This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/anim.c
Joshua Leung 6028470a9c Motion Paths + Auto-Keying:
Revised the conditions under which motion paths get recalculated after transforms (when auto-keying is enabled). Now, the type of path display does not matter, but rather that the object/bone in question has any paths at all. This makes animating with these a much smoother experience.
2010-03-11 11:15:25 +00:00

1488 lines
38 KiB
C

/** anim.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "DNA_listBase.h"
#include "DNA_anim_types.h"
#include "DNA_action_types.h"
#include "DNA_armature_types.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "DNA_vfont_types.h"
#include "BKE_anim.h"
#include "BKE_animsys.h"
#include "BKE_curve.h"
#include "BKE_DerivedMesh.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_font.h"
#include "BKE_group.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_utildefines.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
// XXX bad level call...
#include "ED_mesh.h"
/* --------------------- */
/* forward declarations */
static void object_duplilist_recursive(ID *id, Scene *scene, Object *ob, ListBase *duplilist, float par_space_mat[][4], int level, int animated);
/* ******************************************************************** */
/* Animation Visualisation */
/* Initialise the default settings for animation visualisation */
void animviz_settings_init(bAnimVizSettings *avs)
{
/* sanity check */
if (avs == NULL)
return;
/* ghosting settings */
avs->ghost_bc= avs->ghost_ac= 10;
avs->ghost_sf= 1; // xxx - take from scene instead?
avs->ghost_ef= 250; // xxx - take from scene instead?
avs->ghost_step= 1;
/* path settings */
avs->path_bc= avs->path_ac= 10;
avs->path_sf= 1; // xxx - take from scene instead?
avs->path_ef= 250; // xxx - take from scene instead?
avs->path_viewflag= (MOTIONPATH_VIEW_KFRAS|MOTIONPATH_VIEW_KFNOS);
avs->path_step= 1;
}
/* ------------------- */
/* Free the given motion path's cache */
void animviz_free_motionpath_cache(bMotionPath *mpath)
{
/* sanity check */
if (mpath == NULL)
return;
/* free the path if necessary */
if (mpath->points)
MEM_freeN(mpath->points);
/* reset the relevant parameters */
mpath->points= NULL;
mpath->length= 0;
}
/* Free the given motion path instance and its data
* NOTE: this frees the motion path given!
*/
void animviz_free_motionpath(bMotionPath *mpath)
{
/* sanity check */
if (mpath == NULL)
return;
/* free the cache first */
animviz_free_motionpath_cache(mpath);
/* now the instance itself */
MEM_freeN(mpath);
}
/* ------------------- */
/* Setup motion paths for the given data
* - scene: current scene (for frame ranges, etc.)
* - ob: object to add paths for (must be provided)
* - pchan: posechannel to add paths for (optional; if not provided, object-paths are assumed)
*/
bMotionPath *animviz_verify_motionpaths(Scene *scene, Object *ob, bPoseChannel *pchan)
{
bAnimVizSettings *avs;
bMotionPath *mpath, **dst;
/* sanity checks */
if (ELEM(NULL, scene, ob))
return NULL;
/* get destination data */
if (pchan) {
/* paths for posechannel - assume that posechannel belongs to the object */
avs= &ob->pose->avs;
dst= &pchan->mpath;
}
else {
/* paths for object */
avs= &ob->avs;
dst= &ob->mpath;
}
/* if there is already a motionpath, just return that,
* but provided it's settings are ok
*/
if (*dst != NULL) {
mpath= *dst;
/* if range is not invalid, and/or length is set ok, just return */
if ((mpath->start_frame != mpath->end_frame) && (mpath->length > 0))
return mpath;
}
else {
/* create a new motionpath, and assign it */
mpath= MEM_callocN(sizeof(bMotionPath), "bMotionPath");
*dst= mpath;
}
/* set settings from the viz settings */
mpath->start_frame= avs->path_sf;
mpath->end_frame= avs->path_ef;
mpath->length= mpath->end_frame - mpath->start_frame;
if (avs->path_bakeflag & MOTIONPATH_BAKE_HEADS)
mpath->flag |= MOTIONPATH_FLAG_BHEAD;
/* allocate a cache */
mpath->points= MEM_callocN(sizeof(bMotionPathVert)*mpath->length, "bMotionPathVerts");
/* tag viz settings as currently having some path(s) which use it */
avs->path_bakeflag |= MOTIONPATH_BAKE_HAS_PATHS;
/* return it */
return mpath;
}
/* ------------------- */
/* Motion path needing to be baked (mpt) */
typedef struct MPathTarget {
struct MPathTarget *next, *prev;
bMotionPath *mpath; /* motion path in question */
Object *ob; /* source object */
bPoseChannel *pchan; /* source posechannel (if applicable) */
} MPathTarget;
/* ........ */
/* get list of motion paths to be baked for the given object
* - assumes the given list is ready to be used
*/
void animviz_get_object_motionpaths(Object *ob, ListBase *targets)
{
MPathTarget *mpt;
/* object itself first */
