This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle.c

4561 lines
122 KiB
C

/* particle.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle.c
* \ingroup bke
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_particle_types.h"
#include "DNA_smoke_types.h"
#include "DNA_scene_types.h"
#include "DNA_dynamicpaint_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_kdtree.h"
#include "BLI_rand.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cloth.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_main.h"
#include "BKE_lattice.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_depsgraph.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_pointcache.h"
#include "RE_render_ext.h"
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx,
ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex);
static void do_child_modifiers(ParticleSimulationData *sim,
ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa,
float *orco, float mat[4][4], ParticleKey *state, float t);
/* few helpers for countall etc. */
int count_particles(ParticleSystem *psys){
ParticleSettings *part=psys->part;
PARTICLE_P;
int tot=0;
LOOP_SHOWN_PARTICLES {
if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else tot++;
}
return tot;
}
int count_particles_mod(ParticleSystem *psys, int totgr, int cur){
ParticleSettings *part=psys->part;
PARTICLE_P;
int tot=0;
LOOP_SHOWN_PARTICLES {
if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else if(p%totgr==cur) tot++;
}
return tot;
}
/* we allocate path cache memory in chunks instead of a big continguous
* chunk, windows' memory allocater fails to find big blocks of memory often */
#define PATH_CACHE_BUF_SIZE 1024
static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int steps)
{
LinkData *buf;
ParticleCacheKey **cache;
int i, totkey, totbufkey;
tot= MAX2(tot, 1);
totkey = 0;
cache = MEM_callocN(tot*sizeof(void*), "PathCacheArray");
while(totkey < tot) {
totbufkey= MIN2(tot-totkey, PATH_CACHE_BUF_SIZE);
buf= MEM_callocN(sizeof(LinkData), "PathCacheLinkData");
buf->data= MEM_callocN(sizeof(ParticleCacheKey)*totbufkey*steps, "ParticleCacheKey");
for(i=0; i<totbufkey; i++)
cache[totkey+i] = ((ParticleCacheKey*)buf->data) + i*steps;
totkey += totbufkey;
BLI_addtail(bufs, buf);
}
return cache;
}
static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs)
{
LinkData *buf;
if(cache)
MEM_freeN(cache);
for(buf= bufs->first; buf; buf=buf->next)
MEM_freeN(buf->data);
BLI_freelistN(bufs);
}
/************************************************/
/* Getting stuff */
/************************************************/
/* get object's active particle system safely */
ParticleSystem *psys_get_current(Object *ob)
{
ParticleSystem *psys;
if(ob==NULL) return NULL;
for(psys=ob->particlesystem.first; psys; psys=psys->next){
if(psys->flag & PSYS_CURRENT)
return psys;
}
return NULL;
}
short psys_get_current_num(Object *ob)
{
ParticleSystem *psys;
short i;
if(ob==NULL) return 0;
for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++)
if(psys->flag & PSYS_CURRENT)
return i;
return i;
}
void psys_set_current_num(Object *ob, int index)
{
ParticleSystem *psys;
short i;
if(ob==NULL) return;
for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++) {
if(i == index)
psys->flag |= PSYS_CURRENT;
else
psys->flag &= ~PSYS_CURRENT;
}
}
Object *psys_find_object(Scene *scene, ParticleSystem *psys)
{
Base *base;
ParticleSystem *tpsys;
for(base = scene->base.first; base; base = base->next) {
for(tpsys = base->object->particlesystem.first; psys; psys=psys->next) {
if(tpsys == psys)
return base->object;
}
}
return NULL;
}
Object *psys_get_lattice(ParticleSimulationData *sim)
{
Object *lattice=NULL;
if(psys_in_edit_mode(sim->scene, sim->psys)==0){
ModifierData *md = (ModifierData*)psys_get_modifier(sim->ob, sim->psys);
for(; md; md=md->next){
if(md->type==eModifierType_Lattice){
LatticeModifierData *lmd = (LatticeModifierData *)md;
lattice=lmd->object;
break;
}
}
if(lattice)
init_latt_deform(lattice, NULL);
}
return lattice;
}
void psys_disable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag |= PSYS_DISABLED;
}
void psys_enable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag &= ~PSYS_DISABLED;
}
int psys_in_edit_mode(Scene *scene, ParticleSystem *psys)
{
return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys==psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata);
}
static void psys_create_frand(ParticleSystem *psys)
{
int i;
float *rand = psys->frand = MEM_callocN(PSYS_FRAND_COUNT * sizeof(float), "particle randoms");
BLI_srandom(psys->seed);
for(i=0; i<1024; i++, rand++)
*rand = BLI_frand();
}
int psys_check_enabled(Object *ob, ParticleSystem *psys)
{
ParticleSystemModifierData *psmd;
if(psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part)
return 0;
psmd= psys_get_modifier(ob, psys);
if(psys->renderdata || G.rendering) {
if(!(psmd->modifier.mode & eModifierMode_Render))
return 0;
}
else if(!(psmd->modifier.mode & eModifierMode_Realtime))
return 0;
/* perhaps not the perfect place, but we have to be sure the rands are there before usage */
if(!psys->frand)
psys_create_frand(psys);
else if(psys->recalc & PSYS_RECALC_RESET) {
MEM_freeN(psys->frand);
psys_create_frand(psys);
}
return 1;
}
int psys_check_edited(ParticleSystem *psys)
{
if(psys->part && psys->part->type==PART_HAIR)
return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited));
else
return (psys->pointcache->edit && psys->pointcache->edit->edited);
}
void psys_check_group_weights(ParticleSettings *part)
{
ParticleDupliWeight *dw, *tdw;
GroupObject *go;
int current = 0;
if(part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) {
/* first remove all weights that don't have an object in the group */
dw = part->dupliweights.first;
while(dw) {
if(!object_in_group(dw->ob, part->dup_group)) {
tdw = dw->next;
BLI_freelinkN(&part->dupliweights, dw);
dw = tdw;
}
else
dw = dw->next;
}
/* then add objects in the group to new list */
go = part->dup_group->gobject.first;
while(go) {
dw = part->dupliweights.first;
while(dw && dw->ob != go->ob)
dw = dw->next;
if(!dw) {
dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight");
dw->ob = go->ob;
dw->count = 1;
BLI_addtail(&part->dupliweights, dw);
}
go = go->next;
}
dw = part->dupliweights.first;
for(; dw; dw=dw->next) {
if(dw->flag & PART_DUPLIW_CURRENT) {
current = 1;
break;
}
}
if(!current) {
dw = part->dupliweights.first;
if(dw)
dw->flag |= PART_DUPLIW_CURRENT;
}
}
else {
BLI_freelistN(&part->dupliweights);
}
}
int psys_uses_gravity(ParticleSimulationData *sim)
{
return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f;
}
/************************************************/
/* Freeing stuff */
/************************************************/
static void fluid_free_settings(SPHFluidSettings *fluid)
{
if(fluid)
MEM_freeN(fluid);
}
void psys_free_settings(ParticleSettings *part)
{
MTex *mtex;
int a;
BKE_free_animdata(&part->id);
free_partdeflect(part->pd);
free_partdeflect(part->pd2);
if(part->effector_weights)
MEM_freeN(part->effector_weights);
BLI_freelistN(&part->dupliweights);
boid_free_settings(part->boids);
fluid_free_settings(part->fluid);
for(a=0; a<MAX_MTEX; a++) {
mtex= part->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
}
void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics)
{
PARTICLE_P;
LOOP_PARTICLES {
if(pa->hair)
MEM_freeN(pa->hair);
pa->hair = NULL;
pa->totkey = 0;
}
psys->flag &= ~PSYS_HAIR_DONE;
if(psys->clmd) {
if(dynamics) {
BKE_ptcache_free_list(&psys->ptcaches);
psys->clmd->point_cache = psys->pointcache = NULL;
psys->clmd->ptcaches.first = psys->clmd->ptcaches.last = NULL;
modifier_free((ModifierData*)psys->clmd);
psys->clmd = NULL;
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
}
else {
cloth_free_modifier(psys->clmd);
}
}
if(psys->hair_in_dm)
psys->hair_in_dm->release(psys->hair_in_dm);
psys->hair_in_dm = NULL;
if(psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->hair_out_dm = NULL;
}
void free_keyed_keys(ParticleSystem *psys)
{
PARTICLE_P;
if(psys->part->type == PART_HAIR)
return;
if(psys->particles && psys->particles->keys) {
MEM_freeN(psys->particles->keys);
LOOP_PARTICLES {
if(pa->keys) {
pa->keys= NULL;
pa->totkey= 0;
}
}
}
}
static void free_child_path_cache(ParticleSystem *psys)
{
psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs);
psys->childcache = NULL;
psys->totchildcache = 0;
}
void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit)
{
if(edit) {
psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs);
edit->pathcache= NULL;
edit->totcached= 0;
}
if(psys) {
psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs);
psys->pathcache= NULL;
psys->totcached= 0;
free_child_path_cache(psys);
}
}
void psys_free_children(ParticleSystem *psys)
{
if(psys->child) {
MEM_freeN(psys->child);
psys->child= NULL;
psys->totchild=0;
}
free_child_path_cache(psys);
}
void psys_free_particles(ParticleSystem *psys)
