This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/curve/editcurve_paint.c

1240 lines
34 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/curve/editcurve_paint.c
* \ingroup edcurve
*/
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_mempool.h"
#include "BKE_context.h"
#include "BKE_curve.h"
#include "BKE_fcurve.h"
#include "BKE_main.h"
#include "BKE_report.h"
#include "DEG_depsgraph.h"
#include "WM_api.h"
#include "WM_types.h"
#include "ED_space_api.h"
#include "ED_screen.h"
#include "ED_view3d.h"
#include "ED_curve.h"
#include "BIF_gl.h"
#include "GPU_batch.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "curve_intern.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "RNA_enum_types.h"
#define USE_SPLINE_FIT
#ifdef USE_SPLINE_FIT
#include "curve_fit_nd.h"
#endif
/* Distance between input samples */
#define STROKE_SAMPLE_DIST_MIN_PX 1
#define STROKE_SAMPLE_DIST_MAX_PX 3
/* Distance between start/end points to consider cyclic */
#define STROKE_CYCLIC_DIST_PX 8
/* -------------------------------------------------------------------- */
/** \name StrokeElem / #RNA_OperatorStrokeElement Conversion Functions
* \{ */
struct StrokeElem {
float mval[2];
float location_world[3];
float location_local[3];
/* surface normal, may be zero'd */
float normal_world[3];
float normal_local[3];
float pressure;
};
struct CurveDrawData {
Depsgraph *depsgraph;
short init_event_type;
short curve_type;
/* projecting 2D into 3D space */
struct {
/* use a plane or project to the surface */
bool use_plane;
float plane[4];
/* use 'rv3d->depths', note that this will become 'damaged' while drawing, but thats OK. */
bool use_depth;
/* offset projection by this value */
bool use_offset;
float offset[3]; /* worldspace */
float surface_offset;
bool use_surface_offset_absolute;
} project;
/* cursor sampling */
struct {
/* use substeps, needed for nicely interpolating depth */
bool use_substeps;
} sample;
struct {
float min, max, range;
} radius;
struct {
float mouse[2];
/* used incase we can't calculate the depth */
float location_world[3];
float location_world_valid[3];
const struct StrokeElem *selem;
} prev;
ViewContext vc;
enum {
CURVE_DRAW_IDLE = 0,
CURVE_DRAW_PAINTING = 1,
} state;
/* StrokeElem */
BLI_mempool *stroke_elem_pool;
void *draw_handle_view;
};
static float stroke_elem_radius_from_pressure(const struct CurveDrawData *cdd, const float pressure)
{
const Curve *cu = cdd->vc.obedit->data;
return ((pressure * cdd->radius.range) + cdd->radius.min) * cu->ext2;
}
static float stroke_elem_radius(const struct CurveDrawData *cdd, const struct StrokeElem *selem)
{
return stroke_elem_radius_from_pressure(cdd, selem->pressure);
}
static void stroke_elem_pressure_set(const struct CurveDrawData *cdd, struct StrokeElem *selem, float pressure)
{
if ((cdd->project.surface_offset != 0.0f) &&
!cdd->project.use_surface_offset_absolute &&
!is_zero_v3(selem->normal_local))
{
const float adjust = stroke_elem_radius_from_pressure(cdd, pressure) -
stroke_elem_radius_from_pressure(cdd, selem->pressure);
madd_v3_v3fl(selem->location_local, selem->normal_local, adjust);
mul_v3_m4v3(selem->location_world, cdd->vc.obedit->obmat, selem->location_local);
}
selem->pressure = pressure;
}
static void stroke_elem_interp(
struct StrokeElem *selem_out,
const struct StrokeElem *selem_a, const struct StrokeElem *selem_b, float t)
{
interp_v2_v2v2(selem_out->mval, selem_a->mval, selem_b->mval, t);
interp_v3_v3v3(selem_out->location_world, selem_a->location_world, selem_b->location_world, t);
interp_v3_v3v3(selem_out->location_local, selem_a->location_local, selem_b->location_local, t);
selem_out->pressure = interpf(selem_a->pressure, selem_b->pressure, t);
}
/**
* Sets the depth from #StrokeElem.mval
*/
static bool stroke_elem_project(
const struct CurveDrawData *cdd,
const int mval_i[2], const float mval_fl[2],
float surface_offset, const float radius,
float r_location_world[3], float r_normal_world[3])
{
