This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mask.c
Campbell Barton c83d37ccc0 mango request
- highlight active mask layers.
- remove keyframes when all layer data is removed.
2012-06-13 08:35:50 +00:00

2217 lines
57 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2012 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mask.c
* \ingroup bke
*/
#include <stddef.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_path_util.h"
#include "BLI_string.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "DNA_mask_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_movieclip_types.h"
#include "DNA_tracking_types.h"
#include "BKE_curve.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_mask.h"
#include "BKE_tracking.h"
#include "BKE_movieclip.h"
#include "BKE_utildefines.h"
#include "raskter.h"
static MaskSplinePoint *mask_spline_point_next(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
{
if (point == &points_array[spline->tot_point - 1]) {
if (spline->flag & MASK_SPLINE_CYCLIC) {
return &points_array[0];
}
else {
return NULL;
}
}
else {
return point + 1;
}
}
static MaskSplinePoint *mask_spline_point_prev(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
{
if (point == points_array) {
if (spline->flag & MASK_SPLINE_CYCLIC) {
return &points_array[spline->tot_point - 1];
}
else {
return NULL;
}
}
else {
return point - 1;
}
}
static BezTriple *mask_spline_point_next_bezt(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
{
if (point == &points_array[spline->tot_point - 1]) {
if (spline->flag & MASK_SPLINE_CYCLIC) {
return &(points_array[0].bezt);
}
else {
return NULL;
}
}
else {
return &((point + 1))->bezt;
}
}
#if 0
static BezTriple *mask_spline_point_prev_bezt(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
{
if (point == points_array) {
if (spline->flag & MASK_SPLINE_CYCLIC) {
return &(points_array[0].bezt);
}
else {
return NULL;
}
}
else {
return &((point - 1))->bezt;
}
}
#endif
MaskSplinePoint *BKE_mask_spline_point_array(MaskSpline *spline)
{
return spline->points_deform ? spline->points_deform : spline->points;
}
MaskSplinePoint *BKE_mask_spline_point_array_from_point(MaskSpline *spline, MaskSplinePoint *point_ref)
{
if ((point_ref >= spline->points) && (point_ref < &spline->points[spline->tot_point])) {
return spline->points;
}
if ((point_ref >= spline->points_deform) && (point_ref < &spline->points_deform[spline->tot_point])) {
return spline->points_deform;
}
BLI_assert(!"wrong array");
return NULL;
}
/* mask layers */
MaskLayer *BKE_mask_layer_new(Mask *mask, const char *name)
{
MaskLayer *masklay = MEM_callocN(sizeof(MaskLayer), __func__);
if (name && name[0])
BLI_strncpy(masklay->name, name, sizeof(masklay->name));
else
strcpy(masklay->name, "MaskLayer");
BLI_addtail(&mask->masklayers, masklay);
BKE_mask_layer_unique_name(mask, masklay);
mask->masklay_tot++;
masklay->alpha = 1.0f;
return masklay;
}
/* note: may still be hidden, caller needs to check */
MaskLayer *BKE_mask_layer_active(Mask *mask)
{
return BLI_findlink(&mask->masklayers, mask->masklay_act);
}
void BKE_mask_layer_active_set(Mask *mask, MaskLayer *masklay)
{
mask->masklay_act = BLI_findindex(&mask->masklayers, masklay);
}
void BKE_mask_layer_remove(Mask *mask, MaskLayer *masklay)
{
BLI_remlink(&mask->masklayers, masklay);
BKE_mask_layer_free(masklay);
mask->masklay_tot--;
if (mask->masklay_act >= mask->masklay_tot)
mask->masklay_act = mask->masklay_tot - 1;
}
void BKE_mask_layer_unique_name(Mask *mask, MaskLayer *masklay)
{
BLI_uniquename(&mask->masklayers, masklay, "MaskLayer", '.', offsetof(MaskLayer, name), sizeof(masklay->name));
}
/* splines */
MaskSpline *BKE_mask_spline_add(MaskLayer *masklay)
{
MaskSpline *spline;
spline = MEM_callocN(sizeof(MaskSpline), "new mask spline");
BLI_addtail(&masklay->splines, spline);
/* spline shall have one point at least */
spline->points = MEM_callocN(sizeof(MaskSplinePoint), "new mask spline point");
spline->tot_point = 1;
/* cyclic shapes are more usually used */
// spline->flag |= MASK_SPLINE_CYCLIC; // disable because its not so nice for drawing. could be done differently
spline->weight_interp = MASK_SPLINE_INTERP_LINEAR;
BKE_mask_parent_init(&spline->parent);
return spline;
}
static int BKE_mask_spline_resolution(MaskSpline *spline, int width, int height)
{
float max_segment = 0.01f;
int i, resol = 1;
if (width != 0 && height != 0) {
if (width >= height)
max_segment = 1.0f / (float) width;
else
max_segment = 1.0f / (float) height;
}
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &spline->points[i];
BezTriple *bezt, *bezt_next;
float a, b, c, len;
int cur_resol;
bezt = &point->bezt;
bezt_next = mask_spline_point_next_bezt(spline, spline->points, point);
if (bezt_next == NULL) {
break;
}
a = len_v3v3(bezt->vec[1], bezt->vec[2]);
b = len_v3v3(bezt->vec[2], bezt_next->vec[0]);
c = len_v3v3(bezt_next->vec[0], bezt_next->vec[1]);
len = a + b + c;
cur_resol = len / max_segment;
resol = MAX2(resol, cur_resol);
}
return resol;
}
static int BKE_mask_spline_feather_resolution(MaskSpline *spline, int width, int height)
{
const float max_segment = 0.005;
int resol = BKE_mask_spline_resolution(spline, width, height);
float max_jump = 0.0f;
int i;
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &spline->points[i];
float prev_u, prev_w;
int j;
prev_u = 0.0f;
prev_w = point->bezt.weight;
for (j = 0; j < point->tot_uw; j++) {
float jump = fabsf((point->uw[j].w - prev_w) / (point->uw[j].u - prev_u));
max_jump = MAX2(max_jump, jump);
prev_u = point->uw[j].u;
prev_w = point->uw[j].w;
}
}
resol += max_jump / max_segment;
return resol;
}
float (*BKE_mask_spline_differentiate_with_resolution(MaskSpline *spline, int width, int height,
int *tot_diff_point))[2]
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
MaskSplinePoint *point, *prev;
float (*diff_points)[2], (*fp)[2];
int a, len, resol = BKE_mask_spline_resolution(spline, width, height);
if (spline->tot_point <= 1) {