{
PARTICLE_P;
if(psys->particles) {
if(psys->part->type==PART_HAIR) {
LOOP_PARTICLES {
if(pa->hair)
MEM_freeN(pa->hair);
}
}
if(psys->particles->keys)
MEM_freeN(psys->particles->keys);
if(psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles= NULL;
psys->totpart= 0;
}
}
void psys_free_pdd(ParticleSystem *psys)
{
if(psys->pdd) {
if(psys->pdd->cdata)
MEM_freeN(psys->pdd->cdata);
psys->pdd->cdata = NULL;
if(psys->pdd->vdata)
MEM_freeN(psys->pdd->vdata);
psys->pdd->vdata = NULL;
if(psys->pdd->ndata)
MEM_freeN(psys->pdd->ndata);
psys->pdd->ndata = NULL;
if(psys->pdd->vedata)
MEM_freeN(psys->pdd->vedata);
psys->pdd->vedata = NULL;
psys->pdd->totpoint = 0;
psys->pdd->tot_vec_size = 0;
}
}
/* free everything */
void psys_free(Object *ob, ParticleSystem * psys)
{
if(psys){
int nr = 0;
ParticleSystem * tpsys;
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 1);
psys_free_particles(psys);
if(psys->edit && psys->free_edit)
psys->free_edit(psys->edit);
if(psys->child){
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
// check if we are last non-visible particle system
for(tpsys=ob->particlesystem.first; tpsys; tpsys=tpsys->next){
if(tpsys->part)
{
if(ELEM(tpsys->part->ren_as,PART_DRAW_OB,PART_DRAW_GR))
{
nr++;
break;
}
}
}
// clear do-not-draw-flag
if(!nr)
ob->transflag &= ~OB_DUPLIPARTS;
if(psys->part){
psys->part->id.us--;
psys->part=NULL;
}
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
BLI_freelistN(&psys->targets);
BLI_bvhtree_free(psys->bvhtree);
BLI_kdtree_free(psys->tree);
if(psys->fluid_springs)
MEM_freeN(psys->fluid_springs);
pdEndEffectors(&psys->effectors);
if(psys->frand)
MEM_freeN(psys->frand);
if(psys->pdd) {
psys_free_pdd(psys);
MEM_freeN(psys->pdd);
}
MEM_freeN(psys);
}
}
/************************************************/
/* Rendering */
/************************************************/
/* these functions move away particle data and bring it back after
* rendering, to make different render settings possible without
* removing the previous data. this should be solved properly once */
typedef struct ParticleRenderElem {
int curchild, totchild, reduce;
float lambda, t, scalemin, scalemax;
} ParticleRenderElem;
typedef struct ParticleRenderData {
ChildParticle *child;
ParticleCacheKey **pathcache;
ParticleCacheKey **childcache;
ListBase pathcachebufs, childcachebufs;
int totchild, totcached, totchildcache;
DerivedMesh *dm;
int totdmvert, totdmedge, totdmface;
float mat[4][4];
float viewmat[4][4], winmat[4][4];
int winx, winy;
int dosimplify;
int timeoffset;
ParticleRenderElem *elems;
int *origindex;
} ParticleRenderData;
static float psys_render_viewport_falloff(double rate, float dist, float width)
{
return pow(rate, dist/width);
}
static float psys_render_projected_area(ParticleSystem *psys, float *center, float area, double vprate, float *viewport)
{
ParticleRenderData *data= psys->renderdata;
float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
/* transform to view space */
VECCOPY(co, center);
co[3]= 1.0f;
mul_m4_v4(data->viewmat, co);
/* compute two vectors orthogonal to view vector */
normalize_v3_v3(view, co);
ortho_basis_v3v3_v3( ortho1, ortho2,view);
/* compute on screen minification */
w= co[2]*data->winmat[2][3] + data->winmat[3][3];
dx= data->winx*ortho2[0]*data->winmat[0][0];
dy= data->winy*ortho2[1]*data->winmat[1][1];
w= sqrt(dx*dx + dy*dy)/w;
/* w squared because we are working with area */
area= area*w*w;
/* viewport of the screen test */
/* project point on screen */
mul_m4_v4(data->winmat, co);
if(co[3] != 0.0f) {
co[0]= 0.5f*data->winx*(1.0f + co[0]/co[3]);
co[1]= 0.5f*data->winy*(1.0f + co[1]/co[3]);
}
/* screen space radius */
radius= sqrt(area/(float)M_PI);
/* make smaller using fallof once over screen edge */
*viewport= 1.0f;
if(co[0]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[0]+radius), data->winx);
else if(co[0]-radius > data->winx)
*viewport *= psys_render_viewport_falloff(vprate, (co[0]-radius) - data->winx, data->winx);
if(co[1]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[1]+radius), data->winy);
else if(co[1]-radius > data->winy)
*viewport *= psys_render_viewport_falloff(vprate, (co[1]-radius) - data->winy, data->winy);
return area;
}
void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[][4], float winmat[][4], int winx, int winy, int timeoffset)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
if(!G.rendering)
return;
if(psys->renderdata)
return;
data= MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData");
data->child= psys->child;
data->totchild= psys->totchild;
data->pathcache= psys->pathcache;
data->pathcachebufs.first = psys->pathcachebufs.first;
data->pathcachebufs.last = psys->pathcachebufs.last;
data->totcached= psys->totcached;
data->childcache= psys->childcache;
data->childcachebufs.first = psys->childcachebufs.first;
data->childcachebufs.last = psys->childcachebufs.last;
data->totchildcache= psys->totchildcache;
if(psmd->dm)
data->dm= CDDM_copy(psmd->dm);
data->totdmvert= psmd->totdmvert;
data->totdmedge= psmd->totdmedge;
data->totdmface= psmd->totdmface;
psys->child= NULL;
psys->pathcache= NULL;
psys->childcache= NULL;
psys->totchild= psys->totcached= psys->totchildcache= 0;
psys->pathcachebufs.first = psys->pathcachebufs.last = NULL;
psys->childcachebufs.first = psys->childcachebufs.last = NULL;
copy_m4_m4(data->winmat, winmat);
mul_m4_m4m4(data->viewmat, ob->obmat, viewmat);
mul_m4_m4m4(data->mat, data->viewmat, winmat);
data->winx= winx;
data->winy= winy;
data->timeoffset= timeoffset;
psys->renderdata= data;
/* Hair can and has to be recalculated if everything isn't displayed. */
if(psys->part->disp != 100 && psys->part->type == PART_HAIR)
psys->recalc |= PSYS_RECALC_RESET;
}
void psys_render_restore(Object *ob, ParticleSystem *psys)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
data= psys->renderdata;
if(!data)
return;
if(data->elems)
MEM_freeN(data->elems);
if(psmd->dm) {
psmd->dm->needsFree= 1;
psmd->dm->release(psmd->dm);
}
psys_free_path_cache(psys, NULL);
if(psys->child){
MEM_freeN(psys->child);
psys->child= 0;
psys->totchild= 0;
}
psys->child= data->child;
psys->totchild= data->totchild;
psys->pathcache= data->pathcache;
psys->pathcachebufs.first = data->pathcachebufs.first;
psys->pathcachebufs.last = data->pathcachebufs.last;
psys->totcached= data->totcached;
psys->childcache= data->childcache;
psys->childcachebufs.first = data->childcachebufs.first;
psys->childcachebufs.last = data->childcachebufs.last;
psys->totchildcache= data->totchildcache;
psmd->dm= data->dm;
psmd->totdmvert= data->totdmvert;
psmd->totdmedge= data->totdmedge;
psmd->totdmface= data->totdmface;
psmd->flag &= ~eParticleSystemFlag_psys_updated;
if(psmd->dm)
psys_calc_dmcache(ob, psmd->dm, psys);
MEM_freeN(data);
psys->renderdata= NULL;
}
int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
{
DerivedMesh *dm= ctx->dm;
Mesh *me= (Mesh*)(ctx->sim.ob->data);
MFace *mf, *mface;
MVert *mvert;
ParticleRenderData *data;
ParticleRenderElem *elems, *elem;
ParticleSettings *part= ctx->sim.psys->part;
float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
double vprate;
int *origindex, *facetotvert;
int a, b, totorigface, totface, newtot, skipped;
if(part->ren_as!=PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
return tot;
if(!ctx->sim.psys->renderdata)
return tot;
data= ctx->sim.psys->renderdata;
if(data->timeoffset)
return 0;
if(!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
return tot;
mvert= dm->getVertArray(dm);
mface= dm->getFaceArray(dm);
origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX);
totface= dm->getNumFaces(dm);
totorigface= me->totface;
if(totface == 0 || totorigface == 0)
return tot;
facearea= MEM_callocN(sizeof(float)*totorigface, "SimplifyFaceArea");
facecenter= MEM_callocN(sizeof(float[3])*totorigface, "SimplifyFaceCenter");
facetotvert= MEM_callocN(sizeof(int)*totorigface, "SimplifyFaceArea");
elems= MEM_callocN(sizeof(ParticleRenderElem)*totorigface, "SimplifyFaceElem");
if(data->elems)
MEM_freeN(data->elems);
data->dosimplify= 1;
data->elems= elems;
data->origindex= origindex;
/* compute number of children per original face */
for(a=0; a<tot; a++) {
b= (origindex)? origindex[ctx->index[a]]: ctx->index[a];
if(b != -1)
elems[b].totchild++;
}
/* compute areas and centers of original faces */
for(mf=mface, a=0; a<totface; a++, mf++) {
b= (origindex)? origindex[a]: a;
if(b != -1) {
VECCOPY(co1, mvert[mf->v1].co);
VECCOPY(co2, mvert[mf->v2].co);
VECCOPY(co3, mvert[mf->v3].co);
VECADD(facecenter[b], facecenter[b], co1);
VECADD(facecenter[b], facecenter[b], co2);
VECADD(facecenter[b], facecenter[b], co3);
if(mf->v4) {
VECCOPY(co4, mvert[mf->v4].co);
VECADD(facecenter[b], facecenter[b], co4);
facearea[b] += area_quad_v3(co1, co2, co3, co4);
facetotvert[b] += 4;
}
else {
facearea[b] += area_tri_v3(co1, co2, co3);
facetotvert[b] += 3;
}
}
}