View3D *v3d = cdd->vc.v3d;
ARegion *ar = cdd->vc.ar;
RegionView3D *rv3d = cdd->vc.rv3d;
bool is_location_world_set = false;
/* project to 'location_world' */
if (cdd->project.use_plane) {
/* get the view vector to 'location' */
float ray_origin[3], ray_direction[3];
ED_view3d_win_to_ray(cdd->depsgraph, cdd->vc.ar, v3d, mval_fl, ray_origin, ray_direction, false);
float lambda;
if (isect_ray_plane_v3(ray_origin, ray_direction, cdd->project.plane, &lambda, true)) {
madd_v3_v3v3fl(r_location_world, ray_origin, ray_direction, lambda);
if (r_normal_world) {
zero_v3(r_normal_world);
}
is_location_world_set = true;
}
}
else {
const ViewDepths *depths = rv3d->depths;
if (depths &&
((unsigned int)mval_i[0] < depths->w) &&
((unsigned int)mval_i[1] < depths->h))
{
const double depth = (double)ED_view3d_depth_read_cached(&cdd->vc, mval_i);
if ((depth > depths->depth_range[0]) && (depth < depths->depth_range[1])) {
if (ED_view3d_depth_unproject(ar, mval_i, depth, r_location_world)) {
is_location_world_set = true;
if (r_normal_world) {
zero_v3(r_normal_world);
}
if (surface_offset != 0.0f) {
const float offset = cdd->project.use_surface_offset_absolute ? 1.0f : radius;
float normal[3];
if (ED_view3d_depth_read_cached_normal(&cdd->vc, mval_i, normal)) {
madd_v3_v3fl(r_location_world, normal, offset * surface_offset);
if (r_normal_world) {
copy_v3_v3(r_normal_world, normal);
}
}
}
}
}
}
}
if (is_location_world_set) {
if (cdd->project.use_offset) {
add_v3_v3(r_location_world, cdd->project.offset);
}
}
return is_location_world_set;
}
static bool stroke_elem_project_fallback(
const struct CurveDrawData *cdd,
const int mval_i[2], const float mval_fl[2],
const float surface_offset, const float radius,
const float location_fallback_depth[3],
float r_location_world[3], float r_location_local[3],
float r_normal_world[3], float r_normal_local[3])
{
bool is_depth_found = stroke_elem_project(
cdd, mval_i, mval_fl,
surface_offset, radius,
r_location_world, r_normal_world);
if (is_depth_found == false) {
ED_view3d_win_to_3d(cdd->vc.v3d, cdd->vc.ar, location_fallback_depth, mval_fl, r_location_world);
zero_v3(r_normal_local);
}
mul_v3_m4v3(r_location_local, cdd->vc.obedit->imat, r_location_world);
if (!is_zero_v3(r_normal_world)) {
copy_v3_v3(r_normal_local, r_normal_world);
mul_transposed_mat3_m4_v3(cdd->vc.obedit->obmat, r_normal_local);
normalize_v3(r_normal_local);
}
else {
zero_v3(r_normal_local);
}
return is_depth_found;
}
/**
* \note #StrokeElem.mval & #StrokeElem.pressure must be set first.
*/
static bool stroke_elem_project_fallback_elem(
const struct CurveDrawData *cdd,
const float location_fallback_depth[3],
struct StrokeElem *selem)
{
const int mval_i[2] = {UNPACK2(selem->mval)};
const float radius = stroke_elem_radius(cdd, selem);
return stroke_elem_project_fallback(
cdd, mval_i, selem->mval,
cdd->project.surface_offset, radius,
location_fallback_depth,
selem->location_world, selem->location_local,
selem->normal_world, selem->normal_local);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Operator/Stroke Conversion
* \{ */
static void curve_draw_stroke_to_operator_elem(
wmOperator *op, const struct StrokeElem *selem)
{
PointerRNA itemptr;
RNA_collection_add(op->ptr, "stroke", &itemptr);
RNA_float_set_array(&itemptr, "mouse", selem->mval);
RNA_float_set_array(&itemptr, "location", selem->location_world);
RNA_float_set(&itemptr, "pressure", selem->pressure);
}
static void curve_draw_stroke_from_operator_elem(
wmOperator *op, PointerRNA *itemptr)
{
struct CurveDrawData *cdd = op->customdata;
struct StrokeElem *selem = BLI_mempool_calloc(cdd->stroke_elem_pool);
RNA_float_get_array(itemptr, "mouse", selem->mval);
RNA_float_get_array(itemptr, "location", selem->location_world);
mul_v3_m4v3(selem->location_local, cdd->vc.obedit->imat, selem->location_world);
selem->pressure = RNA_float_get(itemptr, "pressure");
}
static void curve_draw_stroke_to_operator(wmOperator *op)
{
struct CurveDrawData *cdd = op->customdata;