/* nothing to differentiate */
*tot_diff_point = 0;
return NULL;
}
/* count */
len = (spline->tot_point - 1) * resol;
if (spline->flag & MASK_SPLINE_CYCLIC)
len += resol;
else
len++;
/* len+1 because of 'forward_diff_bezier' function */
*tot_diff_point = len;
diff_points = fp = MEM_mallocN((len + 1) * sizeof(*diff_points), "mask spline vets");
a = spline->tot_point - 1;
if (spline->flag & MASK_SPLINE_CYCLIC)
a++;
prev = points_array;
point = prev + 1;
while (a--) {
BezTriple *prevbezt;
BezTriple *bezt;
int j;
if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC))
point = points_array;
prevbezt = &prev->bezt;
bezt = &point->bezt;
for (j = 0; j < 2; j++) {
BKE_curve_forward_diff_bezier(prevbezt->vec[1][j], prevbezt->vec[2][j],
bezt->vec[0][j], bezt->vec[1][j],
&(*fp)[j], resol, 2 * sizeof(float));
}
fp += resol;
if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) {
copy_v2_v2(*fp, bezt->vec[1]);
}
prev = point;
point++;
}
return diff_points;
}
float (*BKE_mask_spline_differentiate(MaskSpline *spline, int *tot_diff_point))[2]
{
return BKE_mask_spline_differentiate_with_resolution(spline, 0, 0, tot_diff_point);
}
float (*BKE_mask_spline_feather_differentiated_points_with_resolution(MaskSpline *spline, int width, int height,
int *tot_feather_point))[2]
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
float (*feather)[2], (*fp)[2];
int i, j, tot, resol = BKE_mask_spline_feather_resolution(spline, width, height);
tot = resol * spline->tot_point;
feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather diff points");
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &points_array[i];
for (j = 0; j < resol; j++, fp++) {
float u = (float) j / resol, weight;
float co[2], n[2];
/* TODO - these calls all calculate similar things
* could be unified for some speed */
BKE_mask_point_segment_co(spline, point, u, co);
BKE_mask_point_normal(spline, point, u, n);
weight = BKE_mask_point_weight(spline, point, u);
madd_v2_v2v2fl(*fp, co, n, weight);
}
}
*tot_feather_point = tot;
return feather;
}
float (*BKE_mask_spline_feather_differentiated_points(MaskSpline *spline, int *tot_feather_point))[2]
{
return BKE_mask_spline_feather_differentiated_points_with_resolution(spline, 0, 0, tot_feather_point);
}
float (*BKE_mask_spline_feather_points(MaskSpline *spline, int *tot_feather_point))[2]
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
int i, tot = 0;
float (*feather)[2], (*fp)[2];
/* count */
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &points_array[i];
tot += point->tot_uw + 1;
}
/* create data */
feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather points");
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &points_array[i];
BezTriple *bezt = &point->bezt;
float weight, n[2];
int j;
BKE_mask_point_normal(spline, point, 0.0f, n);
weight = BKE_mask_point_weight(spline, point, 0.0f);
madd_v2_v2v2fl(*fp, bezt->vec[1], n, weight);
fp++;
for (j = 0; j < point->tot_uw; j++) {
float u = point->uw[j].u;
float co[2];
BKE_mask_point_segment_co(spline, point, u, co);
BKE_mask_point_normal(spline, point, u, n);
weight = BKE_mask_point_weight(spline, point, u);
madd_v2_v2v2fl(*fp, co, n, weight);
fp++;
}
}
*tot_feather_point = tot;
return feather;
}
void BKE_mask_point_direction_switch(MaskSplinePoint *point)
{
const int tot_uw = point->tot_uw;
const int tot_uw_half = tot_uw / 2;
int i;
float co_tmp[2];
/* swap handles */
copy_v2_v2(co_tmp, point->bezt.vec[0]);
copy_v2_v2(point->bezt.vec[0], point->bezt.vec[2]);
copy_v2_v2(point->bezt.vec[2], co_tmp);
/* in this case the flags are unlikely to be different but swap anyway */
SWAP(char, point->bezt.f1, point->bezt.f3);
SWAP(char, point->bezt.h1, point->bezt.h2);
/* swap UW's */
if (tot_uw > 1) {
/* count */
for (i = 0; i < tot_uw_half; i++) {
MaskSplinePointUW *uw_a = &point->uw[i];
MaskSplinePointUW *uw_b = &point->uw[tot_uw - (i + 1)];
SWAP(MaskSplinePointUW, *uw_a, *uw_b);
}
}
for (i = 0; i < tot_uw; i++) {
MaskSplinePointUW *uw = &point->uw[i];
uw->u = 1.0f - uw->u;
}
}
void BKE_mask_spline_direction_switch(MaskLayer *masklay, MaskSpline *spline)
{
const int tot_point = spline->tot_point;
const int tot_point_half = tot_point / 2;
int i, i_prev;
if (tot_point < 2) {
return;
}
/* count */
for (i = 0; i < tot_point_half; i++) {
MaskSplinePoint *point_a = &spline->points[i];
MaskSplinePoint *point_b = &spline->points[tot_point - (i + 1)];
SWAP(MaskSplinePoint, *point_a, *point_b);
}
/* correct UW's */
i_prev = tot_point - 1;
for (i = 0; i < tot_point; i++) {
BKE_mask_point_direction_switch(&spline->points[i]);
SWAP(MaskSplinePointUW *, spline->points[i].uw, spline->points[i_prev].uw);
SWAP(int, spline->points[i].tot_uw, spline->points[i_prev].tot_uw);
i_prev = i;
}
/* correct animation */
if (masklay->splines_shapes.first) {
MaskLayerShape *masklay_shape;
const int spline_index = BKE_mask_layer_shape_spline_to_index(masklay, spline);
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
MaskLayerShapeElem *fp_arr = (MaskLayerShapeElem *)masklay_shape->data;
for (i = 0; i < tot_point_half; i++) {
MaskLayerShapeElem *fp_a = &fp_arr[spline_index + (i) ];
MaskLayerShapeElem *fp_b = &fp_arr[spline_index + (tot_point - (i + 1))];
SWAP(MaskLayerShapeElem, *fp_a, *fp_b);
}
}
}
}
float BKE_mask_spline_project_co(MaskSpline *spline, MaskSplinePoint *point,
float start_u, const float co[2], const eMaskSign sign)
{
const float proj_eps = 1e-3;
const float proj_eps_squared = proj_eps * proj_eps;
const int N = 1000;
float u = -1.0f, du = 1.0f / N, u1 = start_u, u2 = start_u;
float ang = -1.0f;
BLI_assert(ABS(sign) <= 1); /* (-1, 0, 1) */
while (u1 > 0.0f || u2 < 1.0f) {
float n1[2], n2[2], co1[2], co2[2];
float v1[2], v2[2];
float ang1, ang2;
if (u1 >= 0.0f) {
BKE_mask_point_segment_co(spline, point, u1, co1);
BKE_mask_point_normal(spline, point, u1, n1);
sub_v2_v2v2(v1, co, co1);
if ((sign == MASK_PROJ_ANY) ||
((sign == MASK_PROJ_NEG) && (dot_v2v2(v1, n1) <= 0.0f)) ||