for(a=0; a<totorigface; a++)
if(facetotvert[a] > 0)
mul_v3_fl(facecenter[a], 1.0f/facetotvert[a]);
/* for conversion from BU area / pixel area to reference screen size */
mesh_get_texspace(me, 0, 0, size);
fac= ((size[0] + size[1] + size[2])/3.0f)/part->simplify_refsize;
fac= fac*fac;
powrate= log(0.5f)/log(part->simplify_rate*0.5f);
if(part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
vprate= pow(1.0f - part->simplify_viewport, 5.0);
else
vprate= 1.0;
/* set simplification parameters per original face */
for(a=0, elem=elems; a<totorigface; a++, elem++) {
area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
arearatio= fac*area/facearea[a];
if((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
/* lambda is percentage of elements to keep */
lambda= (arearatio < 1.0f)? powf(arearatio, powrate): 1.0f;
lambda *= viewport;
lambda= MAX2(lambda, 1.0f/elem->totchild);
/* compute transition region */
t= part->simplify_transition;
elem->t= (lambda-t < 0.0f)? lambda: (lambda+t > 1.0f)? 1.0f-lambda: t;
elem->reduce= 1;
/* scale at end and beginning of the transition region */
elem->scalemax= (lambda+t < 1.0f)? 1.0f/lambda: 1.0f/(1.0f - elem->t*elem->t/t);
elem->scalemin= (lambda+t < 1.0f)? 0.0f: elem->scalemax*(1.0f-elem->t/t);
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
/* clamp scaling */
scaleclamp= MIN2(elem->totchild, 10.0f);
elem->scalemin= MIN2(scaleclamp, elem->scalemin);
elem->scalemax= MIN2(scaleclamp, elem->scalemax);
/* extend lambda to include transition */
lambda= lambda + elem->t;
if(lambda > 1.0f)
lambda= 1.0f;
}
else {
lambda= arearatio;
elem->scalemax= 1.0f; //sqrt(lambda);
elem->scalemin= 1.0f; //sqrt(lambda);
elem->reduce= 0;
}
elem->lambda= lambda;
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
elem->curchild= 0;
}
MEM_freeN(facearea);
MEM_freeN(facecenter);
MEM_freeN(facetotvert);
/* move indices and set random number skipping */
ctx->skip= MEM_callocN(sizeof(int)*tot, "SimplificationSkip");
skipped= 0;
for(a=0, newtot=0; a<tot; a++) {
b= (origindex)? origindex[ctx->index[a]]: ctx->index[a];
if(b != -1) {
if(elems[b].curchild++ < ceil(elems[b].lambda*elems[b].totchild)) {
ctx->index[newtot]= ctx->index[a];
ctx->skip[newtot]= skipped;
skipped= 0;
newtot++;
}
else skipped++;
}
else skipped++;
}
for(a=0, elem=elems; a<totorigface; a++, elem++)
elem->curchild= 0;
return newtot;
}
int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params)
{
ParticleRenderData *data;
ParticleRenderElem *elem;
float x, w, scale, alpha, lambda, t, scalemin, scalemax;
int b;
if(!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE)))
return 0;
data= psys->renderdata;
if(!data->dosimplify)
return 0;
b= (data->origindex)? data->origindex[cpa->num]: cpa->num;
if(b == -1)
return 0;
elem= &data->elems[b];
lambda= elem->lambda;
t= elem->t;
scalemin= elem->scalemin;
scalemax= elem->scalemax;
if(!elem->reduce) {
scale= scalemin;
alpha= 1.0f;
}
else {
x= (elem->curchild+0.5f)/elem->totchild;
if(x < lambda-t) {
scale= scalemax;
alpha= 1.0f;
}
else if(x >= lambda+t) {
scale= scalemin;
alpha= 0.0f;
}
else {
w= (lambda+t - x)/(2.0f*t);
scale= scalemin + (scalemax - scalemin)*w;
alpha= w;
}
}
params[0]= scale;
params[1]= alpha;
elem->curchild++;
return 1;
}
/************************************************/
/* Interpolation */
/************************************************/
static float interpolate_particle_value(float v1, float v2, float v3, float v4, float *w, int four)
{
float value;
value= w[0]*v1 + w[1]*v2 + w[2]*v3;
if(four)
value += w[3]*v4;
CLAMP(value, 0.f, 1.f);
return value;
}
void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, int velocity)
{
float t[4];
if(type<0) {
interp_cubic_v3( result->co, result->vel,keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt);
}
else {
key_curve_position_weights(dt, t, type);
interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
if(velocity){
float temp[3];
if(dt>0.999f){
key_curve_position_weights(dt-0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
VECSUB(result->vel, result->co, temp);
}
else{
key_curve_position_weights(dt+0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
VECSUB(result->vel, temp, result->co);
}
}
}
}
typedef struct ParticleInterpolationData {
HairKey *hkey[2];
DerivedMesh *dm;
MVert *mvert[2];
int keyed;
ParticleKey *kkey[2];
PointCache *cache;
PTCacheMem *pm;
PTCacheEditPoint *epoint;
PTCacheEditKey *ekey[2];
float birthtime, dietime;
int bspline;
} ParticleInterpolationData;
/* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */
/* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */
static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2)
{
static PTCacheMem *pm = NULL;
int index1, index2;
if(index < 0) { /* initialize */
*cur = cache->mem_cache.first;
if(*cur)
*cur = (*cur)->next;
}
else {
if(*cur) {
while(*cur && (*cur)->next && (float)(*cur)->frame < t)
*cur = (*cur)->next;
pm = *cur;
index2 = BKE_ptcache_mem_index_find(pm, index);
index1 = BKE_ptcache_mem_index_find(pm->prev, index);
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
if(index1 < 0)
copy_particle_key(key1, key2, 1);
else
BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame);
}
else if(cache->mem_cache.first) {
pm = cache->mem_cache.first;
index2 = BKE_ptcache_mem_index_find(pm, index);
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
copy_particle_key(key1, key2, 1);
}
}
}
static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end)
{
PTCacheMem *pm;
int ret = 0;
for(pm=cache->mem_cache.first; pm; pm=pm->next) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0) {
*start = pm->frame;
ret++;
break;
}
}
for(pm=cache->mem_cache.last; pm; pm=pm->prev) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0) {
*end = pm->frame;
ret++;
break;
}
}
return ret == 2;
}
float psys_get_dietime_from_cache(PointCache *cache, int index) {
PTCacheMem *pm;
int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */
for(pm=cache->mem_cache.last; pm; pm=pm->prev) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0)
return (float)pm->frame;
}
return (float)dietime;
}
static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind)
{
if(pind->epoint) {
PTCacheEditPoint *point = pind->epoint;
pind->ekey[0] = point->keys;
pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL;
pind->birthtime = *(point->keys->time);
pind->dietime = *((point->keys + point->totkey - 1)->time);
}
else if(pind->keyed) {
ParticleKey *key = pa->keys;
pind->kkey[0] = key;
pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
}
else if(pind->cache) {
float start=0.0f, end=0.0f;
get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL);
pind->birthtime = pa ? pa->time : pind->cache->startframe;
pind->dietime = pa ? pa->dietime : pind->cache->endframe;
if(get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) {
pind->birthtime = MAX2(pind->birthtime, start);
pind->dietime = MIN2(pind->dietime, end);
}
}
else {
HairKey *key = pa->hair;
pind->hkey[0] = key;
pind->hkey[1] = key + 1;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
if(pind->dm) {
pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index);
pind->mvert[1] = pind->mvert[0] + 1;
}
}
}
static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey)
{
VECCOPY(key->co, ekey->co);
if(ekey->vel) {
VECCOPY(key->vel, ekey->vel);
}
key->time = *(ekey->time);
}
static void hair_to_particle(ParticleKey *key, HairKey *hkey)
{
VECCOPY(key->co, hkey->co);
key->time = hkey->time;
}
static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey)
{
VECCOPY(key->co, mvert->co);
key->time = hkey->time;
}
static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result)
{
PTCacheEditPoint *point = pind->epoint;
ParticleKey keys[4];
int point_vel = (point && point->keys->vel);
float real_t, dfra, keytime, invdt = 1.f;
/* billboards wont fill in all of these, so start cleared */
memset(keys, 0, sizeof(keys));
/* interpret timing and find keys */
if(point) {
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey-1].time) - *(pind->ekey[0]->time));
while(*(pind->ekey[1]->time) < real_t)
pind->ekey[1]++;
pind->ekey[0] = pind->ekey[1] - 1;
}
else if(pind->keyed) {
/* we have only one key, so let's use that */
if(pind->kkey[1]==NULL) {
copy_particle_key(result, pind->kkey[0], 1);
return;
}
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey-1].time - pind->kkey[0]->time);
if(psys->part->phystype==PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) {
ParticleTarget *pt = psys->targets.first;
pt=pt->next;
while(pt && pa->time + pt->time < real_t)
pt= pt->next;
if(pt) {
pt=pt->prev;
if(pa->time + pt->time + pt->duration > real_t)
real_t = pa->time + pt->time;
}
else
real_t = pa->time + ((ParticleTarget*)psys->targets.last)->time;
}
CLAMP(real_t, pa->time, pa->dietime);
while(pind->kkey[1]->time < real_t)
pind->kkey[1]++;
pind->kkey[0] = pind->kkey[1] - 1;
}
else if(pind->cache) {