BLI_mempool_iter iter;
const struct StrokeElem *selem;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter)) {
curve_draw_stroke_to_operator_elem(op, selem);
}
}
static void curve_draw_stroke_from_operator(wmOperator *op)
{
RNA_BEGIN (op->ptr, itemptr, "stroke")
{
curve_draw_stroke_from_operator_elem(op, &itemptr);
}
RNA_END;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Operator Callbacks & Helpers
* \{ */
static void curve_draw_stroke_3d(const struct bContext *UNUSED(C), ARegion *UNUSED(ar), void *arg)
{
wmOperator *op = arg;
struct CurveDrawData *cdd = op->customdata;
const int stroke_len = BLI_mempool_len(cdd->stroke_elem_pool);
if (stroke_len == 0) {
return;
}
Object *obedit = cdd->vc.obedit;
Curve *cu = obedit->data;
if (cu->ext2 > 0.0f) {
BLI_mempool_iter iter;
const struct StrokeElem *selem;
const float location_zero[3] = {0};
const float *location_prev = location_zero;
float color[3];
UI_GetThemeColor3fv(TH_WIRE, color);
Gwn_Batch *sphere = GPU_batch_preset_sphere(0);
GWN_batch_program_set_builtin(sphere, GPU_SHADER_3D_UNIFORM_COLOR);
GWN_batch_uniform_3fv(sphere, "color", color);
/* scale to edit-mode space */
gpuPushMatrix();
gpuMultMatrix(obedit->obmat);
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter)) {
gpuTranslate3f(
selem->location_local[0] - location_prev[0],
selem->location_local[1] - location_prev[1],
selem->location_local[2] - location_prev[2]);
location_prev = selem->location_local;
const float radius = stroke_elem_radius(cdd, selem);
gpuPushMatrix();
gpuScaleUniform(radius);
GWN_batch_draw(sphere);
gpuPopMatrix();
location_prev = selem->location_local;
}
gpuPopMatrix();
}
if (stroke_len > 1) {
float (*coord_array)[3] = MEM_mallocN(sizeof(*coord_array) * stroke_len, __func__);
{
BLI_mempool_iter iter;
const struct StrokeElem *selem;
int i;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter), i = 0; selem; selem = BLI_mempool_iterstep(&iter), i++) {
copy_v3_v3(coord_array[i], selem->location_world);
}
}
{
Gwn_VertFormat *format = immVertexFormat();
uint pos = GWN_vertformat_attr_add(format, "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
GPU_depth_test(false);
GPU_blend(true);
GPU_line_smooth(true);
GPU_line_width(3.0f);
imm_cpack(0x0);
immBegin(GWN_PRIM_LINE_STRIP, stroke_len);
for (int i = 0; i < stroke_len; i++) {
immVertex3fv(pos, coord_array[i]);
}
immEnd();
GPU_line_width(1.0f);
imm_cpack(0xffffffff);
immBegin(GWN_PRIM_LINE_STRIP, stroke_len);
for (int i = 0; i < stroke_len; i++) {
immVertex3fv(pos, coord_array[i]);
}
immEnd();
/* Reset defaults */
GPU_depth_test(true);
GPU_blend(false);
GPU_line_smooth(false);
immUnbindProgram();
}
MEM_freeN(coord_array);
}
}
static void curve_draw_event_add(wmOperator *op, const wmEvent *event)
{
struct CurveDrawData *cdd = op->customdata;
Object *obedit = cdd->vc.obedit;
invert_m4_m4(obedit->imat, obedit->obmat);
struct StrokeElem *selem = BLI_mempool_calloc(cdd->stroke_elem_pool);
ARRAY_SET_ITEMS(selem->mval, event->mval[0], event->mval[1]);
/* handle pressure sensitivity (which is supplied by tablets) */
if (event->tablet_data) {
const wmTabletData *wmtab = event->tablet_data;
selem->pressure = wmtab->Pressure;
}
else {
selem->pressure = 1.0f;
}
bool is_depth_found = stroke_elem_project_fallback_elem(
cdd, cdd->prev.location_world_valid, selem);
if (is_depth_found) {
/* use the depth if a fallback wasn't used */
copy_v3_v3(cdd->prev.location_world_valid, selem->location_world);
}
copy_v3_v3(cdd->prev.location_world, selem->location_world);
float len_sq = len_squared_v2v2(cdd->prev.mouse, selem->mval);
copy_v2_v2(cdd->prev.mouse, selem->mval);
if (cdd->sample.use_substeps && cdd->prev.selem) {
const struct StrokeElem selem_target = *selem;
struct StrokeElem *selem_new_last = selem;
if (len_sq >= SQUARE(STROKE_SAMPLE_DIST_MAX_PX)) {
int n = (int)ceil(sqrt((double)len_sq)) / STROKE_SAMPLE_DIST_MAX_PX ;
for (int i = 1; i < n; i++) {
struct StrokeElem *selem_new = selem_new_last;