((sign == MASK_PROJ_POS) && (dot_v2v2(v1, n1) >= 0.0f)))
{
if (len_squared_v2(v1) > proj_eps_squared) {
ang1 = angle_v2v2(v1, n1);
if (ang1 > M_PI / 2.0f)
ang1 = M_PI - ang1;
if (ang < 0.0f || ang1 < ang) {
ang = ang1;
u = u1;
}
}
else {
u = u1;
break;
}
}
}
if (u2 <= 1.0f) {
BKE_mask_point_segment_co(spline, point, u2, co2);
BKE_mask_point_normal(spline, point, u2, n2);
sub_v2_v2v2(v2, co, co2);
if ((sign == MASK_PROJ_ANY) ||
((sign == MASK_PROJ_NEG) && (dot_v2v2(v2, n2) <= 0.0f)) ||
((sign == MASK_PROJ_POS) && (dot_v2v2(v2, n2) >= 0.0f)))
{
if (len_squared_v2(v2) > proj_eps_squared) {
ang2 = angle_v2v2(v2, n2);
if (ang2 > M_PI / 2.0f)
ang2 = M_PI - ang2;
if (ang2 < ang) {
ang = ang2;
u = u2;
}
}
else {
u = u2;
break;
}
}
}
u1 -= du;
u2 += du;
}
return u;
}
/* point */
int BKE_mask_point_has_handle(MaskSplinePoint *point)
{
BezTriple *bezt = &point->bezt;
return bezt->h1 == HD_ALIGN;
}
void BKE_mask_point_handle(MaskSplinePoint *point, float handle[2])
{
float vec[2];
sub_v2_v2v2(vec, point->bezt.vec[0], point->bezt.vec[1]);
handle[0] = (point->bezt.vec[1][0] + vec[1]);
handle[1] = (point->bezt.vec[1][1] - vec[0]);
}
void BKE_mask_point_set_handle(MaskSplinePoint *point, float loc[2], int keep_direction,
float orig_handle[2], float orig_vec[3][3])
{
BezTriple *bezt = &point->bezt;
float v1[2], v2[2], vec[2];
if (keep_direction) {
sub_v2_v2v2(v1, loc, orig_vec[1]);
sub_v2_v2v2(v2, orig_handle, orig_vec[1]);
project_v2_v2v2(vec, v1, v2);
if (dot_v2v2(v2, vec) > 0) {
float len = len_v2(vec);
sub_v2_v2v2(v1, orig_vec[0], orig_vec[1]);
mul_v2_fl(v1, len / len_v2(v1));
add_v2_v2v2(bezt->vec[0], bezt->vec[1], v1);
sub_v2_v2v2(bezt->vec[2], bezt->vec[1], v1);
}
else {
copy_v3_v3(bezt->vec[0], bezt->vec[1]);
copy_v3_v3(bezt->vec[2], bezt->vec[1]);
}
}
else {
sub_v2_v2v2(v1, loc, bezt->vec[1]);
v2[0] = -v1[1];
v2[1] = v1[0];
add_v2_v2v2(bezt->vec[0], bezt->vec[1], v2);
sub_v2_v2v2(bezt->vec[2], bezt->vec[1], v2);
}
}
float *BKE_mask_point_segment_feather_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
int width, int height,
int *tot_feather_point)
{
float *feather, *fp;
int i, resol = BKE_mask_spline_feather_resolution(spline, width, height);
feather = fp = MEM_callocN(2 * resol * sizeof(float), "mask point spline feather diff points");
for (i = 0; i < resol; i++, fp += 2) {
float u = (float)(i % resol) / resol, weight;
float co[2], n[2];
BKE_mask_point_segment_co(spline, point, u, co);
BKE_mask_point_normal(spline, point, u, n);
weight = BKE_mask_point_weight(spline, point, u);
fp[0] = co[0] + n[0] * weight;
fp[1] = co[1] + n[1] * weight;
}
*tot_feather_point = resol;
return feather;
}
float *BKE_mask_point_segment_feather_diff(MaskSpline *spline, MaskSplinePoint *point, int *tot_feather_point)
{
return BKE_mask_point_segment_feather_diff_with_resolution(spline, point, 0, 0, tot_feather_point);
}
float *BKE_mask_point_segment_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
int width, int height, int *tot_diff_point)
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
BezTriple *bezt, *bezt_next;
float *diff_points, *fp;
int j, resol = BKE_mask_spline_resolution(spline, width, height);
bezt = &point->bezt;
bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
if (!bezt_next)
return NULL;
/* resol+1 because of 'forward_diff_bezier' function */
*tot_diff_point = resol + 1;
diff_points = fp = MEM_callocN((resol + 1) * 2 * sizeof(float), "mask segment vets");
for (j = 0; j < 2; j++) {
BKE_curve_forward_diff_bezier(bezt->vec[1][j], bezt->vec[2][j],
bezt_next->vec[0][j], bezt_next->vec[1][j],
fp + j, resol, 2 * sizeof(float));
}
copy_v2_v2(fp + 2 * resol, bezt_next->vec[1]);
return diff_points;
}
float *BKE_mask_point_segment_diff(MaskSpline *spline, MaskSplinePoint *point, int *tot_diff_point)
{
return BKE_mask_point_segment_diff_with_resolution(spline, point, 0, 0, tot_diff_point);
}
void BKE_mask_point_segment_co(MaskSpline *spline, MaskSplinePoint *point, float u, float co[2])
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
BezTriple *bezt = &point->bezt, *bezt_next;
float q0[2], q1[2], q2[2], r0[2], r1[2];
bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
if (!bezt_next) {
copy_v2_v2(co, bezt->vec[1]);
return;
}
interp_v2_v2v2(q0, bezt->vec[1], bezt->vec[2], u);
interp_v2_v2v2(q1, bezt->vec[2], bezt_next->vec[0], u);
interp_v2_v2v2(q2, bezt_next->vec[0], bezt_next->vec[1], u);
interp_v2_v2v2(r0, q0, q1, u);
interp_v2_v2v2(r1, q1, q2, u);
interp_v2_v2v2(co, r0, r1, u);
}
void BKE_mask_point_normal(MaskSpline *spline, MaskSplinePoint *point, float u, float n[2])
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
BezTriple *bezt = &point->bezt, *bezt_next;
float q0[2], q1[2], q2[2], r0[2], r1[2], vec[2];
bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
if (!bezt_next) {
BKE_mask_point_handle(point, vec);
sub_v2_v2v2(n, vec, bezt->vec[1]);
normalize_v2(n);
return;
}
interp_v2_v2v2(q0, bezt->vec[1], bezt->vec[2], u);
interp_v2_v2v2(q1, bezt->vec[2], bezt_next->vec[0], u);
interp_v2_v2v2(q2, bezt_next->vec[0], bezt_next->vec[1], u);
interp_v2_v2v2(r0, q0, q1, u);
interp_v2_v2v2(r1, q1, q2, u);
sub_v2_v2v2(vec, r1, r0);
n[0] = -vec[1];
n[1] = vec[0];
normalize_v2(n);
}
static float mask_point_interp_weight(BezTriple *bezt, BezTriple *bezt_next, const float u)
{
return (bezt->weight * (1.0f - u)) + (bezt_next->weight * u);
}
float BKE_mask_point_weight_scalar(MaskSpline *spline, MaskSplinePoint *point, const float u)
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
BezTriple *bezt = &point->bezt, *bezt_next;
bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
if (!bezt_next) {
return bezt->weight;
}
else if (u <= 0.0) {
return bezt->weight;
}
else if (u >= 1.0f) {
return bezt_next->weight;
}
else {
return mask_point_interp_weight(bezt, bezt_next, u);
}
}
float BKE_mask_point_weight(MaskSpline *spline, MaskSplinePoint *point, const float u)
{
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