if(result->time < 0.0f) /* flag for time in frames */
real_t = -result->time;
else
real_t = pa->time + t * (pa->dietime - pa->time);
}
else {
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey-1].time - pind->hkey[0]->time);
while(pind->hkey[1]->time < real_t) {
pind->hkey[1]++;
pind->mvert[1]++;
}
pind->hkey[0] = pind->hkey[1] - 1;
}
/* set actual interpolation keys */
if(point) {
edit_to_particle(keys + 1, pind->ekey[0]);
edit_to_particle(keys + 2, pind->ekey[1]);
}
else if(pind->dm) {
pind->mvert[0] = pind->mvert[1] - 1;
mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]);
mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]);
}
else if(pind->keyed) {
memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey));
}
else if(pind->cache) {
get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys+1, keys+2);
}
else {
hair_to_particle(keys + 1, pind->hkey[0]);
hair_to_particle(keys + 2, pind->hkey[1]);
}
/* set secondary interpolation keys for hair */
if(!pind->keyed && !pind->cache && !point_vel) {
if(point) {
if(pind->ekey[0] != point->keys)
edit_to_particle(keys, pind->ekey[0] - 1);
else
edit_to_particle(keys, pind->ekey[0]);
}
else if(pind->dm) {
if(pind->hkey[0] != pa->hair)
mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1);
else
mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]);
}
else {
if(pind->hkey[0] != pa->hair)
hair_to_particle(keys, pind->hkey[0] - 1);
else
hair_to_particle(keys, pind->hkey[0]);
}
if(point) {
if(pind->ekey[1] != point->keys + point->totkey - 1)
edit_to_particle(keys + 3, pind->ekey[1] + 1);
else
edit_to_particle(keys + 3, pind->ekey[1]);
}
else if(pind->dm) {
if(pind->hkey[1] != pa->hair + pa->totkey - 1)
mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1);
else
mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]);
}
else {
if(pind->hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, pind->hkey[1] + 1);
else
hair_to_particle(keys + 3, pind->hkey[1]);
}
}
dfra = keys[2].time - keys[1].time;
keytime = (real_t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if(pind->keyed || pind->cache || point_vel){
invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f);
mul_v3_fl(keys[1].vel, invdt);
mul_v3_fl(keys[2].vel, invdt);
interp_qt_qtqt(result->rot,keys[1].rot,keys[2].rot,keytime);
}
/* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0,1]->[k2,k3] (k1 & k4 used for cardinal & bspline interpolation)*/
psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */
: (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL)
,keys, keytime, result, 1);
/* the velocity needs to be converted back from cubic interpolation */
if(pind->keyed || pind->cache || point_vel)
mul_v3_fl(result->vel, 1.f/invdt);
}
/************************************************/
/* Particles on a dm */
/************************************************/
/* interpolate a location on a face based on face coordinates */
void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float *w, float *vec, float *nor, float *utan, float *vtan, float *orco,float *ornor){
float *v1=0, *v2=0, *v3=0, *v4=0;
float e1[3],e2[3],s1,s2,t1,t2;
float *uv1, *uv2, *uv3, *uv4;
float n1[3], n2[3], n3[3], n4[3];
float tuv[4][2];
float *o1, *o2, *o3, *o4;
v1= mvert[mface->v1].co;
v2= mvert[mface->v2].co;
v3= mvert[mface->v3].co;
normal_short_to_float_v3(n1, mvert[mface->v1].no);
normal_short_to_float_v3(n2, mvert[mface->v2].no);
normal_short_to_float_v3(n3, mvert[mface->v3].no);
if(mface->v4) {
v4= mvert[mface->v4].co;
normal_short_to_float_v3(n4, mvert[mface->v4].no);
interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w);
if(nor){
if(mface->flag & ME_SMOOTH)
interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w);
else
normal_quad_v3(nor,v1,v2,v3,v4);
}
}
else {
interp_v3_v3v3v3(vec, v1, v2, v3, w);
if(nor){
if(mface->flag & ME_SMOOTH)
interp_v3_v3v3v3(nor, n1, n2, n3, w);
else
normal_tri_v3(nor,v1,v2,v3);
}
}
/* calculate tangent vectors */
if(utan && vtan){
if(tface){
uv1= tface->uv[0];
uv2= tface->uv[1];
uv3= tface->uv[2];
uv4= tface->uv[3];
}
else{
uv1= tuv[0]; uv2= tuv[1]; uv3= tuv[2]; uv4= tuv[3];
map_to_sphere( uv1, uv1+1,v1[0], v1[1], v1[2]);
map_to_sphere( uv2, uv2+1,v2[0], v2[1], v2[2]);
map_to_sphere( uv3, uv3+1,v3[0], v3[1], v3[2]);
if(v4)
map_to_sphere( uv4, uv4+1,v4[0], v4[1], v4[2]);
}
if(v4){
s1= uv3[0] - uv1[0];
s2= uv4[0] - uv1[0];
t1= uv3[1] - uv1[1];
t2= uv4[1] - uv1[1];
sub_v3_v3v3(e1, v3, v1);
sub_v3_v3v3(e2, v4, v1);
}
else{
s1= uv2[0] - uv1[0];
s2= uv3[0] - uv1[0];
t1= uv2[1] - uv1[1];
t2= uv3[1] - uv1[1];
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
}
vtan[0] = (s1*e2[0] - s2*e1[0]);
vtan[1] = (s1*e2[1] - s2*e1[1]);
vtan[2] = (s1*e2[2] - s2*e1[2]);
utan[0] = (t1*e2[0] - t2*e1[0]);
utan[1] = (t1*e2[1] - t2*e1[1]);
utan[2] = (t1*e2[2] - t2*e1[2]);
}
if(orco) {
if(orcodata) {
o1= orcodata[mface->v1];
o2= orcodata[mface->v2];
o3= orcodata[mface->v3];
if(mface->v4) {
o4= orcodata[mface->v4];
interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w);
if(ornor)
normal_quad_v3( ornor,o1, o2, o3, o4);
}
else {
interp_v3_v3v3v3(orco, o1, o2, o3, w);
if(ornor)
normal_tri_v3( ornor,o1, o2, o3);
}
}
else {
VECCOPY(orco, vec);
if(ornor && nor)
VECCOPY(ornor, nor);
}
}
}
void psys_interpolate_uvs(MTFace *tface, int quad, float *w, float *uvco)
{
float v10= tface->uv[0][0];
float v11= tface->uv[0][1];
float v20= tface->uv[1][0];
float v21= tface->uv[1][1];
float v30= tface->uv[2][0];
float v31= tface->uv[2][1];
float v40,v41;
if(quad) {
v40= tface->uv[3][0];
v41= tface->uv[3][1];
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30 + w[3]*v40;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31 + w[3]*v41;
}
else {
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31;
}
}
void psys_interpolate_mcol(MCol *mcol, int quad, float *w, MCol *mc)
{
char *cp, *cp1, *cp2, *cp3, *cp4;
cp= (char *)mc;
cp1= (char *)&mcol[0];
cp2= (char *)&mcol[1];
cp3= (char *)&mcol[2];
if(quad) {
cp4= (char *)&mcol[3];
cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0] + w[3]*cp4[0]);
cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1] + w[3]*cp4[1]);
cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2] + w[3]*cp4[2]);
cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3] + w[3]*cp4[3]);
}
else {
cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0]);
cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1]);
cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2]);
cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3]);
}
}
static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, float *fw, float *values)
{
if(values==0 || index==-1)
return 0.0;
switch(from){
case PART_FROM_VERT:
return values[index];
case PART_FROM_FACE:
case PART_FROM_VOLUME:
{
MFace *mf=dm->getFaceData(dm,index,CD_MFACE);
return interpolate_particle_value(values[mf->v1],values[mf->v2],values[mf->v3],values[mf->v4],fw,mf->v4);
}
}
return 0.0;
}
/* conversion of pa->fw to origspace layer coordinates */
static void psys_w_to_origspace(float *w, float *uv)
{
uv[0]= w[1] + w[2];
uv[1]= w[2] + w[3];
}
/* conversion of pa->fw to weights in face from origspace */
static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, float *w, float *neww)
{
float v[4][3], co[3];
v[0][0]= osface->uv[0][0]; v[0][1]= osface->uv[0][1]; v[0][2]= 0.0f;
v[1][0]= osface->uv[1][0]; v[1][1]= osface->uv[1][1]; v[1][2]= 0.0f;
v[2][0]= osface->uv[2][0]; v[2][1]= osface->uv[2][1]; v[2][2]= 0.0f;
psys_w_to_origspace(w, co);
co[2]= 0.0f;
if(quad) {
v[3][0]= osface->uv[3][0]; v[3][1]= osface->uv[3][1]; v[3][2]= 0.0f;
interp_weights_poly_v3( neww,v, 4, co);
}
else {
interp_weights_poly_v3( neww,v, 3, co);
neww[3]= 0.0f;
}
}
/* find the derived mesh face for a particle, set the mf passed. this is slow
* and can be optimized but only for many lookups. returns the face index. */
int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, float *fw, struct LinkNode *node)
{
Mesh *me= (Mesh*)ob->data;
MFace *mface;
OrigSpaceFace *osface;
int *origindex;
int quad, findex, totface;
float uv[2], (*faceuv)[2];
mface = dm->getFaceDataArray(dm, CD_MFACE);
origindex = dm->getFaceDataArray(dm, CD_ORIGINDEX);
osface = dm->getFaceDataArray(dm, CD_ORIGSPACE);
totface = dm->getNumFaces(dm);
if(osface==NULL || origindex==NULL) {
/* Assume we dont need osface data */
if (index <totface) {
//printf("\tNO CD_ORIGSPACE, assuming not needed\n");
return index;
} else {
printf("\tNO CD_ORIGSPACE, error out of range\n");
return DMCACHE_NOTFOUND;
}
}
else if(index >= me->totface)
return DMCACHE_NOTFOUND; /* index not in the original mesh */
psys_w_to_origspace(fw, uv);
if(node) { /* we have a linked list of faces that we use, faster! */
for(;node; node=node->next) {
findex= GET_INT_FROM_POINTER(node->link);
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
else { /* if we have no node, try every face */
for(findex=0; findex<totface; findex++) {