stroke_elem_interp(selem_new, cdd->prev.selem, &selem_target, (float)i / n);
const bool is_depth_found_substep = stroke_elem_project_fallback_elem(
cdd, cdd->prev.location_world_valid, selem_new);
if (is_depth_found == false) {
if (is_depth_found_substep) {
copy_v3_v3(cdd->prev.location_world_valid, selem_new->location_world);
}
}
selem_new_last = BLI_mempool_calloc(cdd->stroke_elem_pool);
}
}
selem = selem_new_last;
*selem_new_last = selem_target;
}
cdd->prev.selem = selem;
ED_region_tag_redraw(cdd->vc.ar);
}
static void curve_draw_event_add_first(wmOperator *op, const wmEvent *event)
{
struct CurveDrawData *cdd = op->customdata;
const CurvePaintSettings *cps = &cdd->vc.scene->toolsettings->curve_paint_settings;
/* add first point */
curve_draw_event_add(op, event);
if ((cps->depth_mode == CURVE_PAINT_PROJECT_SURFACE) && cdd->project.use_depth &&
(cps->flag & CURVE_PAINT_FLAG_DEPTH_STROKE_ENDPOINTS))
{
RegionView3D *rv3d = cdd->vc.rv3d;
cdd->project.use_depth = false;
cdd->project.use_plane = true;
float normal[3] = {0.0f};
if (ELEM(cps->surface_plane,
CURVE_PAINT_SURFACE_PLANE_NORMAL_VIEW,
CURVE_PAINT_SURFACE_PLANE_NORMAL_SURFACE))
{
if (ED_view3d_depth_read_cached_normal(&cdd->vc, event->mval, normal)) {
if (cps->surface_plane == CURVE_PAINT_SURFACE_PLANE_NORMAL_VIEW) {
float cross_a[3], cross_b[3];
cross_v3_v3v3(cross_a, rv3d->viewinv[2], normal);
cross_v3_v3v3(cross_b, normal, cross_a);
copy_v3_v3(normal, cross_b);
}
}
}
/* CURVE_PAINT_SURFACE_PLANE_VIEW or fallback */
if (is_zero_v3(normal)) {
copy_v3_v3(normal, rv3d->viewinv[2]);
}
normalize_v3_v3(cdd->project.plane, normal);
cdd->project.plane[3] = -dot_v3v3(cdd->project.plane, cdd->prev.location_world_valid);
/* Special case for when we only have offset applied on the first-hit,
* the remaining stroke must be offset too. */
if (cdd->project.surface_offset != 0.0f) {
const float mval_fl[2] = {UNPACK2(event->mval)};
float location_no_offset[3];
if (stroke_elem_project(
cdd, event->mval, mval_fl, 0.0f, 0.0f,
location_no_offset, NULL))
{
sub_v3_v3v3(cdd->project.offset, cdd->prev.location_world_valid, location_no_offset);
if (!is_zero_v3(cdd->project.offset)) {
cdd->project.use_offset = true;
}
}
}
/* end special case */
}
cdd->init_event_type = event->type;
cdd->state = CURVE_DRAW_PAINTING;
}
static bool curve_draw_init(bContext *C, wmOperator *op, bool is_invoke)
{
BLI_assert(op->customdata == NULL);
struct CurveDrawData *cdd = MEM_callocN(sizeof(*cdd), __func__);
cdd->depsgraph = CTX_data_depsgraph(C);
if (is_invoke) {
ED_view3d_viewcontext_init(C, &cdd->vc);
if (ELEM(NULL, cdd->vc.ar, cdd->vc.rv3d, cdd->vc.v3d, cdd->vc.win, cdd->vc.scene)) {
MEM_freeN(cdd);
BKE_report(op->reports, RPT_ERROR, "Unable to access 3D viewport");
return false;
}
}
else {
cdd->vc.bmain = CTX_data_main(C);
cdd->vc.depsgraph = CTX_data_depsgraph(C);
cdd->vc.scene = CTX_data_scene(C);
cdd->vc.view_layer = CTX_data_view_layer(C);
cdd->vc.obedit = CTX_data_edit_object(C);
}
op->customdata = cdd;
const CurvePaintSettings *cps = &cdd->vc.scene->toolsettings->curve_paint_settings;
cdd->curve_type = cps->curve_type;
cdd->radius.min = cps->radius_min;
cdd->radius.max = cps->radius_max;
cdd->radius.range = cps->radius_max - cps->radius_min;
cdd->project.surface_offset = cps->surface_offset;
cdd->project.use_surface_offset_absolute = (cps->flag & CURVE_PAINT_FLAG_DEPTH_STROKE_OFFSET_ABS) != 0;
cdd->stroke_elem_pool = BLI_mempool_create(
sizeof(struct StrokeElem), 0, 512, BLI_MEMPOOL_ALLOW_ITER);
return true;
}
static void curve_draw_exit(wmOperator *op)
{
struct CurveDrawData *cdd = op->customdata;
if (cdd) {
if (cdd->draw_handle_view) {
ED_region_draw_cb_exit(cdd->vc.ar->type, cdd->draw_handle_view);
WM_cursor_modal_restore(cdd->vc.win);
}
if (cdd->stroke_elem_pool) {
BLI_mempool_destroy(cdd->stroke_elem_pool);
}
MEM_freeN(cdd);
op->customdata = NULL;
}
}
/**
* Initialize values before calling 'exec' (when running interactively).