if ((ob->avs.recalc & ANIMVIZ_RECALC_PATHS) && (ob->mpath)) {
/* new target for object */
mpt= MEM_callocN(sizeof(MPathTarget), "MPathTarget Ob");
BLI_addtail(targets, mpt);
mpt->mpath= ob->mpath;
mpt->ob= ob;
}
/* bones */
if ((ob->pose) && (ob->pose->avs.recalc & ANIMVIZ_RECALC_PATHS)) {
bArmature *arm= ob->data;
bPoseChannel *pchan;
for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if ((pchan->bone) && (arm->layer & pchan->bone->layer) && (pchan->mpath)) {
/* new target for bone */
mpt= MEM_callocN(sizeof(MPathTarget), "MPathTarget PoseBone");
BLI_addtail(targets, mpt);
mpt->mpath= pchan->mpath;
mpt->ob= ob;
mpt->pchan= pchan;
}
}
}
}
/* ........ */
/* perform baking for the targets on the current frame */
static void motionpaths_calc_bake_targets(Scene *scene, ListBase *targets)
{
MPathTarget *mpt;
/* for each target, check if it can be baked on the current frame */
for (mpt= targets->first; mpt; mpt= mpt->next) {
bMotionPath *mpath= mpt->mpath;
bMotionPathVert *mpv;
/* current frame must be within the range the cache works for
* - is inclusive of the first frame, but not the last otherwise we get buffer overruns
*/
if ((CFRA < mpath->start_frame) || (CFRA >= mpath->end_frame))
continue;
/* get the relevant cache vert to write to */
mpv= mpath->points + (CFRA - mpath->start_frame);
/* pose-channel or object path baking? */
if (mpt->pchan) {
/* heads or tails */
if (mpath->flag & MOTIONPATH_FLAG_BHEAD) {
VECCOPY(mpv->co, mpt->pchan->pose_head);
}
else {
VECCOPY(mpv->co, mpt->pchan->pose_tail);
}
/* result must be in worldspace */
mul_m4_v3(mpt->ob->obmat, mpv->co);
}
else {
/* worldspace object location */
VECCOPY(mpv->co, mpt->ob->obmat[3]);
}
}
}
/* Perform baking of the given object's and/or its bones' transforms to motion paths
* - scene: current scene
* - ob: object whose flagged motionpaths should get calculated
* - recalc: whether we need to
*/
// TODO: include reports pointer?
void animviz_calc_motionpaths(Scene *scene, ListBase *targets)
{
MPathTarget *mpt;
int sfra, efra;
int cfra;
/* sanity check */
if (ELEM(NULL, targets, targets->first))
return;
/* set frame values */
cfra = CFRA;
sfra = efra = cfra;
// TODO: this method could be improved...
// 1) max range for standard baking
// 2) minimum range for recalc baking (i.e. between keyfames, but how?)
for (mpt= targets->first; mpt; mpt= mpt->next) {
/* try to increase area to do (only as much as needed) */
sfra= MIN2(sfra, mpt->mpath->start_frame);
efra= MAX2(efra, mpt->mpath->end_frame);
}
if (efra <= sfra) return;
/* calculate path over requested range */
for (CFRA=sfra; CFRA<=efra; CFRA++) {
/* do all updates
* - if this is too slow, resort to using a more efficient way
* that doesn't force complete update, but for now, this is the
* most accurate way!
*/
scene_update_for_newframe(scene, scene->lay); // XXX this is the best way we can get anything moving
/* perform baking for targets */
motionpaths_calc_bake_targets(scene, targets);
}
/* reset original environment */
CFRA= cfra;
scene_update_for_newframe(scene, scene->lay); // XXX this is the best way we can get anything moving
/* clear recalc flags from targets */
for (mpt= targets->first; mpt; mpt= mpt->next) {
bAnimVizSettings *avs;
/* get pointer to animviz settings for each target */
if (mpt->pchan)
avs= &mpt->ob->pose->avs;
else
avs= &mpt->ob->avs;
/* clear the flag requesting recalculation of targets */
avs->recalc &= ~ANIMVIZ_RECALC_PATHS;
}
}
/* ******************************************************************** */
/* Curve Paths - for curve deforms and/or curve following */
/* free curve path data
* NOTE: frees the path itself!
*/
void free_path(Path *path)
{
if(path->data) MEM_freeN(path->data);
MEM_freeN(path);
}
/* calculate a curve-deform path for a curve
* - only called from displist.c -> makeDispListCurveTypes
*/
void calc_curvepath(Object *ob)
{
BevList *bl;
BevPoint *bevp, *bevpn, *bevpfirst, *bevplast;
PathPoint *pp;
Curve *cu;
Nurb *nu;
Path *path;
float *fp, *dist, *maxdist, xyz[3];
float fac, d=0, fac1, fac2;
int a, tot, cycl=0;
/* in a path vertices are with equal differences: path->len = number of verts */
/* NOW WITH BEVELCURVE!!! */
if(ob==NULL || ob->type != OB_CURVE) return;
cu= ob->data;
if(cu->editnurb)
nu= cu->editnurb->first;
else
nu= cu->nurb.first;
if(cu->path) free_path(cu->path);
cu->path= NULL;
bl= cu->bev.first;
if(bl==NULL || !bl->nr) return;
cu->path=path= MEM_callocN(sizeof(Path), "path");
/* if POLY: last vertice != first vertice */
cycl= (bl->poly!= -1);
if(cycl) tot= bl->nr;
else tot= bl->nr-1;
path->len= tot+1;
/* exception: vector handle paths and polygon paths should be subdivided at least a factor resolu */
if(path->len<nu->resolu*SEGMENTSU(nu)) path->len= nu->resolu*SEGMENTSU(nu);