if(origindex[findex] == index) {
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
}
return DMCACHE_NOTFOUND;
}
static int psys_map_index_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float UNUSED(foffset), int *mapindex, float *mapfw)
{
if(index < 0)
return 0;
if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) {
/* for meshes that are either only defined or for child particles, the
* index and fw do not require any mapping, so we can directly use it */
if(from == PART_FROM_VERT) {
if(index >= dm->getNumVerts(dm))
return 0;
*mapindex = index;
}
else { /* FROM_FACE/FROM_VOLUME */
if(index >= dm->getNumFaces(dm))
return 0;
*mapindex = index;
QUATCOPY(mapfw, fw);
}
} else {
/* for other meshes that have been modified, we try to map the particle
* to their new location, which means a different index, and for faces
* also a new face interpolation weights */
if(from == PART_FROM_VERT) {
if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm))
return 0;
*mapindex = index_dmcache;
}
else { /* FROM_FACE/FROM_VOLUME */
/* find a face on the derived mesh that uses this face */
MFace *mface;
OrigSpaceFace *osface;
int i;
i = index_dmcache;
if(i== DMCACHE_NOTFOUND || i >= dm->getNumFaces(dm))
return 0;
*mapindex = i;
/* modify the original weights to become
* weights for the derived mesh face */
osface= dm->getFaceDataArray(dm, CD_ORIGSPACE);
mface= dm->getFaceData(dm, i, CD_MFACE);
if(osface == NULL)
mapfw[0]= mapfw[1]= mapfw[2]= mapfw[3]= 0.0f;
else
psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw);
}
}
return 1;
}
/* interprets particle data to get a point on a mesh in object space */
void psys_particle_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
float tmpnor[3], mapfw[4];
float (*orcodata)[3];
int mapindex;
if(!psys_map_index_on_dm(dm, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) {
if(vec) { vec[0]=vec[1]=vec[2]=0.0; }
if(nor) { nor[0]=nor[1]=0.0; nor[2]=1.0; }
if(orco) { orco[0]=orco[1]=orco[2]=0.0; }
if(ornor) { ornor[0]=ornor[1]=0.0; ornor[2]=1.0; }
if(utan) { utan[0]=utan[1]=utan[2]=0.0; }
if(vtan) { vtan[0]=vtan[1]=vtan[2]=0.0; }
return;
}
orcodata= dm->getVertDataArray(dm, CD_ORCO);
if(from == PART_FROM_VERT) {
dm->getVertCo(dm,mapindex,vec);
if(nor) {
dm->getVertNo(dm,mapindex,nor);
normalize_v3(nor);
}
if(orco)
VECCOPY(orco, orcodata[mapindex])
if(ornor) {
dm->getVertNo(dm,mapindex,nor);
normalize_v3(nor);
}
if(utan && vtan) {
utan[0]= utan[1]= utan[2]= 0.0f;
vtan[0]= vtan[1]= vtan[2]= 0.0f;
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
MFace *mface;
MTFace *mtface;
MVert *mvert;
mface=dm->getFaceData(dm,mapindex,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
mtface=CustomData_get_layer(&dm->faceData,CD_MTFACE);
if(mtface)
mtface += mapindex;
if(from==PART_FROM_VOLUME) {
psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,tmpnor,utan,vtan,orco,ornor);
if(nor)
VECCOPY(nor,tmpnor);
normalize_v3(tmpnor);
mul_v3_fl(tmpnor,-foffset);
VECADD(vec,vec,tmpnor);
}
else
psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,nor,utan,vtan,orco,ornor);
}
}
float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values)
{
float mapfw[4];
int mapindex;
if(!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw))
return 0.0f;
return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values);
}
ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys)
{
ModifierData *md;
ParticleSystemModifierData *psmd;
for(md=ob->modifiers.first; md; md=md->next){
if(md->type==eModifierType_ParticleSystem){
psmd= (ParticleSystemModifierData*) md;
if(psmd->psys==psys){
return psmd;
}
}
}
return NULL;
}
/************************************************/
/* Particles on a shape */
/************************************************/
/* ready for future use */
static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index), float *UNUSED(fuv), float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
/* TODO */
float zerovec[3]={0.0f,0.0f,0.0f};
if(vec){
VECCOPY(vec,zerovec);
}
if(nor){
VECCOPY(nor,zerovec);
}
if(utan){
VECCOPY(utan,zerovec);
}
if(vtan){
VECCOPY(vtan,zerovec);
}
if(orco){
VECCOPY(orco,zerovec);
}
if(ornor){
VECCOPY(ornor,zerovec);
}
}
/************************************************/
/* Particles on emitter */
/************************************************/
void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float *fuv, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor){
if(psmd){
if(psmd->psys->part->distr==PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT){
if(vec)
copy_v3_v3(vec,fuv);
if(orco)
copy_v3_v3(orco, fuv);
return;
}
/* we cant use the num_dmcache */
psys_particle_on_dm(psmd->dm,from,index,index_dmcache,fuv,foffset,vec,nor,utan,vtan,orco,ornor);
}
else
psys_particle_on_shape(from,index,fuv,vec,nor,utan,vtan,orco,ornor);
}
/************************************************/
/* Path Cache */
/************************************************/
static float vert_weight(MDeformVert *dvert, int group)
{
MDeformWeight *dw;
int i;
if(dvert) {
dw= dvert->dw;
for(i= dvert->totweight; i>0; i--, dw++) {
if(dw->def_nr == group) return dw->weight;
if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/
}
}
return 0.0;
}
static void do_kink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, float flat, short type, short axis, float obmat[][4], int smooth_start)
{
float kink[3]={1.f,0.f,0.f}, par_vec[3], q1[4]={1.f,0.f,0.f,0.f};
float t, dt=1.f, result[3];
if(par == NULL || type == PART_KINK_NO)
return;
CLAMP(time, 0.f, 1.f);
if(shape!=0.0f && type!=PART_KINK_BRAID) {
if(shape<0.0f)
time= (float)pow(time, 1.f+shape);
else
time= (float)pow(time, 1.f/(1.f-shape));
}
t = time * freq *(float)M_PI;
if(smooth_start) {
dt = fabs(t);
/* smooth the beginning of kink */
CLAMP(dt, 0.f, (float)M_PI);
dt = sin(dt/2.f);
}
if(type != PART_KINK_RADIAL) {
float temp[3];
kink[axis]=1.f;
if(obmat)
mul_mat3_m4_v3(obmat, kink);
if(par_rot)
mul_qt_v3(par_rot, kink);
/* make sure kink is normal to strand */
project_v3_v3v3(temp, kink, par->vel);
sub_v3_v3(kink, temp);
normalize_v3(kink);
}
copy_v3_v3(result, state->co);
sub_v3_v3v3(par_vec, par->co, state->co);
switch(type) {
case PART_KINK_CURL:
{
mul_v3_fl(par_vec, -1.f);
if(flat > 0.f) {
float proj[3];
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(par_vec, proj, -flat);
project_v3_v3v3(proj, par_vec, kink);
madd_v3_v3fl(par_vec, proj, -flat);
}
axis_angle_to_quat(q1, kink, (float)M_PI/2.f);
mul_qt_v3(q1, par_vec);
madd_v3_v3fl(par_vec, kink, amplitude);
/* rotate kink vector around strand tangent */
if(t!=0.f) {
axis_angle_to_quat(q1, par->vel, t);
mul_qt_v3(q1, par_vec);
}
add_v3_v3v3(result, par->co, par_vec);
break;
}
case PART_KINK_RADIAL:
{
if(flat > 0.f) {
float proj[3];
/* flatten along strand */
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(result, proj, flat);
}
madd_v3_v3fl(result, par_vec, -amplitude*(float)sin(t));
break;
}
case PART_KINK_WAVE:
{
madd_v3_v3fl(result, kink, amplitude*(float)sin(t));
if(flat > 0.f) {
float proj[3];
/* flatten along wave */
project_v3_v3v3(proj, par_vec, kink);
madd_v3_v3fl(result, proj, flat);
/* flatten along strand */
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(result, proj, flat);
}
break;
}
case PART_KINK_BRAID:
{
float y_vec[3]={0.f,1.f,0.f};
float z_vec[3]={0.f,0.f,1.f};
float vec_one[3], state_co[3];
float inp_y, inp_z, length;
if(par_rot) {
mul_qt_v3(par_rot, y_vec);
mul_qt_v3(par_rot, z_vec);
}
mul_v3_fl(par_vec, -1.f);
normalize_v3_v3(vec_one, par_vec);
inp_y=dot_v3v3(y_vec, vec_one);
inp_z=dot_v3v3(z_vec, vec_one);
if(inp_y > 0.5f){
copy_v3_v3(state_co, y_vec);
mul_v3_fl(y_vec, amplitude*(float)cos(t));
mul_v3_fl(z_vec, amplitude/2.f*(float)sin(2.f*t));
}
else if(inp_z > 0.0f){
mul_v3_v3fl(state_co, z_vec, (float)sin((float)M_PI/3.f));
VECADDFAC(state_co,state_co,y_vec,-0.5f);
mul_v3_fl(y_vec, -amplitude * (float)cos(t + (float)M_PI/3.f));
mul_v3_fl(z_vec, amplitude/2.f * (float)cos(2.f*t + (float)M_PI/6.f));
}
else{
mul_v3_v3fl(state_co, z_vec, -(float)sin((float)M_PI/3.f));
madd_v3_v3fl(state_co, y_vec, -0.5f);
mul_v3_fl(y_vec, amplitude * (float)-sin(t + (float)M_PI/6.f));
mul_v3_fl(z_vec, amplitude/2.f * (float)-sin(2.f*t + (float)M_PI/3.f));
}
mul_v3_fl(state_co, amplitude);
add_v3_v3(state_co, par->co);
sub_v3_v3v3(par_vec, state->co, state_co);
length = normalize_v3(par_vec);
mul_v3_fl(par_vec, MIN2(length, amplitude/2.f));
add_v3_v3v3(state_co, par->co, y_vec);
add_v3_v3(state_co, z_vec);
add_v3_v3(state_co, par_vec);
shape = 2.f*(float)M_PI * (1.f+shape);
if(t<shape){
shape = t/shape;
shape = (float)sqrt((double)shape);
interp_v3_v3v3(result, result, state_co, shape);
}
else{
copy_v3_v3(result, state_co);
}
break;
}
}
/* blend the start of the kink */
if(dt < 1.f)
interp_v3_v3v3(state->co, state->co, result, dt);
else
copy_v3_v3(state->co, result);
}
static float do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump)