*/
static void curve_draw_exec_precalc(wmOperator *op)
{
struct CurveDrawData *cdd = op->customdata;
const CurvePaintSettings *cps = &cdd->vc.scene->toolsettings->curve_paint_settings;
PropertyRNA *prop;
prop = RNA_struct_find_property(op->ptr, "fit_method");
if (!RNA_property_is_set(op->ptr, prop)) {
RNA_property_enum_set(op->ptr, prop, cps->fit_method);
}
prop = RNA_struct_find_property(op->ptr, "corner_angle");
if (!RNA_property_is_set(op->ptr, prop)) {
const float corner_angle = (cps->flag & CURVE_PAINT_FLAG_CORNERS_DETECT) ? cps->corner_angle : (float)M_PI;
RNA_property_float_set(op->ptr, prop, corner_angle);
}
prop = RNA_struct_find_property(op->ptr, "error_threshold");
if (!RNA_property_is_set(op->ptr, prop)) {
/* error isnt set so we'll have to calculate it from the pixel values */
BLI_mempool_iter iter;
const struct StrokeElem *selem, *selem_prev;
float len_3d = 0.0f, len_2d = 0.0f;
float scale_px; /* pixel to local space scale */
int i = 0;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
selem_prev = BLI_mempool_iterstep(&iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter), i++) {
len_3d += len_v3v3(selem->location_local, selem_prev->location_local);
len_2d += len_v2v2(selem->mval, selem_prev->mval);
selem_prev = selem;
}
scale_px = ((len_3d > 0.0f) && (len_2d > 0.0f)) ? (len_3d / len_2d) : 0.0f;
float error_threshold = (cps->error_threshold * U.pixelsize) * scale_px;
RNA_property_float_set(op->ptr, prop, error_threshold);
}
prop = RNA_struct_find_property(op->ptr, "use_cyclic");
if (!RNA_property_is_set(op->ptr, prop)) {
bool use_cyclic = false;
if (BLI_mempool_len(cdd->stroke_elem_pool) > 2) {
BLI_mempool_iter iter;
const struct StrokeElem *selem, *selem_first, *selem_last;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
selem_first = selem_last = BLI_mempool_iterstep(&iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter)) {
selem_last = selem;
}
if (len_squared_v2v2(
selem_first->mval,
selem_last->mval) <= SQUARE(STROKE_CYCLIC_DIST_PX * U.pixelsize))
{
use_cyclic = true;
}
}
RNA_property_boolean_set(op->ptr, prop, use_cyclic);
}
if ((cps->radius_taper_start != 0.0f) ||
(cps->radius_taper_end != 0.0f))
{
/* note, we could try to de-duplicate the length calculations above */
const int stroke_len = BLI_mempool_len(cdd->stroke_elem_pool);
BLI_mempool_iter iter;
struct StrokeElem *selem, *selem_prev;
float *lengths = MEM_mallocN(sizeof(float) * stroke_len, __func__);
struct StrokeElem **selem_array = MEM_mallocN(sizeof(*selem_array) * stroke_len, __func__);
lengths[0] = 0.0f;
float len_3d = 0.0f;
int i = 1;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
selem_prev = BLI_mempool_iterstep(&iter);
selem_array[0] = selem_prev;
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter), i++) {
const float len_3d_segment = len_v3v3(selem->location_local, selem_prev->location_local);
len_3d += len_3d_segment;
lengths[i] = len_3d;
selem_array[i] = selem;
selem_prev = selem;
}
if (cps->radius_taper_start != 0.0f) {
const float len_taper_max = cps->radius_taper_start * len_3d;
for (i = 0; i < stroke_len && lengths[i] < len_taper_max; i++) {
const float pressure_new = selem_array[i]->pressure * (lengths[i] / len_taper_max);
stroke_elem_pressure_set(cdd, selem_array[i], pressure_new);
}
}
if (cps->radius_taper_end != 0.0f) {
const float len_taper_max = cps->radius_taper_end * len_3d;
const float len_taper_min = len_3d - len_taper_max;
for (i = stroke_len - 1; i > 0 && lengths[i] > len_taper_min; i--) {
const float pressure_new = selem_array[i]->pressure * ((len_3d - lengths[i]) / len_taper_max);
stroke_elem_pressure_set(cdd, selem_array[i], pressure_new);
}
}
MEM_freeN(lengths);
MEM_freeN(selem_array);