dist= (float *)MEM_mallocN((tot+1)*4, "calcpathdist");
/* all lengths in *dist */
bevp= bevpfirst= (BevPoint *)(bl+1);
fp= dist;
*fp= 0;
for(a=0; a<tot; a++) {
fp++;
if(cycl && a==tot-1)
sub_v3_v3v3(xyz, bevpfirst->vec, bevp->vec);
else
sub_v3_v3v3(xyz, (bevp+1)->vec, bevp->vec);
*fp= *(fp-1)+len_v3(xyz);
bevp++;
}
path->totdist= *fp;
/* the path verts in path->data */
/* now also with TILT value */
pp= path->data = (PathPoint *)MEM_callocN(sizeof(PathPoint)*4*path->len, "pathdata"); // XXX - why *4? - in 2.4x each element was 4 and the size was 16, so better leave for now - Campbell
bevp= bevpfirst;
bevpn= bevp+1;
bevplast= bevpfirst + (bl->nr-1);
fp= dist+1;
maxdist= dist+tot;
fac= 1.0f/((float)path->len-1.0f);
fac = fac * path->totdist;
for(a=0; a<path->len; a++) {
d= ((float)a)*fac;
/* we're looking for location (distance) 'd' in the array */
while((d>= *fp) && fp<maxdist) {
fp++;
if(bevp<bevplast) bevp++;
bevpn= bevp+1;
if(bevpn>bevplast) {
if(cycl) bevpn= bevpfirst;
else bevpn= bevplast;
}
}
fac1= *(fp)- *(fp-1);
fac2= *(fp)-d;
fac1= fac2/fac1;
fac2= 1.0f-fac1;
interp_v3_v3v3(pp->vec, bevp->vec, bevpn->vec, fac2);
pp->vec[3]= fac1*bevp->alfa + fac2*bevpn->alfa;
pp->radius= fac1*bevp->radius + fac2*bevpn->radius;
interp_qt_qtqt(pp->quat, bevp->quat, bevpn->quat, fac2);
normalize_qt(pp->quat);
pp++;
}
MEM_freeN(dist);
}
/* is this only used internally?*/
int interval_test(int min, int max, int p1, int cycl)
{
if(cycl) {
if(p1 < min)
p1= ((p1 -min) % (max-min+1)) + max+1;
else if(p1 > max)
p1= ((p1 -min) % (max-min+1)) + min;
}
else {
if(p1 < min) p1= min;
else if(p1 > max) p1= max;
}
return p1;
}
/* calculate the deformation implied by the curve path at a given parametric position, and returns whether this operation succeeded
* - *vec needs FOUR items!
* - ctime is normalized range <0-1>
*/
int where_on_path(Object *ob, float ctime, float *vec, float *dir, float *quat, float *radius) /* returns OK */
{
Curve *cu;
Nurb *nu;
BevList *bl;
Path *path;
PathPoint *pp, *p0, *p1, *p2, *p3;
float fac;
float data[4];
int cycl=0, s0, s1, s2, s3;
if(ob==NULL || ob->type != OB_CURVE) return 0;
cu= ob->data;
if(cu->path==NULL || cu->path->data==NULL) {
printf("no path!\n");
return 0;
}
path= cu->path;
pp= path->data;
/* test for cyclic */
bl= cu->bev.first;
if (!bl) return 0;
if (!bl->nr) return 0;
if(bl->poly> -1) cycl= 1;
ctime *= (path->len-1);
s1= (int)floor(ctime);
fac= (float)(s1+1)-ctime;
/* path->len is corected for cyclic */
s0= interval_test(0, path->len-1-cycl, s1-1, cycl);
s1= interval_test(0, path->len-1-cycl, s1, cycl);
s2= interval_test(0, path->len-1-cycl, s1+1, cycl);
s3= interval_test(0, path->len-1-cycl, s1+2, cycl);
p0= pp + s0;
p1= pp + s1;
p2= pp + s2;
p3= pp + s3;
/* note, commented out for follow constraint */
//if(cu->flag & CU_FOLLOW) {
key_curve_tangent_weights(1.0f-fac, data, KEY_BSPLINE);
interp_v3_v3v3v3v3(dir, p0->vec, p1->vec, p2->vec, p3->vec, data);
/* make compatible with vectoquat */
negate_v3(dir);
//}
nu= cu->nurb.first;
/* make sure that first and last frame are included in the vectors here */
if(nu->type == CU_POLY) key_curve_position_weights(1.0f-fac, data, KEY_LINEAR);
else if(nu->type == CU_BEZIER) key_curve_position_weights(1.0f-fac, data, KEY_LINEAR);
else if(s0==s1 || p2==p3) key_curve_position_weights(1.0f-fac, data, KEY_CARDINAL);
else key_curve_position_weights(1.0f-fac, data, KEY_BSPLINE);
vec[0]= data[0]*p0->vec[0] + data[1]*p1->vec[0] + data[2]*p2->vec[0] + data[3]*p3->vec[0] ; /* X */
vec[1]= data[0]*p0->vec[1] + data[1]*p1->vec[1] + data[2]*p2->vec[1] + data[3]*p3->vec[1] ; /* Y */
vec[2]= data[0]*p0->vec[2] + data[1]*p1->vec[2] + data[2]*p2->vec[2] + data[3]*p3->vec[2] ; /* Z */
vec[3]= data[0]*p0->vec[3] + data[1]*p1->vec[3] + data[2]*p2->vec[3] + data[3]*p3->vec[3] ; /* Tilt, should not be needed since we have quat still used */
/* Need to verify the quat interpolation is correct - XXX */
if (quat) {
//float totfac, q1[4], q2[4];
/* checks for totfac are needed when 'fac' is 1.0 key_curve_position_weights can assign zero
* to more then one index in data which can give divide by zero error */
/*
totfac= data[0]+data[1];
if(totfac>0.000001) interp_qt_qtqt(q1, p0->quat, p1->quat, data[0] / totfac);
else QUATCOPY(q1, p1->quat);
normalize_qt(q1);
totfac= data[2]+data[3];
if(totfac>0.000001) interp_qt_qtqt(q2, p2->quat, p3->quat, data[2] / totfac);
else QUATCOPY(q1, p3->quat);
normalize_qt(q2);
totfac = data[0]+data[1]+data[2]+data[3];
if(totfac>0.000001) interp_qt_qtqt(quat, q1, q2, (data[0]+data[1]) / totfac);
else QUATCOPY(quat, q2);
normalize_qt(quat);
*/
// XXX - find some way to make quat interpolation work correctly, above code fails in rare but nasty cases.