{
float clump = 0.f;
if(par && clumpfac!=0.0f){
float cpow;
if(clumppow < 0.0f)
cpow=1.0f+clumppow;
else
cpow=1.0f+9.0f*clumppow;
if(clumpfac < 0.0f) /* clump roots instead of tips */
clump = -clumpfac*pa_clump*(float)pow(1.0-(double)time,(double)cpow);
else
clump = clumpfac*pa_clump*(float)pow((double)time,(double)cpow);
interp_v3_v3v3(state->co,state->co,par->co,clump);
}
return clump;
}
void precalc_guides(ParticleSimulationData *sim, ListBase *effectors)
{
EffectedPoint point;
ParticleKey state;
EffectorData efd;
EffectorCache *eff;
ParticleSystem *psys = sim->psys;
EffectorWeights *weights = sim->psys->part->effector_weights;
GuideEffectorData *data;
PARTICLE_P;
if(!effectors)
return;
LOOP_PARTICLES {
psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,state.co,0,0,0,0,0);
mul_m4_v3(sim->ob->obmat, state.co);
mul_mat3_m4_v3(sim->ob->obmat, state.vel);
pd_point_from_particle(sim, pa, &state, &point);
for(eff = effectors->first; eff; eff=eff->next) {
if(eff->pd->forcefield != PFIELD_GUIDE)
continue;
if(!eff->guide_data)
eff->guide_data = MEM_callocN(sizeof(GuideEffectorData)*psys->totpart, "GuideEffectorData");
data = eff->guide_data + p;
VECSUB(efd.vec_to_point, state.co, eff->guide_loc);
VECCOPY(efd.nor, eff->guide_dir);
efd.distance = len_v3(efd.vec_to_point);
VECCOPY(data->vec_to_point, efd.vec_to_point);
data->strength = effector_falloff(eff, &efd, &point, weights);
}
}
}
int do_guides(ListBase *effectors, ParticleKey *state, int index, float time)
{
EffectorCache *eff;
PartDeflect *pd;
Curve *cu;
ParticleKey key, par;
GuideEffectorData *data;
float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f};
float guidevec[4], guidedir[3], rot2[4], temp[3];
float guidetime, radius, weight, angle, totstrength = 0.0f;
float vec_to_point[3];
if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
pd = eff->pd;
if(pd->forcefield != PFIELD_GUIDE)
continue;
data = eff->guide_data + index;
if(data->strength <= 0.0f)
continue;
guidetime = time / (1.0f - pd->free_end);
if(guidetime>1.0f)
continue;
cu = (Curve*)eff->ob->data;
if(pd->flag & PFIELD_GUIDE_PATH_ADD) {
if(where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight)==0)
return 0;
}
else {
if(where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight)==0)
return 0;
}
mul_m4_v3(eff->ob->obmat, guidevec);
mul_mat3_m4_v3(eff->ob->obmat, guidedir);
normalize_v3(guidedir);
VECCOPY(vec_to_point, data->vec_to_point);
if(guidetime != 0.0f) {
/* curve direction */
cross_v3_v3v3(temp, eff->guide_dir, guidedir);
angle = dot_v3v3(eff->guide_dir, guidedir)/(len_v3(eff->guide_dir));
angle = saacos(angle);
axis_angle_to_quat( rot2,temp, angle);
mul_qt_v3(rot2, vec_to_point);
/* curve tilt */
axis_angle_to_quat( rot2,guidedir, guidevec[3] - eff->guide_loc[3]);
mul_qt_v3(rot2, vec_to_point);
}
/* curve taper */
if(cu->taperobj)
mul_v3_fl(vec_to_point, calc_taper(eff->scene, cu->taperobj, (int)(data->strength*guidetime*100.0f), 100));
else{ /* curve size*/
if(cu->flag & CU_PATH_RADIUS) {
mul_v3_fl(vec_to_point, radius);
}
}
par.co[0] = par.co[1] = par.co[2] = 0.0f;
VECCOPY(key.co, vec_to_point);
do_kink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0);
do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f);
VECCOPY(vec_to_point, key.co);
VECADD(vec_to_point, vec_to_point, guidevec);
//VECSUB(pa_loc,pa_loc,pa_zero);
VECADDFAC(effect, effect, vec_to_point, data->strength);
VECADDFAC(veffect, veffect, guidedir, data->strength);
totstrength += data->strength;
if(pd->flag & PFIELD_GUIDE_PATH_WEIGHT)
totstrength *= weight;
}
if(totstrength != 0.0f){
if(totstrength > 1.0f)
mul_v3_fl(effect, 1.0f / totstrength);
CLAMP(totstrength, 0.0f, 1.0f);
//VECADD(effect,effect,pa_zero);
interp_v3_v3v3(state->co, state->co, effect, totstrength);
normalize_v3(veffect);
mul_v3_fl(veffect, len_v3(state->vel));
VECCOPY(state->vel, veffect);
return 1;
}
return 0;
}
static void do_rough(float *loc, float mat[4][4], float t, float fac, float size, float thres, ParticleKey *state)
{
float rough[3];
float rco[3];
if(thres != 0.0f)
if((float)fabs((float)(-1.5f+loc[0]+loc[1]+loc[2]))<1.5f*thres) return;
VECCOPY(rco,loc);
mul_v3_fl(rco,t);
rough[0]=-1.0f+2.0f*BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2,0,2);
rough[1]=-1.0f+2.0f*BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2,0,2);
rough[2]=-1.0f+2.0f*BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2,0,2);
VECADDFAC(state->co,state->co,mat[0],fac*rough[0]);
VECADDFAC(state->co,state->co,mat[1],fac*rough[1]);
VECADDFAC(state->co,state->co,mat[2],fac*rough[2]);
}
static void do_rough_end(float *loc, float mat[4][4], float t, float fac, float shape, ParticleKey *state)
{
float rough[2];
float roughfac;
roughfac=fac*(float)pow((double)t,shape);
copy_v2_v2(rough,loc);
rough[0]=-1.0f+2.0f*rough[0];
rough[1]=-1.0f+2.0f*rough[1];
mul_v2_fl(rough,roughfac);
VECADDFAC(state->co,state->co,mat[0],rough[0]);
VECADDFAC(state->co,state->co,mat[1],rough[1]);
}
static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec)
{
float force[3] = {0.0f,0.0f,0.0f};
ParticleKey eff_key;
EffectedPoint epoint;
/* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */
if(sim->psys->flag & PSYS_HAIR_DYNAMICS)
return;
VECCOPY(eff_key.co,(ca-1)->co);
VECCOPY(eff_key.vel,(ca-1)->vel);
QUATCOPY(eff_key.rot,(ca-1)->rot);
pd_point_from_particle(sim, sim->psys->particles+i, &eff_key, &epoint);
pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL);
mul_v3_fl(force, effector*powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps);
add_v3_v3(force, vec);
normalize_v3(force);
if(k < steps)
sub_v3_v3v3(vec, (ca+1)->co, ca->co);
madd_v3_v3v3fl(ca->co, (ca-1)->co, force, *length);
if(k < steps)
*length = len_v3(vec);
}
static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec)
{
if(*cur_length + length > max_length){
mul_v3_fl(dvec, (max_length - *cur_length) / length);
VECADD(state->co, (state - 1)->co, dvec);
keys->steps = k;
/* something over the maximum step value */
return k=100000;
}
else {
*cur_length+=length;
return k;
}
}
static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius)
{
copy_v3_v3(child->co, cpa->fuv);
mul_v3_fl(child->co, radius);
child->co[0]*=flat;
copy_v3_v3(child->vel, par->vel);
if(par_rot) {
mul_qt_v3(par_rot, child->co);
copy_qt_qt(child->rot, par_rot);
}
else
unit_qt(child->rot);
add_v3_v3(child->co, par->co);
}
float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup)
{
float *vg=0;
if(vgroup < 0) {
/* hair dynamics pinning vgroup */
}
else if(psys->vgroup[vgroup]){
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
if(dvert){
int totvert=dm->getNumVerts(dm), i;
vg=MEM_callocN(sizeof(float)*totvert, "vg_cache");
if(psys->vg_neg&(1<<vgroup)){
for(i=0; i<totvert; i++)
vg[i]=1.0f-vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
else{
for(i=0; i<totvert; i++)
vg[i]=vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
}
}
return vg;
}
void psys_find_parents(ParticleSimulationData *sim)
{
ParticleSettings *part=sim->psys->part;
KDTree *tree;
ChildParticle *cpa;
int p, totparent,totchild=sim->psys->totchild;
float co[3], orco[3];
int from=PART_FROM_FACE;
totparent=(int)(totchild*part->parents*0.3f);
if(G.rendering && part->child_nbr && part->ren_child_nbr)
totparent*=(float)part->child_nbr/(float)part->ren_child_nbr;
tree=BLI_kdtree_new(totparent);
for(p=0,cpa=sim->psys->child; p<totparent; p++,cpa++){
psys_particle_on_emitter(sim->psmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
BLI_kdtree_insert(tree, p, orco, NULL);
}
BLI_kdtree_balance(tree);
for(; p<totchild; p++,cpa++){
psys_particle_on_emitter(sim->psmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
cpa->parent=BLI_kdtree_find_nearest(tree, orco, NULL, NULL);
}
BLI_kdtree_free(tree);
}
static void get_strand_normal(Material *ma, float *surfnor, float surfdist, float *nor)
{
float cross[3], nstrand[3], vnor[3], blend;
if(!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f)))
return;
if(ma->mode & MA_STR_SURFDIFF) {
cross_v3_v3v3(cross, surfnor, nor);
cross_v3_v3v3(nstrand, nor, cross);
blend= INPR(nstrand, surfnor);
CLAMP(blend, 0.0f, 1.0f);
interp_v3_v3v3(vnor, nstrand, surfnor, blend);
normalize_v3(vnor);
}
else
VECCOPY(vnor, nor)
if(ma->strand_surfnor > 0.0f) {
if(ma->strand_surfnor > surfdist) {
blend= (ma->strand_surfnor - surfdist)/ma->strand_surfnor;
interp_v3_v3v3(vnor, vnor, surfnor, blend);
normalize_v3(vnor);
}
}
VECCOPY(nor, vnor);
}
static int psys_threads_init_path(ParticleThread *threads, Scene *scene, float cfra, int editupdate)
{
ParticleThreadContext *ctx= threads[0].ctx;
/* Object *ob= ctx->sim.ob; */
ParticleSystem *psys= ctx->sim.psys;
ParticleSettings *part = psys->part;
/* ParticleEditSettings *pset = &scene->toolsettings->particle; */
int totparent=0, between=0;
int steps = (int)pow(2.0, (double)part->draw_step);
int totchild = psys->totchild;
int i, seed, totthread= threads[0].tot;