}
}
static int curve_draw_exec(bContext *C, wmOperator *op)
{
if (op->customdata == NULL) {
if (!curve_draw_init(C, op, false)) {
return OPERATOR_CANCELLED;
}
}
struct CurveDrawData *cdd = op->customdata;
const CurvePaintSettings *cps = &cdd->vc.scene->toolsettings->curve_paint_settings;
Object *obedit = cdd->vc.obedit;
Curve *cu = obedit->data;
ListBase *nurblist = object_editcurve_get(obedit);
int stroke_len = BLI_mempool_len(cdd->stroke_elem_pool);
const bool is_3d = (cu->flag & CU_3D) != 0;
invert_m4_m4(obedit->imat, obedit->obmat);
if (BLI_mempool_len(cdd->stroke_elem_pool) == 0) {
curve_draw_stroke_from_operator(op);
stroke_len = BLI_mempool_len(cdd->stroke_elem_pool);
}
ED_curve_deselect_all(cu->editnurb);
const float radius_min = cps->radius_min;
const float radius_max = cps->radius_max;
const float radius_range = cps->radius_max - cps->radius_min;
Nurb *nu = MEM_callocN(sizeof(Nurb), __func__);
nu->pntsv = 0;
nu->resolu = cu->resolu;
nu->resolv = cu->resolv;
nu->flag |= CU_SMOOTH;
const bool use_pressure_radius =
(cps->flag & CURVE_PAINT_FLAG_PRESSURE_RADIUS) ||
((cps->radius_taper_start != 0.0f) ||
(cps->radius_taper_end != 0.0f));
if (cdd->curve_type == CU_BEZIER) {
nu->type = CU_BEZIER;
#ifdef USE_SPLINE_FIT
/* Allow to interpolate multiple channels */
int dims = 3;
struct {
int radius;
} coords_indices;
coords_indices.radius = use_pressure_radius ? dims++ : -1;
float *coords = MEM_mallocN(sizeof(*coords) * stroke_len * dims, __func__);
float *cubic_spline = NULL;
unsigned int cubic_spline_len = 0;
/* error in object local space */
const int fit_method = RNA_enum_get(op->ptr, "fit_method");
const float error_threshold = RNA_float_get(op->ptr, "error_threshold");
const float corner_angle = RNA_float_get(op->ptr, "corner_angle");
const bool use_cyclic = RNA_boolean_get(op->ptr, "use_cyclic");
{
BLI_mempool_iter iter;
const struct StrokeElem *selem;
float *co = coords;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter), co += dims) {
copy_v3_v3(co, selem->location_local);
if (coords_indices.radius != -1) {
co[coords_indices.radius] = selem->pressure;
}
/* remove doubles */
if ((co != coords) && UNLIKELY(memcmp(co, co - dims, sizeof(float) * dims) == 0)) {
co -= dims;
stroke_len--;
}
}
}
unsigned int *corners = NULL;
unsigned int corners_len = 0;
if ((fit_method == CURVE_PAINT_FIT_METHOD_SPLIT) && (corner_angle < (float)M_PI)) {
/* this could be configurable... */
const float corner_radius_min = error_threshold / 8;
const float corner_radius_max = error_threshold * 2;
const unsigned int samples_max = 16;
curve_fit_corners_detect_fl(
coords, stroke_len, dims,
corner_radius_min, corner_radius_max,
samples_max, corner_angle,
&corners, &corners_len);
}
unsigned int *corners_index = NULL;
unsigned int corners_index_len = 0;
unsigned int calc_flag = CURVE_FIT_CALC_HIGH_QUALIY;
if ((stroke_len > 2) && use_cyclic) {
calc_flag |= CURVE_FIT_CALC_CYCLIC;
}
int result;
if (fit_method == CURVE_PAINT_FIT_METHOD_REFIT) {
result = curve_fit_cubic_to_points_refit_fl(
coords, stroke_len, dims, error_threshold, calc_flag,
NULL, 0, corner_angle,
&cubic_spline, &cubic_spline_len,
NULL,
&corners_index, &corners_index_len);
}
else {
result = curve_fit_cubic_to_points_fl(
coords, stroke_len, dims, error_threshold, calc_flag,
corners, corners_len,
&cubic_spline, &cubic_spline_len,
NULL,
&corners_index, &corners_index_len);
}
MEM_freeN(coords);
if (corners) {
free(corners);
}
if (result == 0) {
nu->pntsu = cubic_spline_len;
nu->bezt = MEM_callocN(sizeof(BezTriple) * nu->pntsu, __func__);
float *co = cubic_spline;
BezTriple *bezt = nu->bezt;
for (int j = 0; j < cubic_spline_len; j++, bezt++, co += (dims * 3)) {