BezTriple *bezt = &point->bezt, *bezt_next;
bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
if (!bezt_next) {
return bezt->weight;
}
else if (u <= 0.0) {
return bezt->weight;
}
else if (u >= 1.0f) {
return bezt_next->weight;
}
else {
float cur_u = 0.0f, cur_w = 0.0f, next_u = 0.0f, next_w = 0.0f, fac; /* Quite warnings */
int i;
for (i = 0; i < point->tot_uw + 1; i++) {
if (i == 0) {
cur_u = 0.0f;
cur_w = 1.0f; /* mask_point_interp_weight will scale it */
}
else {
cur_u = point->uw[i - 1].u;
cur_w = point->uw[i - 1].w;
}
if (i == point->tot_uw) {
next_u = 1.0f;
next_w = 1.0f; /* mask_point_interp_weight will scale it */
}
else {
next_u = point->uw[i].u;
next_w = point->uw[i].w;
}
if (u >= cur_u && u <= next_u) {
break;
}
}
fac = (u - cur_u) / (next_u - cur_u);
cur_w *= mask_point_interp_weight(bezt, bezt_next, cur_u);
next_w *= mask_point_interp_weight(bezt, bezt_next, next_u);
if (spline->weight_interp == MASK_SPLINE_INTERP_EASE) {
return cur_w + (next_w - cur_w) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
}
else {
return (1.0f - fac) * cur_w + fac * next_w;
}
}
}
MaskSplinePointUW *BKE_mask_point_sort_uw(MaskSplinePoint *point, MaskSplinePointUW *uw)
{
if (point->tot_uw > 1) {
int idx = uw - point->uw;
if (idx > 0 && point->uw[idx - 1].u > uw->u) {
while (idx > 0 && point->uw[idx - 1].u > point->uw[idx].u) {
SWAP(MaskSplinePointUW, point->uw[idx - 1], point->uw[idx]);
idx--;
}
}
if (idx < point->tot_uw - 1 && point->uw[idx + 1].u < uw->u) {
while (idx < point->tot_uw - 1 && point->uw[idx + 1].u < point->uw[idx].u) {
SWAP(MaskSplinePointUW, point->uw[idx + 1], point->uw[idx]);
idx++;
}
}
return &point->uw[idx];
}
return uw;
}
void BKE_mask_point_add_uw(MaskSplinePoint *point, float u, float w)
{
if (!point->uw)
point->uw = MEM_callocN(sizeof(*point->uw), "mask point uw");
else
point->uw = MEM_reallocN(point->uw, (point->tot_uw + 1) * sizeof(*point->uw));
point->uw[point->tot_uw].u = u;
point->uw[point->tot_uw].w = w;
point->tot_uw++;
BKE_mask_point_sort_uw(point, &point->uw[point->tot_uw - 1]);
}
void BKE_mask_point_select_set(MaskSplinePoint *point, const short do_select)
{
int i;
if (do_select) {
MASKPOINT_SEL_ALL(point);
}
else {
MASKPOINT_DESEL_ALL(point);
}
for (i = 0; i < point->tot_uw; i++) {
if (do_select) {
point->uw[i].flag |= SELECT;
}
else {
point->uw[i].flag &= ~SELECT;
}
}
}
void BKE_mask_point_select_set_handle(MaskSplinePoint *point, const short do_select)
{
if (do_select) {
MASKPOINT_SEL_HANDLE(point);
}
else {
MASKPOINT_DESEL_HANDLE(point);
}
}
/* only mask block itself */
static Mask *mask_alloc(const char *name)
{
Mask *mask;
mask = BKE_libblock_alloc(&G.main->mask, ID_MSK, name);
return mask;
}
Mask *BKE_mask_new(const char *name)
{
Mask *mask;
char mask_name[MAX_ID_NAME - 2];
if (name && name[0])
BLI_strncpy(mask_name, name, sizeof(mask_name));
else
strcpy(mask_name, "Mask");
mask = mask_alloc(mask_name);
/* arbitrary defaults */
mask->sfra = 1;
mask->efra = 100;
return mask;
}
void BKE_mask_point_free(MaskSplinePoint *point)
{
if (point->uw)
MEM_freeN(point->uw);
}
void BKE_mask_spline_free(MaskSpline *spline)
{
int i = 0;
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point;
point = &spline->points[i];
BKE_mask_point_free(point);
if (spline->points_deform) {
point = &spline->points_deform[i];
BKE_mask_point_free(point);
}
}
MEM_freeN(spline->points);
if (spline->points_deform) {
MEM_freeN(spline->points_deform);
}
MEM_freeN(spline);
}
MaskSpline *BKE_mask_spline_copy(MaskSpline *spline)
{
MaskSpline *nspline = MEM_callocN(sizeof(MaskSpline), "new spline");
int i;
*nspline = *spline;
nspline->points_deform = NULL;
nspline->points = MEM_dupallocN(nspline->points);
for (i = 0; i < nspline->tot_point; i++) {
MaskSplinePoint *point = &nspline->points[i];
if (point->uw)
point->uw = MEM_dupallocN(point->uw);
}
return nspline;
}
/* note: does NOT add to the list */
MaskLayerShape *BKE_mask_layer_shape_alloc(MaskLayer *masklay, const int frame)
{
MaskLayerShape *masklay_shape;
int tot_vert = BKE_mask_layer_shape_totvert(masklay);
masklay_shape = MEM_mallocN(sizeof(MaskLayerShape), __func__);
masklay_shape->frame = frame;
masklay_shape->tot_vert = tot_vert;
masklay_shape->data = MEM_mallocN(tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
return masklay_shape;
}
void BKE_mask_layer_shape_free(MaskLayerShape *masklay_shape)
{
MEM_freeN(masklay_shape->data);
MEM_freeN(masklay_shape);
}
/** \brief Free all animation keys for a mask layer
*/
void BKE_mask_layer_free_shapes(MaskLayer *masklay)
{
MaskLayerShape *masklay_shape;
/* free animation data */
masklay_shape = masklay->splines_shapes.first;
while (masklay_shape) {
MaskLayerShape *next_masklay_shape = masklay_shape->next;
BLI_remlink(&masklay->splines_shapes, masklay_shape);
BKE_mask_layer_shape_free(masklay_shape);
masklay_shape = next_masklay_shape;
}
}
void BKE_mask_layer_free(MaskLayer *masklay)
{
MaskSpline *spline;
/* free splines */
spline = masklay->splines.first;
while (spline) {
MaskSpline *next_spline = spline->next;
BLI_remlink(&masklay->splines, spline);
BKE_mask_spline_free(spline);
spline = next_spline;
}
/* free animation data */
BKE_mask_layer_free_shapes(masklay);
MEM_freeN(masklay);
}
void BKE_mask_free(Mask *mask)
{
MaskLayer *masklay = mask->masklayers.first;
while (masklay) {
MaskLayer *next_masklay = masklay->next;
BLI_remlink(&mask->masklayers, masklay);
BKE_mask_layer_free(masklay);
masklay = next_masklay;
}
}
void BKE_mask_unlink(Main *bmain, Mask *mask)
{
bScreen *scr;
ScrArea *area;
SpaceLink *sl;
for (scr = bmain->screen.first; scr; scr = scr->id.next) {
for (area = scr->areabase.first; area; area = area->next) {
for (sl = area->spacedata.first; sl; sl = sl->next) {
if (sl->spacetype == SPACE_CLIP) {
SpaceClip *sc = (SpaceClip *) sl;
if (sc->mask == mask)
sc->mask = NULL;
}
}
}
}
mask->id.us = 0;
}
void BKE_mask_coord_from_movieclip(MovieClip *clip, MovieClipUser *user, float r_co[2], const float co[2])