QUATCOPY(quat, p1->quat);
}
if(radius)
*radius= data[0]*p0->radius + data[1]*p1->radius + data[2]*p2->radius + data[3]*p3->radius;
return 1;
}
/* ******************************************************************** */
/* Dupli-Geometry */
static DupliObject *new_dupli_object(ListBase *lb, Object *ob, float mat[][4], int lay, int index, int type, int animated)
{
DupliObject *dob= MEM_callocN(sizeof(DupliObject), "dupliobject");
BLI_addtail(lb, dob);
dob->ob= ob;
copy_m4_m4(dob->mat, mat);
copy_m4_m4(dob->omat, ob->obmat);
dob->origlay= ob->lay;
dob->index= index;
dob->type= type;
dob->animated= (type == OB_DUPLIGROUP) && animated;
ob->lay= lay;
return dob;
}
static void group_duplilist(ListBase *lb, Scene *scene, Object *ob, int level, int animated)
{
DupliObject *dob;
Group *group;
GroupObject *go;
float mat[4][4], tmat[4][4];
if(ob->dup_group==NULL) return;
group= ob->dup_group;
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
/* handles animated groups, and */
/* we need to check update for objects that are not in scene... */
group_handle_recalc_and_update(scene, ob, group);
animated= animated || group_is_animated(ob, group);
for(go= group->gobject.first; go; go= go->next) {
/* note, if you check on layer here, render goes wrong... it still deforms verts and uses parent imat */
if(go->ob!=ob) {
/* Group Dupli Offset, should apply after everything else */
if (group->dupli_ofs[0] || group->dupli_ofs[1] || group->dupli_ofs[2]) {
copy_m4_m4(tmat, go->ob->obmat);
sub_v3_v3v3(tmat[3], tmat[3], group->dupli_ofs);
mul_m4_m4m4(mat, tmat, ob->obmat);
} else {
mul_m4_m4m4(mat, go->ob->obmat, ob->obmat);
}
dob= new_dupli_object(lb, go->ob, mat, ob->lay, 0, OB_DUPLIGROUP, animated);
dob->no_draw= (dob->origlay & group->layer)==0;
if(go->ob->transflag & OB_DUPLI) {
copy_m4_m4(dob->ob->obmat, dob->mat);
object_duplilist_recursive((ID *)group, scene, go->ob, lb, ob->obmat, level+1, animated);
copy_m4_m4(dob->ob->obmat, dob->omat);
}
}
}
}
static void frames_duplilist(ListBase *lb, Scene *scene, Object *ob, int level, int animated)
{
extern int enable_cu_speed; /* object.c */
Object copyob;
DupliObject *dob;
int cfrao, ok;
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
cfrao= scene->r.cfra;
if(ob->parent==NULL && ob->track==NULL && ob->ipo==NULL && ob->constraints.first==NULL) return;
if(ob->transflag & OB_DUPLINOSPEED) enable_cu_speed= 0;
copyob= *ob; /* store transform info */
for(scene->r.cfra= ob->dupsta; scene->r.cfra<=ob->dupend; scene->r.cfra++) {
ok= 1;
if(ob->dupoff) {
ok= scene->r.cfra - ob->dupsta;
ok= ok % (ob->dupon+ob->dupoff);
if(ok < ob->dupon) ok= 1;
else ok= 0;
}
if(ok) {
#if 0 // XXX old animation system
do_ob_ipo(scene, ob);
#endif // XXX old animation system
where_is_object_time(scene, ob, (float)scene->r.cfra);
dob= new_dupli_object(lb, ob, ob->obmat, ob->lay, scene->r.cfra, OB_DUPLIFRAMES, animated);
copy_m4_m4(dob->omat, copyob.obmat);
}
}
*ob= copyob; /* restore transform info */
scene->r.cfra= cfrao;
enable_cu_speed= 1;
}
typedef struct vertexDupliData {
ID *id; /* scene or group, for recursive loops */
int level;
int animated;
ListBase *lb;
float pmat[4][4];
float obmat[4][4]; /* Only used for dupliverts inside dupligroups, where the ob->obmat is modified */
Scene *scene;
Object *ob, *par;
float (*orco)[3];
} vertexDupliData;
/* ------------- */
static void vertex_dupli__mapFunc(void *userData, int index, float *co, float *no_f, short *no_s)
{
DupliObject *dob;
vertexDupliData *vdd= userData;
float vec[3], q2[4], mat[3][3], tmat[4][4], obmat[4][4];
VECCOPY(vec, co);
mul_m4_v3(vdd->pmat, vec);
sub_v3_v3v3(vec, vec, vdd->pmat[3]);
add_v3_v3v3(vec, vec, vdd->obmat[3]);
copy_m4_m4(obmat, vdd->obmat);
VECCOPY(obmat[3], vec);
if(vdd->par->transflag & OB_DUPLIROT) {
if(no_f) {
vec[0]= -no_f[0]; vec[1]= -no_f[1]; vec[2]= -no_f[2];
}
else if(no_s) {
vec[0]= -no_s[0]; vec[1]= -no_s[1]; vec[2]= -no_s[2];
}
vec_to_quat( q2,vec, vdd->ob->trackflag, vdd->ob->upflag);
quat_to_mat3( mat,q2);
copy_m4_m4(tmat, obmat);
mul_m4_m4m3(obmat, tmat, mat);
}
dob= new_dupli_object(vdd->lb, vdd->ob, obmat, vdd->par->lay, index, OB_DUPLIVERTS, vdd->animated);