const float *handle_l = co + (dims * 0);
const float *pt = co + (dims * 1);
const float *handle_r = co + (dims * 2);
copy_v3_v3(bezt->vec[0], handle_l);
copy_v3_v3(bezt->vec[1], pt);
copy_v3_v3(bezt->vec[2], handle_r);
if (coords_indices.radius != -1) {
bezt->radius = (pt[coords_indices.radius] * cdd->radius.range) + cdd->radius.min;
}
else {
bezt->radius = radius_max;
}
bezt->h1 = bezt->h2 = HD_ALIGN; /* will set to free in second pass */
bezt->f1 = bezt->f2 = bezt->f3 = SELECT;
}
if (corners_index) {
/* ignore the first and last */
unsigned int i_start = 0, i_end = corners_index_len;
if ((corners_index_len >= 2) &&
(calc_flag & CURVE_FIT_CALC_CYCLIC) == 0)
{
i_start += 1;
i_end -= 1;
}
for (unsigned int i = i_start; i < i_end; i++) {
bezt = &nu->bezt[corners_index[i]];
bezt->h1 = bezt->h2 = HD_FREE;
}
}
if (calc_flag & CURVE_FIT_CALC_CYCLIC) {
nu->flagu |= CU_NURB_CYCLIC;
}
}
if (corners_index) {
free(corners_index);
}
if (cubic_spline) {
free(cubic_spline);
}
#else
nu->pntsu = stroke_len;
nu->bezt = MEM_callocN(nu->pntsu * sizeof(BezTriple), __func__);
BezTriple *bezt = nu->bezt;
{
BLI_mempool_iter iter;
const struct StrokeElem *selem;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter)) {
copy_v3_v3(bezt->vec[1], selem->location_local);
if (!is_3d) {
bezt->vec[1][2] = 0.0f;
}
if (use_pressure_radius) {
bezt->radius = selem->pressure;
}
else {
bezt->radius = radius_max;
}
bezt->h1 = bezt->h2 = HD_AUTO;
bezt->f1 |= SELECT;
bezt->f2 |= SELECT;
bezt->f3 |= SELECT;
bezt++;
}
}
#endif
BKE_nurb_handles_calc(nu);
}
else { /* CU_POLY */
BLI_mempool_iter iter;
const struct StrokeElem *selem;
nu->pntsu = stroke_len;
nu->pntsv = 1;
nu->type = CU_POLY;
nu->bp = MEM_callocN(nu->pntsu * sizeof(BPoint), __func__);
/* Misc settings. */
nu->resolu = cu->resolu;
nu->resolv = 1;
nu->orderu = 4;
nu->orderv = 1;
BPoint *bp = nu->bp;
BLI_mempool_iternew(cdd->stroke_elem_pool, &iter);
for (selem = BLI_mempool_iterstep(&iter); selem; selem = BLI_mempool_iterstep(&iter)) {
copy_v3_v3(bp->vec, selem->location_local);
if (!is_3d) {
bp->vec[2] = 0.0f;
}
if (use_pressure_radius) {
bp->radius = (selem->pressure * radius_range) + radius_min;
}
else {
bp->radius = cps->radius_max;
}
bp->f1 = SELECT;
bp->vec[3] = 1.0f;
bp++;
}
BKE_nurb_knot_calc_u(nu);
}
BLI_addtail(nurblist, nu);
BKE_curve_nurb_active_set(cu, nu);
cu->actvert = nu->pntsu - 1;
WM_event_add_notifier(C, NC_GEOM | ND_DATA, obedit->data);
DEG_id_tag_update(obedit->data, 0);
curve_draw_exit(op);
return OPERATOR_FINISHED;
}
static int curve_draw_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
if (RNA_struct_property_is_set(op->ptr, "stroke")) {
return curve_draw_exec(C, op);
}
if (!curve_draw_init(C, op, true)) {
return OPERATOR_CANCELLED;
}
struct CurveDrawData *cdd = op->customdata;
const CurvePaintSettings *cps = &cdd->vc.scene->toolsettings->curve_paint_settings;
const bool is_modal = RNA_boolean_get(op->ptr, "wait_for_input");
/* fallback (incase we can't find the depth on first test) */
{
const float mval_fl[2] = {UNPACK2(event->mval)};
float center[3];
negate_v3_v3(center, cdd->vc.rv3d->ofs);
ED_view3d_win_to_3d(cdd->vc.v3d, cdd->vc.ar, center, mval_fl, cdd->prev.location_world);
copy_v3_v3(cdd->prev.location_world_valid, cdd->prev.location_world);
}
cdd->draw_handle_view = ED_region_draw_cb_activate(
cdd->vc.ar->type, curve_draw_stroke_3d, op, REGION_DRAW_POST_VIEW);
WM_cursor_modal_set(cdd->vc.win, BC_PAINTBRUSHCURSOR);
{
View3D *v3d = cdd->vc.v3d;
RegionView3D *rv3d = cdd->vc.rv3d;
Object *obedit = cdd->vc.obedit;
Curve *cu = obedit->data;
const float *plane_no = NULL;
const float *plane_co = NULL;
if ((cu->flag & CU_3D) == 0) {
/* 2D overrides other options */
plane_co = obedit->obmat[3];