{
int width, height;
/* scaling for the clip */
BKE_movieclip_get_size(clip, user, &width, &height);
if (width == height) {
r_co[0] = co[0];
r_co[1] = co[1];
}
else if (width < height) {
r_co[0] = ((co[0] - 0.5f) * ((float)width / (float)height)) + 0.5f;
r_co[1] = co[1];
}
else { /* (width > height) */
r_co[0] = co[0];
r_co[1] = ((co[1] - 0.5f) * ((float)height / (float)width)) + 0.5f;
}
}
/* as above but divide */
void BKE_mask_coord_to_movieclip(MovieClip *clip, MovieClipUser *user, float r_co[2], const float co[2])
{
int width, height;
/* scaling for the clip */
BKE_movieclip_get_size(clip, user, &width, &height);
if (width == height) {
r_co[0] = co[0];
r_co[1] = co[1];
}
else if (width < height) {
r_co[0] = ((co[0] - 0.5f) / ((float)width / (float)height)) + 0.5f;
r_co[1] = co[1];
}
else { /* (width > height) */
r_co[0] = co[0];
r_co[1] = ((co[1] - 0.5f) / ((float)height / (float)width)) + 0.5f;
}
}
static int BKE_mask_evaluate_parent(MaskParent *parent, float ctime, float r_co[2])
{
if (!parent)
return FALSE;
if (parent->id_type == ID_MC) {
if (parent->id) {
MovieClip *clip = (MovieClip *) parent->id;
MovieTracking *tracking = (MovieTracking *) &clip->tracking;
MovieTrackingObject *ob = BKE_tracking_named_object(tracking, parent->parent);
if (ob) {
MovieTrackingTrack *track = BKE_tracking_named_track(tracking, ob, parent->sub_parent);
MovieClipUser user = {0};
user.framenr = ctime;
if (track) {
MovieTrackingMarker *marker = BKE_tracking_get_marker(track, ctime);
float marker_pos_ofs[2];
add_v2_v2v2(marker_pos_ofs, marker->pos, track->offset);
BKE_mask_coord_from_movieclip(clip, &user, r_co, marker_pos_ofs);
return TRUE;
}
}
}
}
return FALSE;
}
int BKE_mask_evaluate_parent_delta(MaskParent *parent, float ctime, float r_delta[2])
{
float parent_co[2];
if (BKE_mask_evaluate_parent(parent, ctime, parent_co)) {
sub_v2_v2v2(r_delta, parent_co, parent->parent_orig);
return TRUE;
}
else {
return FALSE;
}
}
static void mask_calc_point_handle(MaskSplinePoint *point, MaskSplinePoint *point_prev, MaskSplinePoint *point_next)
{
BezTriple *bezt = &point->bezt;
BezTriple *bezt_prev = NULL, *bezt_next = NULL;
//int handle_type = bezt->h1;
if (point_prev)
bezt_prev = &point_prev->bezt;
if (point_next)
bezt_next = &point_next->bezt;
#if 1
if (bezt_prev || bezt_next) {
BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
}
#else
if (handle_type == HD_VECT) {
BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
}
else if (handle_type == HD_AUTO) {
BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
}
else if (handle_type == HD_ALIGN) {
float v1[3], v2[3];
float vec[3], h[3];
sub_v3_v3v3(v1, bezt->vec[0], bezt->vec[1]);
sub_v3_v3v3(v2, bezt->vec[2], bezt->vec[1]);
add_v3_v3v3(vec, v1, v2);
if (len_v3(vec) > 1e-3) {
h[0] = vec[1];
h[1] = -vec[0];
h[2] = 0.0f;
}
else {
copy_v3_v3(h, v1);
}
add_v3_v3v3(bezt->vec[0], bezt->vec[1], h);
sub_v3_v3v3(bezt->vec[2], bezt->vec[1], h);
}
#endif
}
void BKE_mask_get_handle_point_adjacent(MaskSpline *spline, MaskSplinePoint *point,
MaskSplinePoint **r_point_prev, MaskSplinePoint **r_point_next)
{
/* TODO, could avoid calling this at such low level */
MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
*r_point_prev = mask_spline_point_prev(spline, points_array, point);
*r_point_next = mask_spline_point_next(spline, points_array, point);
}
/* calculates the tanget of a point by its previous and next
* (ignoring handles - as if its a poly line) */
void BKE_mask_calc_tangent_polyline(MaskSpline *spline, MaskSplinePoint *point, float t[2])
{
float tvec_a[2], tvec_b[2];
MaskSplinePoint *point_prev, *point_next;
BKE_mask_get_handle_point_adjacent(spline, point,
&point_prev, &point_next);
if (point_prev) {
sub_v2_v2v2(tvec_a, point->bezt.vec[1], point_prev->bezt.vec[1]);
normalize_v2(tvec_a);
}
else {
zero_v2(tvec_a);
}
if (point_next) {
sub_v2_v2v2(tvec_b, point_next->bezt.vec[1], point->bezt.vec[1]);
normalize_v2(tvec_b);
}
else {
zero_v2(tvec_b);
}
add_v2_v2v2(t, tvec_a, tvec_b);
normalize_v2(t);
}
void BKE_mask_calc_handle_point(MaskSpline *spline, MaskSplinePoint *point)
{
MaskSplinePoint *point_prev, *point_next;
BKE_mask_get_handle_point_adjacent(spline, point,
&point_prev, &point_next);
mask_calc_point_handle(point, point_prev, point_next);
}
static void enforce_dist_v2_v2fl(float v1[2], const float v2[2], const float dist)
{
if (!equals_v2v2(v2, v1)) {
float nor[2];
sub_v2_v2v2(nor, v1, v2);
normalize_v2(nor);
madd_v2_v2v2fl(v1, v2, nor, dist);
}
}
void BKE_mask_calc_handle_adjacent_interp(MaskSpline *spline, MaskSplinePoint *point, const float u)
{
/* TODO! - make this interpolate between siblings - not always midpoint! */
int length_tot = 0;
float length_average = 0.0f;
float weight_average = 0.0f;
MaskSplinePoint *point_prev, *point_next;
BLI_assert(u >= 0.0f && u <= 1.0f);
BKE_mask_get_handle_point_adjacent(spline, point,
&point_prev, &point_next);
if (point_prev && point_next) {
length_average = ((len_v2v2(point_prev->bezt.vec[0], point_prev->bezt.vec[1]) * (1.0f - u)) +
(len_v2v2(point_next->bezt.vec[2], point_next->bezt.vec[1]) * u));
weight_average = (point_prev->bezt.weight * (1.0f - u) +
point_next->bezt.weight * u);
length_tot = 1;
}
else {
if (point_prev) {
length_average += len_v2v2(point_prev->bezt.vec[0], point_prev->bezt.vec[1]);
weight_average += point_prev->bezt.weight;
length_tot++;
}
if (point_next) {
length_average += len_v2v2(point_next->bezt.vec[2], point_next->bezt.vec[1]);
weight_average += point_next->bezt.weight;
length_tot++;
}
}
if (length_tot) {
length_average /= (float)length_tot;
weight_average /= (float)length_tot;
enforce_dist_v2_v2fl(point->bezt.vec[0], point->bezt.vec[1], length_average);
enforce_dist_v2_v2fl(point->bezt.vec[2], point->bezt.vec[1], length_average);
point->bezt.weight = weight_average;
}
}
/**
* \brief Resets auto handles even for non-auto bezier points
*
* Useful for giving sane defaults.