if(vdd->orco)
VECCOPY(dob->orco, vdd->orco[index]);
if(vdd->ob->transflag & OB_DUPLI) {
float tmpmat[4][4];
copy_m4_m4(tmpmat, vdd->ob->obmat);
copy_m4_m4(vdd->ob->obmat, obmat); /* pretend we are really this mat */
object_duplilist_recursive((ID *)vdd->id, vdd->scene, vdd->ob, vdd->lb, obmat, vdd->level+1, vdd->animated);
copy_m4_m4(vdd->ob->obmat, tmpmat);
}
}
static void vertex_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], int level, int animated)
{
Object *ob, *ob_iter;
Mesh *me= par->data;
Base *base = NULL;
DerivedMesh *dm;
vertexDupliData vdd;
Scene *sce = NULL;
Group *group = NULL;
GroupObject * go = NULL;
EditMesh *em;
float vec[3], no[3], pmat[4][4];
int lay, totvert, a, oblay;
copy_m4_m4(pmat, par->obmat);
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
em = BKE_mesh_get_editmesh(me);
if(em) {
dm= editmesh_get_derived_cage(scene, par, em, CD_MASK_BAREMESH);
BKE_mesh_end_editmesh(me, em);
} else
dm= mesh_get_derived_deform(scene, par, CD_MASK_BAREMESH);
if(G.rendering) {
vdd.orco= (float(*)[3])get_mesh_orco_verts(par);
transform_mesh_orco_verts(me, vdd.orco, me->totvert, 0);
}
else
vdd.orco= NULL;
totvert = dm->getNumVerts(dm);
/* having to loop on scene OR group objects is NOT FUN */
if (GS(id->name) == ID_SCE) {
sce = (Scene *)id;
lay= sce->lay;
base= sce->base.first;
} else {
group = (Group *)id;
lay= group->layer;
go = group->gobject.first;
}
/* Start looping on Scene OR Group objects */
while (base || go) {
if (sce) {
ob_iter= base->object;
oblay = base->lay;
} else {
ob_iter= go->ob;
oblay = ob_iter->lay;
}
if (lay & oblay && scene->obedit!=ob_iter) {
ob=ob_iter->parent;
while(ob) {
if(ob==par) {
ob = ob_iter;
/* End Scene/Group object loop, below is generic */
/* par_space_mat - only used for groups so we can modify the space dupli's are in
when par_space_mat is NULL ob->obmat can be used instead of ob__obmat
*/
if(par_space_mat)
mul_m4_m4m4(vdd.obmat, ob->obmat, par_space_mat);
else
copy_m4_m4(vdd.obmat, ob->obmat);
vdd.id= id;
vdd.level= level;
vdd.animated= animated;
vdd.lb= lb;
vdd.ob= ob;
vdd.scene= scene;
vdd.par= par;
copy_m4_m4(vdd.pmat, pmat);
/* mballs have a different dupli handling */
if(ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */
if(par->mode & OB_MODE_EDIT) {
dm->foreachMappedVert(dm, vertex_dupli__mapFunc, (void*) &vdd);
}
else {
for(a=0; a<totvert; a++) {
dm->getVertCo(dm, a, vec);
dm->getVertNo(dm, a, no);
vertex_dupli__mapFunc(&vdd, a, vec, no, NULL);
}
}
break;
}
ob= ob->parent;
}
}
if (sce) base= base->next; /* scene loop */
else go= go->next; /* group loop */
}
if(vdd.orco)
MEM_freeN(vdd.orco);
dm->release(dm);
}
static void face_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], int level, int animated)
{
Object *ob, *ob_iter;
Base *base = NULL;
DupliObject *dob;
DerivedMesh *dm;
Mesh *me= par->data;
MTFace *mtface;
MFace *mface;
MVert *mvert;
float pmat[4][4], imat[3][3], (*orco)[3] = NULL, w;
int lay, oblay, totface, a;
Scene *sce = NULL;
Group *group = NULL;
GroupObject *go = NULL;
EditMesh *em;
float ob__obmat[4][4]; /* needed for groups where the object matrix needs to be modified */
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
copy_m4_m4(pmat, par->obmat);
em = BKE_mesh_get_editmesh(me);
if(em) {
int totvert;
dm= editmesh_get_derived_cage(scene, par, em, CD_MASK_BAREMESH);
totface= dm->getNumFaces(dm);
mface= MEM_mallocN(sizeof(MFace)*totface, "mface temp");
dm->copyFaceArray(dm, mface);
totvert= dm->getNumVerts(dm);
mvert= MEM_mallocN(sizeof(MVert)*totvert, "mvert temp");
dm->copyVertArray(dm, mvert);
BKE_mesh_end_editmesh(me, em);
}
else {
dm = mesh_get_derived_deform(scene, par, CD_MASK_BAREMESH);
totface= dm->getNumFaces(dm);
mface= dm->getFaceArray(dm);
mvert= dm->getVertArray(dm);
}
if(G.rendering) {
orco= (float(*)[3])get_mesh_orco_verts(par);
transform_mesh_orco_verts(me, orco, me->totvert, 0);
mtface= me->mtface;
}
else {
orco= NULL;
mtface= NULL;
}
/* having to loop on scene OR group objects is NOT FUN */
if (GS(id->name) == ID_SCE) {
sce = (Scene *)id;
lay= sce->lay;
base= sce->base.first;
} else {
group = (Group *)id;