plane_no = obedit->obmat[2];
cdd->project.use_plane = true;
}
else {
if ((cps->depth_mode == CURVE_PAINT_PROJECT_SURFACE) &&
(v3d->drawtype > OB_WIRE))
{
/* needed or else the draw matrix can be incorrect */
view3d_operator_needs_opengl(C);
ED_view3d_autodist_init(cdd->vc.depsgraph, cdd->vc.ar, cdd->vc.v3d, 0);
if (cdd->vc.rv3d->depths) {
cdd->vc.rv3d->depths->damaged = true;
}
ED_view3d_depth_update(cdd->vc.ar);
if (cdd->vc.rv3d->depths != NULL) {
cdd->project.use_depth = true;
}
else {
BKE_report(op->reports, RPT_WARNING, "Unable to access depth buffer, using view plane");
cdd->project.use_depth = false;
}
}
/* use view plane (when set or as fallback when surface can't be found) */
if (cdd->project.use_depth == false) {
plane_co = ED_view3d_cursor3d_get(cdd->vc.scene, v3d)->location;
plane_no = rv3d->viewinv[2];
cdd->project.use_plane = true;
}
if (cdd->project.use_depth && (cdd->curve_type != CU_POLY)) {
cdd->sample.use_substeps = true;
}
}
if (cdd->project.use_plane) {
normalize_v3_v3(cdd->project.plane, plane_no);
cdd->project.plane[3] = -dot_v3v3(cdd->project.plane, plane_co);
}
}
if (is_modal == false) {
curve_draw_event_add_first(op, event);
}
/* add temp handler */
WM_event_add_modal_handler(C, op);
return OPERATOR_RUNNING_MODAL;
}
static void curve_draw_cancel(bContext *UNUSED(C), wmOperator *op)
{
curve_draw_exit(op);
}
/* Modal event handling of frame changing */
static int curve_draw_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
int ret = OPERATOR_RUNNING_MODAL;
struct CurveDrawData *cdd = op->customdata;
UNUSED_VARS(C, op);
if (event->type == cdd->init_event_type) {
if (event->val == KM_RELEASE) {
ED_region_tag_redraw(cdd->vc.ar);
curve_draw_exec_precalc(op);
curve_draw_stroke_to_operator(op);
curve_draw_exec(C, op);
return OPERATOR_FINISHED;
}
}
else if (ELEM(event->type, ESCKEY, RIGHTMOUSE)) {
ED_region_tag_redraw(cdd->vc.ar);
curve_draw_cancel(C, op);
return OPERATOR_CANCELLED;
}
else if (ELEM(event->type, LEFTMOUSE)) {
if (event->val == KM_PRESS) {
curve_draw_event_add_first(op, event);
}
}
else if (ELEM(event->type, MOUSEMOVE, INBETWEEN_MOUSEMOVE)) {
if (cdd->state == CURVE_DRAW_PAINTING) {
const float mval_fl[2] = {UNPACK2(event->mval)};
if (len_squared_v2v2(mval_fl, cdd->prev.mouse) > SQUARE(STROKE_SAMPLE_DIST_MIN_PX)) {
curve_draw_event_add(op, event);
}
}
}
return ret;
}
void CURVE_OT_draw(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Draw Curve";
ot->idname = "CURVE_OT_draw";
ot->description = "Draw a freehand spline";
/* api callbacks */
ot->exec = curve_draw_exec;
ot->invoke = curve_draw_invoke;
ot->cancel = curve_draw_cancel;
ot->modal = curve_draw_modal;
ot->poll = ED_operator_editcurve;
/* flags */
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
/* properties */
PropertyRNA *prop;
prop = RNA_def_float_distance(
ot->srna, "error_threshold", 0.0f, 0.0f, 10.0f, "Error",
"Error distance threshold (in object units)",
0.0001f, 10.0f);
RNA_def_property_ui_range(prop, 0.0, 10, 1, 4);
RNA_def_enum(ot->srna, "fit_method", rna_enum_curve_fit_method_items, CURVE_PAINT_FIT_METHOD_REFIT,
"Fit Method", "");
prop = RNA_def_float_distance(
ot->srna, "corner_angle", DEG2RADF(70.0f), 0.0f, M_PI, "Corner Angle", "", 0.0f, M_PI);
RNA_def_property_subtype(prop, PROP_ANGLE);
prop = RNA_def_boolean(ot->srna, "use_cyclic", true, "Cyclic", "");
RNA_def_property_flag(prop, PROP_SKIP_SAVE);
prop = RNA_def_collection_runtime(ot->srna, "stroke", &RNA_OperatorStrokeElement, "Stroke", "");
RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE);
prop = RNA_def_boolean(ot->srna, "wait_for_input", true, "Wait for Input", "");
RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE);
}
/** \} */