*/
void BKE_mask_calc_handle_point_auto(MaskSpline *spline, MaskSplinePoint *point,
const short do_recalc_length)
{
MaskSplinePoint *point_prev, *point_next;
const char h_back[2] = {point->bezt.h1, point->bezt.h2};
const float length_average = (do_recalc_length) ? 0.0f /* dummy value */ :
(len_v3v3(point->bezt.vec[0], point->bezt.vec[1]) +
len_v3v3(point->bezt.vec[1], point->bezt.vec[2])) / 2.0f;
BKE_mask_get_handle_point_adjacent(spline, point,
&point_prev, &point_next);
point->bezt.h1 = HD_AUTO;
point->bezt.h2 = HD_AUTO;
mask_calc_point_handle(point, point_prev, point_next);
point->bezt.h1 = h_back[0];
point->bezt.h2 = h_back[1];
/* preserve length by applying it back */
if (do_recalc_length == FALSE) {
enforce_dist_v2_v2fl(point->bezt.vec[0], point->bezt.vec[1], length_average);
enforce_dist_v2_v2fl(point->bezt.vec[2], point->bezt.vec[1], length_average);
}
}
void BKE_mask_layer_calc_handles(MaskLayer *masklay)
{
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
BKE_mask_calc_handle_point(spline, &spline->points[i]);
}
}
}
void BKE_mask_layer_calc_handles_deform(MaskLayer *masklay)
{
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
BKE_mask_calc_handle_point(spline, &spline->points_deform[i]);
}
}
}
void BKE_mask_calc_handles(Mask *mask)
{
MaskLayer *masklay;
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
BKE_mask_layer_calc_handles(masklay);
}
}
void BKE_mask_update_deform(Mask *mask)
{
MaskLayer *masklay;
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
const int i_prev = (i - 1) % spline->tot_point;
const int i_next = (i + 1) % spline->tot_point;
BezTriple *bezt_prev = &spline->points[i_prev].bezt;
BezTriple *bezt = &spline->points[i].bezt;
BezTriple *bezt_next = &spline->points[i_next].bezt;
BezTriple *bezt_def_prev = &spline->points_deform[i_prev].bezt;
BezTriple *bezt_def = &spline->points_deform[i].bezt;
BezTriple *bezt_def_next = &spline->points_deform[i_next].bezt;
float w_src[4];
int j;
for (j = 0; j <= 2; j += 2) { /* (0, 2) */
printf("--- %d %d, %d, %d\n", i, j, i_prev, i_next);
barycentric_weights_v2(bezt_prev->vec[1], bezt->vec[1], bezt_next->vec[1],
bezt->vec[j], w_src);
interp_v3_v3v3v3(bezt_def->vec[j],
bezt_def_prev->vec[1], bezt_def->vec[1], bezt_def_next->vec[1], w_src);
}
}
}
}
}
void BKE_mask_spline_ensure_deform(MaskSpline *spline)
{
int allocated_points = (MEM_allocN_len(spline->points_deform) / sizeof(*spline->points_deform));
// printf("SPLINE ALLOC %p %d\n", spline->points_deform, allocated_points);
if (spline->points_deform == NULL || allocated_points != spline->tot_point) {
printf("alloc new deform spline\n");
if (spline->points_deform) {
int i;
for (i = 0; i < allocated_points; i++) {
MaskSplinePoint *point = &spline->points_deform[i];
BKE_mask_point_free(point);
}
MEM_freeN(spline->points_deform);
}
spline->points_deform = MEM_callocN(sizeof(*spline->points_deform) * spline->tot_point, __func__);
}
else {
// printf("alloc spline done\n");
}
}
void BKE_mask_evaluate(Mask *mask, const float ctime, const int do_newframe)
{
MaskLayer *masklay;
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
/* animation if available */
if (do_newframe) {
MaskLayerShape *masklay_shape_a;
MaskLayerShape *masklay_shape_b;
int found;
if ((found = BKE_mask_layer_shape_find_frame_range(masklay, ctime,
&masklay_shape_a, &masklay_shape_b)))
{
if (found == 1) {
#if 0
printf("%s: exact %d %d (%d)\n", __func__, (int)ctime, BLI_countlist(&masklay->splines_shapes),
masklay_shape_a->frame);
#endif
BKE_mask_layer_shape_to_mask(masklay, masklay_shape_a);
}
else if (found == 2) {
float w = masklay_shape_b->frame - masklay_shape_a->frame;
#if 0
printf("%s: tween %d %d (%d %d)\n", __func__, (int)ctime, BLI_countlist(&masklay->splines_shapes),
masklay_shape_a->frame, masklay_shape_b->frame);
#endif
BKE_mask_layer_shape_to_mask_interp(masklay, masklay_shape_a, masklay_shape_b,
(ctime - masklay_shape_a->frame) / w);
}
else {
/* always fail, should never happen */
BLI_assert(found == 2);
}
}
}
/* animation done... */
}
BKE_mask_calc_handles(mask);
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
int has_auto = FALSE;
BKE_mask_spline_ensure_deform(spline);
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point = &spline->points[i];
MaskSplinePoint *point_deform = &spline->points_deform[i];
float delta[2];
BKE_mask_point_free(point_deform);
*point_deform = *point;
point_deform->uw = point->uw ? MEM_dupallocN(point->uw) : NULL;
if (BKE_mask_evaluate_parent_delta(&point->parent, ctime, delta)) {
add_v2_v2(point_deform->bezt.vec[0], delta);
add_v2_v2(point_deform->bezt.vec[1], delta);
add_v2_v2(point_deform->bezt.vec[2], delta);
}
if (point->bezt.h1 == HD_AUTO) {
has_auto = TRUE;
}
}
/* if the spline has auto handles, these need to be recalculated after deformation */
if (has_auto) {
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point_deform = &spline->points_deform[i];
if (point_deform->bezt.h1 == HD_AUTO) {
BKE_mask_calc_handle_point(spline, point_deform);
}
}
}
/* end extra calc handles loop */
}
}
}
/* the purpose of this function is to ensure spline->points_deform is never out of date.
* for now re-evaluate all. eventually this might work differently */
void BKE_mask_update_display(Mask *mask, float ctime)
{
#if 0
MaskLayer *masklay;
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
if (spline->points_deform) {
int i = 0;
for (i = 0; i < spline->tot_point; i++) {
MaskSplinePoint *point;
if (spline->points_deform) {
point = &spline->points_deform[i];
BKE_mask_point_free(point);
}
}
if (spline->points_deform) {
MEM_freeN(spline->points_deform);
}
spline->points_deform = NULL;
}
}
}
#endif
BKE_mask_evaluate(mask, ctime, FALSE);
}
void BKE_mask_evaluate_all_masks(Main *bmain, float ctime, const int do_newframe)
{
Mask *mask;
for (mask = bmain->mask.first; mask; mask = mask->id.next) {
BKE_mask_evaluate(mask, ctime, do_newframe);
}
}
void BKE_mask_update_scene(Main *bmain, Scene *scene, const int do_newframe)
{
Mask *mask;
for (mask = bmain->mask.first; mask; mask = mask->id.next) {
if (mask->id.flag & LIB_ID_RECALC) {
BKE_mask_evaluate_all_masks(bmain, CFRA, do_newframe);
}
}
}
void BKE_mask_parent_init(MaskParent *parent)
{
parent->id_type = ID_MC;
}
/* *** own animation/shapekey implimentation ***
* BKE_mask_layer_shape_XXX */
int BKE_mask_layer_shape_totvert(MaskLayer *masklay)
{
int tot = 0;
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
tot += spline->tot_point;
}
return tot;
}
static void mask_layer_shape_from_mask_point(BezTriple *bezt, float fp[MASK_OBJECT_SHAPE_ELEM_SIZE])
{
copy_v2_v2(&fp[0], bezt->vec[0]);
copy_v2_v2(&fp[2], bezt->vec[1]);
copy_v2_v2(&fp[4], bezt->vec[2]);
fp[6] = bezt->weight;
fp[7] = bezt->radius;
}
static void mask_layer_shape_to_mask_point(BezTriple *bezt, float fp[MASK_OBJECT_SHAPE_ELEM_SIZE])
{
copy_v2_v2(bezt->vec[0], &fp[0]);