/*---start figuring out what is actually wanted---*/
if(psys_in_edit_mode(scene, psys)) {
ParticleEditSettings *pset = &scene->toolsettings->particle;
if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0)
totchild=0;
steps = (int)pow(2.0, (double)pset->draw_step);
}
if(totchild && part->childtype==PART_CHILD_FACES){
totparent=(int)(totchild*part->parents*0.3f);
if(G.rendering && part->child_nbr && part->ren_child_nbr)
totparent*=(float)part->child_nbr/(float)part->ren_child_nbr;
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(psys->renderdata)
steps=(int)pow(2.0,(double)part->ren_step);
else{
totchild=(int)((float)totchild*(float)part->disp/100.0f);
totparent=MIN2(totparent,totchild);
}
if(totchild==0) return 0;
/* init random number generator */
seed= 31415926 + ctx->sim.psys->seed;
if(ctx->editupdate || totchild < 10000)
totthread= 1;
for(i=0; i<totthread; i++) {
threads[i].rng_path= rng_new(seed);
threads[i].tot= totthread;
}
/* fill context values */
ctx->between= between;
ctx->steps= steps;
ctx->totchild= totchild;
ctx->totparent= totparent;
ctx->parent_pass= 0;
ctx->cfra= cfra;
ctx->editupdate= editupdate;
psys->lattice = psys_get_lattice(&ctx->sim);
/* cache all relevant vertex groups if they exist */
ctx->vg_length = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_LENGTH);
ctx->vg_clump = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_CLUMP);
ctx->vg_kink = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_KINK);
ctx->vg_rough1 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH1);
ctx->vg_rough2 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH2);
ctx->vg_roughe = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGHE);
if(psys->part->flag & PART_CHILD_EFFECT)
ctx->vg_effector = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_EFFECTOR);
/* set correct ipo timing */
#if 0 // XXX old animation system
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
return 1;
}
/* note: this function must be thread safe, except for branching! */
static void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->sim.ob;
ParticleSystem *psys = ctx->sim.psys;
ParticleSettings *part = psys->part;
ParticleCacheKey **cache= psys->childcache;
ParticleCacheKey **pcache= psys_in_edit_mode(ctx->sim.scene, psys) ? psys->edit->pathcache : psys->pathcache;
ParticleCacheKey *child, *par = NULL, *key[4];
ParticleTexture ptex;
float *cpa_fuv=0, *par_rot=0, rot[4];
float orco[3], ornor[3], hairmat[4][4], t, dvec[3], off1[4][3], off2[4][3];
float length, max_length = 1.0f, cur_length = 0.0f;
float eff_length, eff_vec[3], weight[4];
int k, cpa_num;
short cpa_from;
if(!pcache)
return;
if(ctx->between){
ParticleData *pa = psys->particles + cpa->pa[0];
int w, needupdate;
float foffset, wsum=0.f;
float co[3];
float p_min = part->parting_min;
float p_max = part->parting_max;
/* Virtual parents don't work nicely with parting. */
float p_fac = part->parents > 0.f ? 0.f : part->parting_fac;
if(ctx->editupdate) {
needupdate= 0;
w= 0;
while(w<4 && cpa->pa[w]>=0) {
if(psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) {
needupdate= 1;
break;
}
w++;
}
if(!needupdate)
return;
else
memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1));
}
/* get parent paths */
for(w=0; w<4; w++) {
if(cpa->pa[w] >= 0) {
key[w] = pcache[cpa->pa[w]];
weight[w] = cpa->w[w];
}
else {
key[w] = pcache[0];
weight[w] = 0.f;
}
}
/* modify weights to create parting */
if(p_fac > 0.f) {
for(w=0; w<4; w++) {
if(w && weight[w] > 0.f) {
float d;
if(part->flag & PART_CHILD_LONG_HAIR) {
/* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */
float d1 = len_v3v3(key[0]->co, key[w]->co);
float d2 = len_v3v3((key[0]+key[0]->steps-1)->co, (key[w]+key[w]->steps-1)->co);
d = d1 > 0.f ? d2/d1 - 1.f : 10000.f;
}
else {
float v1[3], v2[3];
sub_v3_v3v3(v1, (key[0]+key[0]->steps-1)->co, key[0]->co);
sub_v3_v3v3(v2, (key[w]+key[w]->steps-1)->co, key[w]->co);
normalize_v3(v1);
normalize_v3(v2);
d = saacos(dot_v3v3(v1, v2)) * 180.0f/(float)M_PI;
}
if(p_max > p_min)
d = (d - p_min)/(p_max - p_min);
else
d = (d - p_min) <= 0.f ? 0.f : 1.f;
CLAMP(d, 0.f, 1.f);
if(d > 0.f)
weight[w] *= (1.f - d);
}
wsum += weight[w];
}
for(w=0; w<4; w++)
weight[w] /= wsum;
interp_v4_v4v4(weight, cpa->w, weight, p_fac);
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,ornor,0,0,orco,0);
mul_m4_v3(ob->obmat, co);
for(w=0; w<4; w++)
sub_v3_v3v3(off1[w], co, key[w]->co);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat);
}
else{
ParticleData *pa = psys->particles + cpa->parent;
float co[3];
if(ctx->editupdate) {
if(!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC))
return;
memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1));
}
/* get the parent path */
key[0] = pcache[cpa->parent];
/* get the original coordinates (orco) for texture usage */
cpa_from = part->from;
cpa_num = pa->num;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,ornor,0,0,orco,0);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat);
}
child_keys->steps = ctx->steps;
/* get different child parameters from textures & vgroups */
get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if(ptex.exist < PSYS_FRAND(i + 24)) {
child_keys->steps = -1;
return;
}
/* create the child path */
for(k=0,child=child_keys; k<=ctx->steps; k++,child++){
if(ctx->between){
int w=0;
zero_v3(child->co);
zero_v3(child->vel);
unit_qt(child->rot);
for(w=0; w<4; w++) {
copy_v3_v3(off2[w], off1[w]);
if(part->flag & PART_CHILD_LONG_HAIR) {
/* Use parent rotation (in addition to emission location) to determine child offset. */
if(k)
mul_qt_v3((key[w]+k)->rot, off2[w]);
/* Fade the effect of rotation for even lengths in the end */
project_v3_v3v3(dvec, off2[w], (key[w]+k)->vel);
madd_v3_v3fl(off2[w], dvec, -(float)k/(float)ctx->steps);
}
add_v3_v3(off2[w], (key[w]+k)->co);
}
/* child position is the weighted sum of parent positions */
interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight);
interp_v3_v3v3v3v3(child->vel, (key[0]+k)->vel, (key[1]+k)->vel, (key[2]+k)->vel, (key[3]+k)->vel, weight);
copy_qt_qt(child->rot, (key[0]+k)->rot);
}
else{
if(k) {
mul_qt_qtqt(rot, (key[0]+k)->rot, key[0]->rot);
par_rot = rot;
}
else {
par_rot = key[0]->rot;
}
/* offset the child from the parent position */
offset_child(cpa, (ParticleKey*)(key[0]+k), par_rot, (ParticleKey*)child, part->childflat, part->childrad);
}
}
/* apply effectors */
if(part->flag & PART_CHILD_EFFECT) {
for(k=0,child=child_keys; k<=ctx->steps; k++,child++) {
if(k) {
do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->steps, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec);
}
else {
sub_v3_v3v3(eff_vec, (child+1)->co, child->co);
eff_length = len_v3(eff_vec);
}
}
}
for(k=0,child=child_keys; k<=ctx->steps; k++,child++){
t = (float)k/(float)ctx->steps;
if(ctx->totparent)
/* this is now threadsafe, virtual parents are calculated before rest of children */
par = (i >= ctx->totparent) ? cache[cpa->parent] : NULL;
else if(cpa->parent >= 0)
par = pcache[cpa->parent];
if(par) {
if(k) {
mul_qt_qtqt(rot, (par+k)->rot, par->rot);
par_rot = rot;
}
else {
par_rot = par->rot;
}
par += k;
}
/* apply different deformations to the child path */
do_child_modifiers(&ctx->sim, &ptex, (ParticleKey *)par, par_rot, cpa, orco, hairmat, (ParticleKey *)child, t);
/* we have to correct velocity because of kink & clump */
if(k>1){
sub_v3_v3v3((child-1)->vel, child->co, (child-2)->co);
mul_v3_fl((child-1)->vel, 0.5);
if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT))
get_strand_normal(ctx->ma, ornor, cur_length, (child-1)->vel);
}
if(k == ctx->steps)
sub_v3_v3v3(child->vel, child->co, (child-1)->co);
/* check if path needs to be cut before actual end of data points */
if(k){
sub_v3_v3v3(dvec, child->co, (child-1)->co);
length = 1.0f/(float)ctx->steps;
k = check_path_length(k, child_keys, child, max_length, &cur_length, length, dvec);
}
else{
/* initialize length calculation */
max_length = ptex.length;
cur_length = 0.0f;
}
if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) {
VECCOPY(child->col, &ctx->ma->r)
get_strand_normal(ctx->ma, ornor, cur_length, child->vel);
}
}
/* Hide virtual parents */
if(i < ctx->totparent)
child_keys->steps = -1;
}
static void *exec_child_path_cache(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleThreadContext *ctx= thread->ctx;
ParticleSystem *psys= ctx->sim.psys;
ParticleCacheKey **cache= psys->childcache;
ChildParticle *cpa;
int i, totchild= ctx->totchild, first= 0;
if(thread->tot > 1){
first= ctx->parent_pass? 0 : ctx->totparent;
totchild= ctx->parent_pass? ctx->totparent : ctx->totchild;
}
cpa= psys->child + first + thread->num;
for(i=first+thread->num; i<totchild; i+=thread->tot, cpa+=thread->tot)
psys_thread_create_path(thread, cpa, cache[i], i);
return 0;
}
void psys_cache_child_paths(ParticleSimulationData *sim, float cfra, int editupdate)
{
ParticleThread *pthreads;