lay= group->layer;
go = group->gobject.first;
}
/* Start looping on Scene OR Group objects */
while (base || go) {
if (sce) {
ob_iter= base->object;
oblay = base->lay;
} else {
ob_iter= go->ob;
oblay = ob_iter->lay;
}
if (lay & oblay && scene->obedit!=ob_iter) {
ob=ob_iter->parent;
while(ob) {
if(ob==par) {
ob = ob_iter;
/* End Scene/Group object loop, below is generic */
/* par_space_mat - only used for groups so we can modify the space dupli's are in
when par_space_mat is NULL ob->obmat can be used instead of ob__obmat
*/
if(par_space_mat)
mul_m4_m4m4(ob__obmat, ob->obmat, par_space_mat);
else
copy_m4_m4(ob__obmat, ob->obmat);
copy_m3_m4(imat, ob->parentinv);
/* mballs have a different dupli handling */
if(ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */
for(a=0; a<totface; a++) {
int mv1 = mface[a].v1;
int mv2 = mface[a].v2;
int mv3 = mface[a].v3;
int mv4 = mface[a].v4;
float *v1= mvert[mv1].co;
float *v2= mvert[mv2].co;
float *v3= mvert[mv3].co;
float *v4= (mv4)? mvert[mv4].co: NULL;
float cent[3], quat[4], mat[3][3], mat3[3][3], tmat[4][4], obmat[4][4];
/* translation */
if(v4)
cent_quad_v3(cent, v1, v2, v3, v4);
else
cent_tri_v3(cent, v1, v2, v3);
mul_m4_v3(pmat, cent);
sub_v3_v3v3(cent, cent, pmat[3]);
add_v3_v3v3(cent, cent, ob__obmat[3]);
copy_m4_m4(obmat, ob__obmat);
VECCOPY(obmat[3], cent);
/* rotation */
tri_to_quat( quat,v1, v2, v3);
quat_to_mat3( mat,quat);
/* scale */
if(par->transflag & OB_DUPLIFACES_SCALE) {
float size= v4? area_quad_v3(v1, v2, v3, v4): area_tri_v3(v1, v2, v3);
size= sqrt(size) * par->dupfacesca;
mul_m3_fl(mat, size);
}
copy_m3_m3(mat3, mat);
mul_m3_m3m3(mat, imat, mat3);
copy_m4_m4(tmat, obmat);
mul_m4_m4m3(obmat, tmat, mat);
dob= new_dupli_object(lb, ob, obmat, lay, a, OB_DUPLIFACES, animated);
if(G.rendering) {
w= (mv4)? 0.25f: 1.0f/3.0f;
if(orco) {
VECADDFAC(dob->orco, dob->orco, orco[mv1], w);
VECADDFAC(dob->orco, dob->orco, orco[mv2], w);
VECADDFAC(dob->orco, dob->orco, orco[mv3], w);
if(mv4)
VECADDFAC(dob->orco, dob->orco, orco[mv4], w);
}
if(mtface) {
dob->uv[0] += w*mtface[a].uv[0][0];
dob->uv[1] += w*mtface[a].uv[0][1];
dob->uv[0] += w*mtface[a].uv[1][0];
dob->uv[1] += w*mtface[a].uv[1][1];
dob->uv[0] += w*mtface[a].uv[2][0];
dob->uv[1] += w*mtface[a].uv[2][1];
if(mv4) {
dob->uv[0] += w*mtface[a].uv[3][0];
dob->uv[1] += w*mtface[a].uv[3][1];
}
}
}
if(ob->transflag & OB_DUPLI) {
float tmpmat[4][4];
copy_m4_m4(tmpmat, ob->obmat);
copy_m4_m4(ob->obmat, obmat); /* pretend we are really this mat */
object_duplilist_recursive((ID *)id, scene, ob, lb, ob->obmat, level+1, animated);
copy_m4_m4(ob->obmat, tmpmat);
}
}
break;
}
ob= ob->parent;
}
}
if (sce) base= base->next; /* scene loop */
else go= go->next; /* group loop */
}
if(par->mode & OB_MODE_EDIT) {
MEM_freeN(mface);
MEM_freeN(mvert);
}
if(orco)
MEM_freeN(orco);
dm->release(dm);
}
static void new_particle_duplilist(ListBase *lb, ID *id, Scene *scene, Object *par, float par_space_mat[][4], ParticleSystem *psys, int level, int animated)
{
GroupObject *go;
Object *ob=0, **oblist=0, obcopy, *obcopylist=0;
DupliObject *dob;
ParticleDupliWeight *dw;
ParticleSimulationData sim = {scene, par, psys, psys_get_modifier(par, psys)};
ParticleSettings *part;
ParticleData *pa;
ChildParticle *cpa=0;
ParticleKey state;
ParticleCacheKey *cache;
float ctime, pa_time, scale = 1.0f;
float tmat[4][4], mat[4][4], pamat[4][4], vec[3], size=0.0;
float (*obmat)[4], (*oldobmat)[4], recurs_mat[4][4];
int lay, a, b, counter, hair = 0;
int totpart, totchild, totgroup=0, pa_num;
if(psys==0) return;
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
part=psys->part;
if(part==0)
return;
if(!psys_check_enabled(par, psys))
return;
/* particles are already in world space, don't want the object mat twice */
if(par_space_mat)
mul_m4_m4m4(recurs_mat, psys->imat, par_space_mat);
ctime = bsystem_time(scene, par, (float)scene->r.cfra, 0.0);
totpart = psys->totpart;
totchild = psys->totchild;
BLI_srandom(31415926 + psys->seed);
lay= scene->lay;
if((psys->renderdata || part->draw_as==PART_DRAW_REND) &&
((part->ren_as == PART_DRAW_OB && part->dup_ob) ||
(part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first))) {