copy_v2_v2(bezt->vec[1], &fp[2]);
copy_v2_v2(bezt->vec[2], &fp[4]);
bezt->weight = fp[6];
bezt->radius = fp[7];
}
/* these functions match. copy is swapped */
void BKE_mask_layer_shape_from_mask(MaskLayer *masklay, MaskLayerShape *masklay_shape)
{
int tot = BKE_mask_layer_shape_totvert(masklay);
if (masklay_shape->tot_vert == tot) {
float *fp = masklay_shape->data;
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
mask_layer_shape_from_mask_point(&spline->points[i].bezt, fp);
fp += MASK_OBJECT_SHAPE_ELEM_SIZE;
}
}
}
else {
printf("%s: vert mismatch %d != %d (frame %d)\n",
__func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
}
}
void BKE_mask_layer_shape_to_mask(MaskLayer *masklay, MaskLayerShape *masklay_shape)
{
int tot = BKE_mask_layer_shape_totvert(masklay);
if (masklay_shape->tot_vert == tot) {
float *fp = masklay_shape->data;
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
mask_layer_shape_to_mask_point(&spline->points[i].bezt, fp);
fp += MASK_OBJECT_SHAPE_ELEM_SIZE;
}
}
}
else {
printf("%s: vert mismatch %d != %d (frame %d)\n",
__func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
}
}
BLI_INLINE void interp_v2_v2v2_flfl(float target[2], const float a[2], const float b[2],
const float t, const float s)
{
target[0] = s * a[0] + t * b[0];
target[1] = s * a[1] + t * b[1];
}
/* linear interpolation only */
void BKE_mask_layer_shape_to_mask_interp(MaskLayer *masklay,
MaskLayerShape *masklay_shape_a,
MaskLayerShape *masklay_shape_b,
const float fac)
{
int tot = BKE_mask_layer_shape_totvert(masklay);
if (masklay_shape_a->tot_vert == tot && masklay_shape_b->tot_vert == tot) {
float *fp_a = masklay_shape_a->data;
float *fp_b = masklay_shape_b->data;
const float ifac = 1.0f - fac;
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
int i;
for (i = 0; i < spline->tot_point; i++) {
BezTriple *bezt = &spline->points[i].bezt;
/* *** BKE_mask_layer_shape_from_mask - swapped *** */
interp_v2_v2v2_flfl(bezt->vec[0], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
interp_v2_v2v2_flfl(bezt->vec[1], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
interp_v2_v2v2_flfl(bezt->vec[2], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
bezt->weight = (fp_a[0] * ifac) + (fp_b[0] * fac);
bezt->radius = (fp_a[1] * ifac) + (fp_b[1] * fac); fp_a += 2; fp_b += 2;
}
}
}
else {
printf("%s: vert mismatch %d != %d != %d (frame %d - %d)\n",
__func__, masklay_shape_a->tot_vert, masklay_shape_b->tot_vert, tot,
masklay_shape_a->frame, masklay_shape_b->frame);
}
}
MaskLayerShape *BKE_mask_layer_shape_find_frame(MaskLayer *masklay, const int frame)
{
MaskLayerShape *masklay_shape;
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
if (frame == masklay_shape->frame) {
return masklay_shape;
}
else if (frame < masklay_shape->frame) {
break;
}
}
return NULL;
}
/* when returning 2 - the frame isnt found but before/after frames are */
int BKE_mask_layer_shape_find_frame_range(MaskLayer *masklay, const float frame,
MaskLayerShape **r_masklay_shape_a,
MaskLayerShape **r_masklay_shape_b)
{
MaskLayerShape *masklay_shape;
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
if (frame == masklay_shape->frame) {
*r_masklay_shape_a = masklay_shape;
*r_masklay_shape_b = NULL;
return 1;
}
else if (frame < masklay_shape->frame) {
if (masklay_shape->prev) {
*r_masklay_shape_a = masklay_shape->prev;
*r_masklay_shape_b = masklay_shape;
return 2;
}
else {
*r_masklay_shape_a = masklay_shape;
*r_masklay_shape_b = NULL;
return 1;
}
}
}
if ((masklay_shape = masklay->splines_shapes.last)) {
*r_masklay_shape_a = masklay_shape;
*r_masklay_shape_b = NULL;
return 1;
}
else {
*r_masklay_shape_a = NULL;
*r_masklay_shape_b = NULL;
return 0;
}
}
MaskLayerShape *BKE_mask_layer_shape_varify_frame(MaskLayer *masklay, const int frame)
{
MaskLayerShape *masklay_shape;
masklay_shape = BKE_mask_layer_shape_find_frame(masklay, frame);
if (masklay_shape == NULL) {
masklay_shape = BKE_mask_layer_shape_alloc(masklay, frame);
BLI_addtail(&masklay->splines_shapes, masklay_shape);
BKE_mask_layer_shape_sort(masklay);
}
#if 0
{
MaskLayerShape *masklay_shape;
int i = 0;
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
printf("mask %d, %d\n", i++, masklay_shape->frame);
}
}
#endif
return masklay_shape;
}
MaskLayerShape *BKE_mask_layer_shape_duplicate(MaskLayerShape *masklay_shape)
{
MaskLayerShape *masklay_shape_copy;
masklay_shape_copy = MEM_dupallocN(masklay_shape);
if (LIKELY(masklay_shape_copy->data)) {
masklay_shape_copy->data = MEM_dupallocN(masklay_shape_copy->data);
}
return masklay_shape_copy;
}
void BKE_mask_layer_shape_unlink(MaskLayer *masklay, MaskLayerShape *masklay_shape)
{
BLI_remlink(&masklay->splines_shapes, masklay_shape);
BKE_mask_layer_shape_free(masklay_shape);
}
static int mask_layer_shape_sort_cb(void *masklay_shape_a_ptr, void *masklay_shape_b_ptr)
{
MaskLayerShape *masklay_shape_a = (MaskLayerShape *)masklay_shape_a_ptr;
MaskLayerShape *masklay_shape_b = (MaskLayerShape *)masklay_shape_b_ptr;
if (masklay_shape_a->frame < masklay_shape_b->frame) return -1;
else if (masklay_shape_a->frame > masklay_shape_b->frame) return 1;
else return 0;
}
void BKE_mask_layer_shape_sort(MaskLayer *masklay)
{
BLI_sortlist(&masklay->splines_shapes, mask_layer_shape_sort_cb);
}
int BKE_mask_layer_shape_spline_from_index(MaskLayer *masklay, int index,
MaskSpline **r_masklay_shape, int *r_index)
{
MaskSpline *spline;
for (spline = masklay->splines.first; spline; spline = spline->next) {
if (index < spline->tot_point) {
*r_masklay_shape = spline;
*r_index = index;
return TRUE;
}
index -= spline->tot_point;
}
return FALSE;
}
int BKE_mask_layer_shape_spline_to_index(MaskLayer *masklay, MaskSpline *spline)
{
MaskSpline *spline_iter;
int i_abs = 0;
for (spline_iter = masklay->splines.first;
spline_iter && spline_iter != spline;
i_abs += spline_iter->tot_point, spline_iter = spline_iter->next)
{
/* pass */
}
return i_abs;
}
/* basic 2D interpolation functions, could make more comprehensive later */
static void interp_weights_uv_v2_calc(float r_uv[2], const float pt[2], const float pt_a[2], const float pt_b[2])
{
float pt_on_line[2];
r_uv[0] = closest_to_line_v2(pt_on_line, pt, pt_a, pt_b);
r_uv[1] = (len_v2v2(pt_on_line, pt) / len_v2v2(pt_a, pt_b)) *
((line_point_side_v2(pt_a, pt_b, pt) < 0.0f) ? -1.0 : 1.0); /* this line only sets the sign */
}
static void interp_weights_uv_v2_apply(const float uv[2], float r_pt[2], const float pt_a[2], const float pt_b[2])
{
const float dvec[2] = {pt_b[0] - pt_a[0],
pt_b[1] - pt_a[1]};
/* u */
madd_v2_v2v2fl(r_pt, pt_a, dvec, uv[0]);
/* v */
r_pt[0] += -dvec[1] * uv[1];
r_pt[1] += dvec[0] * uv[1];
}
/* when a now points added - resize all shapekey array */
void BKE_mask_layer_shape_changed_add(MaskLayer *masklay, int index,
int do_init, int do_init_interpolate)
{
MaskLayerShape *masklay_shape;
/* spline index from masklay */
