 0x88D, 0x69D, 0x2A5},
{0xA08, 0x210, 0x420, 0x828, 0x141, 0x351, 0x759, 0x969, 0x042, 0xA4A,
0x65A, 0x462, 0xACB, 0x2D3, 0x4E3, 0x8EB, 0x084, 0x294, 0x69C, 0x8AC,
0x105, 0xB0D, 0x71D, 0x525},
{0x408, 0x810, 0xA20, 0x228, 0x081, 0x891, 0x699, 0x2A9, 0x102, 0x50A,
0x71A, 0xB22, 0x4CB, 0x8D3, 0xAE3, 0x2EB, 0x144, 0x954, 0x75C, 0x36C,
0x045, 0x44D, 0x65D, 0xA65},
};
// _axis_convert_num = {'X': 0, 'Y': 1, 'Z': 2, '-X': 3, '-Y': 4, '-Z': 5}
BLI_INLINE int _axis_signed(const int axis)
{
return (axis < 3) ? axis : axis - 3;
}
/*
* Each argument us an axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z']
* where the first 2 are a source and the second 2 are the target.
*/
int mat3_from_axis_conversion(int from_forward, int from_up, int to_forward, int to_up,
float r_mat[3][3])
{
// from functools import reduce
int value;
unsigned int i;
if (from_forward == to_forward && from_up == to_up) {
unit_m3(r_mat);
return false;
}
if ((_axis_signed(from_forward) == _axis_signed(from_up)) ||
(_axis_signed(to_forward) == _axis_signed(to_up)))
{
/* we could assert here! */
unit_m3(r_mat);
return false;
}
value = ((from_forward << (0 * 3)) |
(from_up << (1 * 3)) |
(to_forward << (2 * 3)) |
(to_up << (3 * 3)));
for (i = 0; i < (sizeof(_axis_convert_matrix) / sizeof(*_axis_convert_matrix)); i++) {
unsigned int j;
for (j = 0; j < (sizeof(*_axis_convert_lut) / sizeof(*_axis_convert_lut[0])); j++) {
if (_axis_convert_lut[i][j] == value) {
copy_m3_m3(r_mat, _axis_convert_matrix[i]);
return true;
}
}
}
// BLI_assert(0);
return false;
}