psys_check_group_weights(part);
/* if we have a hair particle system, use the path cache */
if(part->type == PART_HAIR) {
if(psys->flag & PSYS_HAIR_DONE)
hair= (totchild == 0 || psys->childcache) && psys->pathcache;
if(!hair)
return;
/* we use cache, update totchild according to cached data */
totchild = psys->totchildcache;
totpart = psys->totcached;
}
psys->lattice = psys_get_lattice(&sim);
/* gather list of objects or single object */
if(part->ren_as==PART_DRAW_GR) {
group_handle_recalc_and_update(scene, par, part->dup_group);
if(part->draw & PART_DRAW_COUNT_GR) {
for(dw=part->dupliweights.first; dw; dw=dw->next)
totgroup += dw->count;
}
else {
for(go=part->dup_group->gobject.first; go; go=go->next)
totgroup++;
}
/* we also copy the actual objects to restore afterwards, since
* where_is_object_time will change the object which breaks transform */
oblist = MEM_callocN(totgroup*sizeof(Object *), "dupgroup object list");
obcopylist = MEM_callocN(totgroup*sizeof(Object), "dupgroup copy list");
if(part->draw & PART_DRAW_COUNT_GR && totgroup) {
dw = part->dupliweights.first;
for(a=0; a<totgroup; dw=dw->next) {
for(b=0; b<dw->count; b++, a++) {
oblist[a] = dw->ob;
obcopylist[a] = *dw->ob;
}
}
}
else {
go = part->dup_group->gobject.first;
for(a=0; a<totgroup; a++, go=go->next) {
oblist[a] = go->ob;
obcopylist[a] = *go->ob;
}
}
}
else {
ob = part->dup_ob;
obcopy = *ob;
}
if(totchild==0 || part->draw & PART_DRAW_PARENT)
a = 0;
else
a = totpart;
for(pa=psys->particles,counter=0; a<totpart+totchild; a++,pa++,counter++) {
if(a<totpart) {
/* handle parent particle */
if(pa->flag & (PARS_UNEXIST+PARS_NO_DISP))
continue;
pa_num = pa->num;
pa_time = pa->time;
size = pa->size;
}
else {
/* handle child particle */
cpa = &psys->child[a - totpart];
pa_num = a;
pa_time = psys->particles[cpa->parent].time;
size = psys_get_child_size(psys, cpa, ctime, 0);
}
if(part->ren_as==PART_DRAW_GR) {
/* for groups, pick the object based on settings */
if(part->draw&PART_DRAW_RAND_GR)
b= BLI_rand() % totgroup;
else if(part->from==PART_FROM_PARTICLE)
b= pa_num % totgroup;
else
b= a % totgroup;
ob = oblist[b];
obmat = oblist[b]->obmat;
oldobmat = obcopylist[b].obmat;
}
else {
obmat= ob->obmat;
oldobmat= obcopy.obmat;
}
if(hair) {
/* hair we handle separate and compute transform based on hair keys */
if(a < totpart) {
cache = psys->pathcache[a];
psys_get_dupli_path_transform(&sim, pa, 0, cache, pamat, &scale);
}
else {
cache = psys->childcache[a-totpart];
psys_get_dupli_path_transform(&sim, 0, cpa, cache, pamat, &scale);
}
VECCOPY(pamat[3], cache->co);
pamat[3][3]= 1.0f;
}
else {
/* first key */
state.time = ctime;
if(psys_get_particle_state(&sim, a, &state, 0) == 0)
continue;
quat_to_mat4( pamat,state.rot);
VECCOPY(pamat[3], state.co);
pamat[3][3]= 1.0f;
}
if(part->ren_as==PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) {
for(go= part->dup_group->gobject.first, b=0; go; go= go->next, b++) {
mul_m4_m4m4(tmat, oblist[b]->obmat, pamat);
mul_mat3_m4_fl(tmat, size*scale);
if(par_space_mat)
mul_m4_m4m4(mat, tmat, recurs_mat);
else
copy_m4_m4(mat, tmat);
dob= new_dupli_object(lb, go->ob, mat, par->lay, counter, OB_DUPLIPARTS, animated);
copy_m4_m4(dob->omat, obcopylist[b].obmat);
if(G.rendering)
psys_get_dupli_texture(par, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
}
}
else {
/* to give ipos in object correct offset */
where_is_object_time(scene, ob, ctime-pa_time);
VECCOPY(vec, obmat[3]);
obmat[3][0] = obmat[3][1] = obmat[3][2] = 0.0f;
copy_m4_m4(mat, pamat);
mul_m4_m4m4(tmat, obmat, mat);
mul_mat3_m4_fl(tmat, size*scale);
if(part->draw & PART_DRAW_GLOBAL_OB)
VECADD(tmat[3], tmat[3], vec);
if(par_space_mat)
mul_m4_m4m4(mat, tmat, recurs_mat);
else
copy_m4_m4(mat, tmat);
dob= new_dupli_object(lb, ob, mat, ob->lay, counter, OB_DUPLIPARTS, animated);
copy_m4_m4(dob->omat, oldobmat);
if(G.rendering)
psys_get_dupli_texture(par, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
}
}
/* restore objects since they were changed in where_is_object_time */
if(part->ren_as==PART_DRAW_GR) {
for(a=0; a<totgroup; a++)
*(oblist[a])= obcopylist[a];