MaskSpline *spline;
int spline_point_index;
if (BKE_mask_layer_shape_spline_from_index(masklay, index,
&spline, &spline_point_index))
{
/* sanity check */
/* the point has already been removed in this array so subtract one when comparing with the shapes */
int tot = BKE_mask_layer_shape_totvert(masklay) - 1;
/* for interpolation */
/* TODO - assumes closed curve for now */
float uv[3][2]; /* 3x 2D handles */
const int pi_curr = spline_point_index;
const int pi_prev = ((spline_point_index - 1) + spline->tot_point) % spline->tot_point;
const int pi_next = (spline_point_index + 1) % spline->tot_point;
const int index_offset = index - spline_point_index;
/* const int pi_curr_abs = index; */
const int pi_prev_abs = pi_prev + index_offset;
const int pi_next_abs = pi_next + index_offset;
int i;
if (do_init_interpolate) {
for (i = 0; i < 3; i++) {
interp_weights_uv_v2_calc(uv[i],
spline->points[pi_curr].bezt.vec[i],
spline->points[pi_prev].bezt.vec[i],
spline->points[pi_next].bezt.vec[i]);
}
}
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
if (tot == masklay_shape->tot_vert) {
float *data_resized;
masklay_shape->tot_vert++;
data_resized = MEM_mallocN(masklay_shape->tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
if (index > 0) {
memcpy(data_resized,
masklay_shape->data,
index * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
}
if (index != masklay_shape->tot_vert - 1) {
memcpy(&data_resized[(index + 1) * MASK_OBJECT_SHAPE_ELEM_SIZE],
masklay_shape->data + (index * MASK_OBJECT_SHAPE_ELEM_SIZE),
(masklay_shape->tot_vert - (index + 1)) * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
}
if (do_init) {
float *fp = &data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE];
mask_layer_shape_from_mask_point(&spline->points[spline_point_index].bezt, fp);
if (do_init_interpolate && spline->tot_point > 2) {
for (i = 0; i < 3; i++) {
interp_weights_uv_v2_apply(uv[i],
&fp[i * 2],
&data_resized[(pi_prev_abs * MASK_OBJECT_SHAPE_ELEM_SIZE) + (i * 2)],
&data_resized[(pi_next_abs * MASK_OBJECT_SHAPE_ELEM_SIZE) + (i * 2)]);
}
}
}
else {
memset(&data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE],
0,
sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
}
MEM_freeN(masklay_shape->data);
masklay_shape->data = data_resized;
}
else {
printf("%s: vert mismatch %d != %d (frame %d)\n",
__func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
}
}
}
}
/* move array to account for removed point */
void BKE_mask_layer_shape_changed_remove(MaskLayer *masklay, int index, int count)
{
MaskLayerShape *masklay_shape;
/* the point has already been removed in this array so add one when comparing with the shapes */
int tot = BKE_mask_layer_shape_totvert(masklay);
for (masklay_shape = masklay->splines_shapes.first;
masklay_shape;
masklay_shape = masklay_shape->next)
{
if (tot == masklay_shape->tot_vert - count) {
float *data_resized;
masklay_shape->tot_vert -= count;
data_resized = MEM_mallocN(masklay_shape->tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
if (index > 0) {
memcpy(data_resized,
masklay_shape->data,
index * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
}
if (index != masklay_shape->tot_vert) {
memcpy(&data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE],
masklay_shape->data + ((index + count) * MASK_OBJECT_SHAPE_ELEM_SIZE),
(masklay_shape->tot_vert - index) * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
}
MEM_freeN(masklay_shape->data);
masklay_shape->data = data_resized;
}
else {
printf("%s: vert mismatch %d != %d (frame %d)\n",
__func__, masklay_shape->tot_vert - count, tot, masklay_shape->frame);
}
}
}
/* local functions */
static void invert_vn_vn(float *array, const int size)
{
float *arr = array + (size - 1);
int i = size;
while (i--) {
*(arr) = 1.0f - *(arr);
arr--;
}
}
static void m_invert_vn_vn(float *array, const float f, const int size)
{
float *arr = array + (size - 1);
int i = size;
while (i--) {
*(arr) = 1.0f - (*(arr) * f);
arr--;
}
}
static void clamp_vn_vn(float *array, const int size)
{
float *arr = array + (size - 1);
int i = size;
while (i--) {
if (*arr < 0.0f) *arr = 0.0f;
else if (*arr > 1.0f) *arr = 1.0f;
arr--;
}
}
int BKE_mask_get_duration(Mask *mask)
{
return MAX2(1, mask->efra - mask->sfra);
}
/* rasterization */
void BKE_mask_rasterize(Mask *mask, int width, int height, float *buffer,
const short do_aspect_correct)
{
MaskLayer *masklay;
/* temp blending buffer */
const int buffer_size = width * height;
float *buffer_tmp = MEM_mallocN(sizeof(float) * buffer_size, __func__);
for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
MaskSpline *spline;
float alpha;
if (masklay->restrictflag & MASK_RESTRICT_RENDER) {
continue;
}
memset(buffer_tmp, 0, sizeof(float) * buffer_size);
for (spline = masklay->splines.first; spline; spline = spline->next) {
float (*diff_points)[2];
int tot_diff_point;
float (*diff_feather_points)[2];
int tot_diff_feather_points;
diff_points = BKE_mask_spline_differentiate_with_resolution(spline, width, height,
&tot_diff_point);
if (tot_diff_point) {
diff_feather_points =
BKE_mask_spline_feather_differentiated_points_with_resolution(spline, width, height,
&tot_diff_feather_points);
if (do_aspect_correct) {
if (width != height) {
float *fp;
float *ffp;
int i;
float asp;
if (width < height) {
fp = &diff_points[0][0];
ffp = tot_diff_feather_points ? &diff_feather_points[0][0] : NULL;
asp = (float)width / (float)height;
}
else {
fp = &diff_points[0][1];
ffp = tot_diff_feather_points ? &diff_feather_points[0][1] : NULL;
asp = (float)height / (float)width;
}
for (i = 0; i < tot_diff_point; i++, fp += 2) {
(*fp) = (((*fp) - 0.5f) / asp) + 0.5f;
}
if (tot_diff_feather_points) {
for (i = 0; i < tot_diff_feather_points; i++, ffp += 2) {
(*ffp) = (((*ffp) - 0.5f) / asp) + 0.5f;
}
}
}
}
if (tot_diff_point) {
PLX_raskterize(diff_points, tot_diff_point,
buffer_tmp, width, height);
if (tot_diff_feather_points) {
PLX_raskterize_feather(diff_points, tot_diff_point,
diff_feather_points, tot_diff_feather_points,
buffer_tmp, width, height);
MEM_freeN(diff_feather_points);
}
MEM_freeN(diff_points);
}
}
}
/* blend with original */
if (masklay->blend_flag & MASK_BLENDFLAG_INVERT) {
/* apply alpha multiply before inverting */
if (masklay->alpha != 1.0f) {
m_invert_vn_vn(buffer_tmp, masklay->alpha, buffer_size);
}
else {
invert_vn_vn(buffer_tmp, buffer_size);
}
alpha = 1.0f;
}
else {
alpha = masklay->alpha;
}
switch (masklay->blend) {
case MASK_BLEND_SUBTRACT:
{
if (alpha == 1.0f) {
sub_vn_vn(buffer, buffer_tmp, buffer_size);
}
else {
msub_vn_vn(buffer, buffer_tmp, alpha, buffer_size);
}
break;
}
case MASK_BLEND_ADD:
default:
{
if (alpha == 1.0f) {
add_vn_vn(buffer, buffer_tmp, buffer_size);
}
else {
madd_vn_vn(buffer, buffer_tmp, alpha, buffer_size);
}
break;
}
}
/* clamp at the end */
clamp_vn_vn(buffer, buffer_size);
}
MEM_freeN(buffer_tmp);
}