}
else
*ob= obcopy;
}
/* clean up */
if(oblist)
MEM_freeN(oblist);
if(obcopylist)
MEM_freeN(obcopylist);
if(psys->lattice) {
end_latt_deform(psys->lattice);
psys->lattice = NULL;
}
}
static Object *find_family_object(Object **obar, char *family, char ch)
{
Object *ob;
int flen;
if( obar[(int)ch] ) return obar[(int)ch];
flen= strlen(family);
ob= G.main->object.first;
while(ob) {
if( ob->id.name[flen+2]==ch ) {
if( strncmp(ob->id.name+2, family, flen)==0 ) break;
}
ob= ob->id.next;
}
obar[(int)ch]= ob;
return ob;
}
static void font_duplilist(ListBase *lb, Scene *scene, Object *par, int level, int animated)
{
Object *ob, *obar[256];
Curve *cu;
struct chartrans *ct, *chartransdata;
float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof;
int slen, a;
/* simple preventing of too deep nested groups */
if(level>MAX_DUPLI_RECUR) return;
copy_m4_m4(pmat, par->obmat);
/* in par the family name is stored, use this to find the other objects */
chartransdata= BKE_text_to_curve(scene, par, FO_DUPLI);
if(chartransdata==0) return;
memset(obar, 0, 256*sizeof(void *));
cu= par->data;
slen= strlen(cu->str);
fsize= cu->fsize;
xof= cu->xof;
yof= cu->yof;
ct= chartransdata;
for(a=0; a<slen; a++, ct++) {
ob= find_family_object(obar, cu->family, cu->str[a]);
if(ob) {
vec[0]= fsize*(ct->xof - xof);
vec[1]= fsize*(ct->yof - yof);
vec[2]= 0.0;
mul_m4_v3(pmat, vec);
copy_m4_m4(obmat, par->obmat);
VECCOPY(obmat[3], vec);
new_dupli_object(lb, ob, obmat, par->lay, a, OB_DUPLIVERTS, animated);
}
}
MEM_freeN(chartransdata);
}
/* ------------- */
static void object_duplilist_recursive(ID *id, Scene *scene, Object *ob, ListBase *duplilist, float par_space_mat[][4], int level, int animated)
{
if((ob->transflag & OB_DUPLI)==0)
return;
/* Should the dupli's be generated for this object? - Respect restrict flags */
if (G.rendering) {
if (ob->restrictflag & OB_RESTRICT_RENDER) {
return;
}
} else {
if (ob->restrictflag & OB_RESTRICT_VIEW) {
return;
}
}
if(ob->transflag & OB_DUPLIPARTS) {
ParticleSystem *psys = ob->particlesystem.first;
for(; psys; psys=psys->next)
new_particle_duplilist(duplilist, id, scene, ob, par_space_mat, psys, level+1, animated);
}
else if(ob->transflag & OB_DUPLIVERTS) {
if(ob->type==OB_MESH) {
vertex_duplilist(duplilist, id, scene, ob, par_space_mat, level+1, animated);
}
else if(ob->type==OB_FONT) {
if (GS(id->name)==ID_SCE) { /* TODO - support dupligroups */
font_duplilist(duplilist, scene, ob, level+1, animated);
}
}
}
else if(ob->transflag & OB_DUPLIFACES) {
if(ob->type==OB_MESH)
face_duplilist(duplilist, id, scene, ob, par_space_mat, level+1, animated);
}
else if(ob->transflag & OB_DUPLIFRAMES) {
if (GS(id->name)==ID_SCE) { /* TODO - support dupligroups */
frames_duplilist(duplilist, scene, ob, level+1, animated);
}
} else if(ob->transflag & OB_DUPLIGROUP) {
DupliObject *dob;
group_duplilist(duplilist, scene, ob, level+1, animated); /* now recursive */
if (level==0) {
for(dob= duplilist->first; dob; dob= dob->next)
if(dob->type == OB_DUPLIGROUP)
copy_m4_m4(dob->ob->obmat, dob->mat);
}
}
}
/* Returns a list of DupliObject
* note; group dupli's already set transform matrix. see note in group_duplilist() */
ListBase *object_duplilist(Scene *sce, Object *ob)
{
ListBase *duplilist= MEM_mallocN(sizeof(ListBase), "duplilist");
duplilist->first= duplilist->last= NULL;
object_duplilist_recursive((ID *)sce, sce, ob, duplilist, NULL, 0, 0);
return duplilist;
}
void free_object_duplilist(ListBase *lb)
{
DupliObject *dob;
for(dob= lb->first; dob; dob= dob->next) {
dob->ob->lay= dob->origlay;
copy_m4_m4(dob->ob->obmat, dob->omat);
}
BLI_freelistN(lb);
MEM_freeN(lb);
}
int count_duplilist(Object *ob)
{
if(ob->transflag & OB_DUPLI) {
if(ob->transflag & OB_DUPLIVERTS) {
if(ob->type==OB_MESH) {
if(ob->transflag & OB_DUPLIVERTS) {
ParticleSystem *psys = ob->particlesystem.first;
int pdup=0;
for(; psys; psys=psys->next)
pdup += psys->totpart;
if(pdup==0){
Mesh *me= ob->data;
return me->totvert;
}
else
return pdup;
}
}
}
else if(ob->transflag & OB_DUPLIFRAMES) {
int tot= ob->dupend - ob->dupsta;
tot/= (ob->dupon+ob->dupoff);
return tot*ob->dupon;
}
}
return 1;
}