ParticleThreadContext *ctx;
ListBase threads;
int i, totchild, totparent, totthread;
if(sim->psys->flag & PSYS_GLOBAL_HAIR)
return;
pthreads= psys_threads_create(sim);
if(!psys_threads_init_path(pthreads, sim->scene, cfra, editupdate)) {
psys_threads_free(pthreads);
return;
}
ctx= pthreads[0].ctx;
totchild= ctx->totchild;
totparent= ctx->totparent;
if(editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) {
; /* just overwrite the existing cache */
}
else {
/* clear out old and create new empty path cache */
free_child_path_cache(sim->psys);
sim->psys->childcache= psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx->steps+1);
sim->psys->totchildcache = totchild;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
/* make virtual child parents thread safe by calculating them first */
if(totparent) {
BLI_init_threads(&threads, exec_child_path_cache, totthread);
for(i=0; i<totthread; i++) {
pthreads[i].ctx->parent_pass = 1;
BLI_insert_thread(&threads, &pthreads[i]);
}
BLI_end_threads(&threads);
for(i=0; i<totthread; i++)
pthreads[i].ctx->parent_pass = 0;
}
BLI_init_threads(&threads, exec_child_path_cache, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_child_path_cache(&pthreads[0]);
psys_threads_free(pthreads);
}
/* figure out incremental rotations along path starting from unit quat */
static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i)
{
float cosangle, angle, tangent[3], normal[3], q[4];
switch(i) {
case 0:
/* start from second key */
break;
case 1:
/* calculate initial tangent for incremental rotations */
sub_v3_v3v3(prev_tangent, key0->co, key1->co);
normalize_v3(prev_tangent);
unit_qt(key1->rot);
break;
default:
sub_v3_v3v3(tangent, key0->co, key1->co);
normalize_v3(tangent);
cosangle= dot_v3v3(tangent, prev_tangent);
/* note we do the comparison on cosangle instead of
* angle, since floating point accuracy makes it give
* different results across platforms */
if(cosangle > 0.999999f) {
QUATCOPY(key1->rot, key2->rot);
}
else {
angle= saacos(cosangle);
cross_v3_v3v3(normal, prev_tangent, tangent);
axis_angle_to_quat( q,normal, angle);
mul_qt_qtqt(key1->rot, q, key2->rot);
}
copy_v3_v3(prev_tangent, tangent);
}
}
/* Calculates paths ready for drawing/rendering. */
/* -Usefull for making use of opengl vertex arrays for super fast strand drawing. */
/* -Makes child strands possible and creates them too into the cache. */
/* -Cached path data is also used to determine cut position for the editmode tool. */
void psys_cache_paths(ParticleSimulationData *sim, float cfra)
{
PARTICLE_PSMD;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleCacheKey *ca, **cache;
DerivedMesh *hair_dm = (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL;
ParticleKey result;
Material *ma;
ParticleInterpolationData pind;
ParticleTexture ptex;
PARTICLE_P;
float birthtime = 0.0, dietime = 0.0;
float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/;
float col[4] = {0.5f, 0.5f, 0.5f, 1.0f};
float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4];
float rotmat[3][3];
int k;
int steps = (int)pow(2.0, (double)(psys->renderdata ? part->ren_step : part->draw_step));
int totpart = psys->totpart;
float length, vec[3];
float *vg_effector= NULL;
float *vg_length= NULL, pa_length=1.0f;
int keyed, baked;
/* we don't have anything valid to create paths from so let's quit here */
if((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache)==0)
return;
if(psys_in_edit_mode(sim->scene, psys))
if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0)
return;
BLI_srandom(psys->seed);
keyed = psys->flag & PSYS_KEYED;
baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR;
/* clear out old and create new empty path cache */
psys_free_path_cache(psys, psys->edit);
cache= psys->pathcache= psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, steps+1);
psys->lattice = psys_get_lattice(sim);
ma= give_current_material(sim->ob, psys->part->omat);
if(ma && (psys->part->draw_col == PART_DRAW_COL_MAT))
VECCOPY(col, &ma->r)
if((psys->flag & PSYS_GLOBAL_HAIR)==0) {
if((psys->part->flag & PART_CHILD_EFFECT)==0)
vg_effector = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_EFFECTOR);
if(!psys->totchild)
vg_length = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_LENGTH);
}
/*---first main loop: create all actual particles' paths---*/
LOOP_SHOWN_PARTICLES {
if(!psys->totchild) {
psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f);
pa_length = ptex.length * (1.0f - part->randlength * PSYS_FRAND(psys->seed + p));
if(vg_length)
pa_length *= psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_length);
}
pind.keyed = keyed;
pind.cache = baked ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
pind.dm = hair_dm;
memset(cache[p], 0, sizeof(*cache[p])*(steps+1));
cache[p]->steps = steps;
/*--get the first data points--*/
init_particle_interpolation(sim->ob, sim->psys, pa, &pind);
/* hairmat is needed for for non-hair particle too so we get proper rotations */
psys_mat_hair_to_global(sim->ob, psmd->dm, psys->part->from, pa, hairmat);
VECCOPY(rotmat[0], hairmat[2]);
VECCOPY(rotmat[1], hairmat[1]);
VECCOPY(rotmat[2], hairmat[0]);
if(part->draw & PART_ABS_PATH_TIME) {
birthtime = MAX2(pind.birthtime, part->path_start);
dietime = MIN2(pind.dietime, part->path_end);
}
else {
float tb = pind.birthtime;
birthtime = tb + part->path_start * (pind.dietime - tb);
dietime = tb + part->path_end * (pind.dietime - tb);
}
if(birthtime >= dietime) {
cache[p]->steps = -1;
continue;
}
dietime = birthtime + pa_length * (dietime - birthtime);
/*--interpolate actual path from data points--*/
for(k=0, ca=cache[p]; k<=steps; k++, ca++){
time = (float)k / (float)steps;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, p, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* dynamic hair is in object space */
/* keyed and baked are already in global space */
if(hair_dm)
mul_m4_v3(sim->ob->obmat, ca->co);
else if(!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR))
mul_m4_v3(hairmat, ca->co);
copy_v3_v3(ca->col, col);
}
/*--modify paths and calculate rotation & velocity--*/
if(!(psys->flag & PSYS_GLOBAL_HAIR)) {
/* apply effectors */
if((psys->part->flag & PART_CHILD_EFFECT) == 0) {
float effector= 1.0f;
if(vg_effector)
effector*= psys_particle_value_from_verts(psmd->dm,psys->part->from,pa,vg_effector);
sub_v3_v3v3(vec,(cache[p]+1)->co,cache[p]->co);
length = len_v3(vec);
for(k=1, ca=cache[p]+1; k<=steps; k++, ca++)
do_path_effectors(sim, p, ca, k, steps, cache[p]->co, effector, dfra, cfra, &length, vec);
}
/* apply guide curves to path data */
if(sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT)==0) {
for(k=0, ca=cache[p]; k<=steps; k++, ca++)
/* ca is safe to cast, since only co and vel are used */
do_guides(sim->psys->effectors, (ParticleKey*)ca, p, (float)k/(float)steps);
}
/* lattices have to be calculated separately to avoid mixups between effector calculations */
if(psys->lattice) {
for(k=0, ca=cache[p]; k<=steps; k++, ca++)
calc_latt_deform(psys->lattice, ca->co, 1.0f);
}
}
/* finally do rotation & velocity */
for(k=1, ca=cache[p]+1; k<=steps; k++, ca++) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if(k == steps)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca-1)->co);
if(k==1)
copy_v3_v3((ca-1)->vel, ca->vel);
}
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[p]->rot, rotmat);
}
psys->totcached = totpart;
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if(vg_effector)
MEM_freeN(vg_effector);
if(vg_length)
MEM_freeN(vg_length);
}
void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra)
{
ParticleCacheKey *ca, **cache= edit->pathcache;
ParticleEditSettings *pset = &scene->toolsettings->particle;
PTCacheEditPoint *point = NULL;
PTCacheEditKey *ekey = NULL;
ParticleSystem *psys = edit->psys;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
ParticleData *pa = psys ? psys->particles : NULL;
ParticleInterpolationData pind;
ParticleKey result;
float birthtime = 0.0f, dietime = 0.0f;
float t, time = 0.0f, keytime = 0.0f /*, frs_sec */;
float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f};
int k, i;
int steps = (int)pow(2.0, (double)pset->draw_step);
int totpart = edit->totpoint, recalc_set=0;
float sel_col[3];
float nosel_col[3];
steps = MAX2(steps, 4);
if(!cache || edit->totpoint != edit->totcached) {
/* clear out old and create new empty path cache */
psys_free_path_cache(edit->psys, edit);
cache= edit->pathcache= psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, steps+1);
/* set flag for update (child particles check this too) */
for(i=0, point=edit->points; i<totpart; i++, point++)
point->flag |= PEP_EDIT_RECALC;
recalc_set = 1;
}
/* frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; */ /* UNUSED */
if(pset->brushtype == PE_BRUSH_WEIGHT) {
;/* use weight painting colors now... */
}
else{
sel_col[0] = (float)edit->sel_col[0] / 255.0f;
sel_col[1] = (float)edit->sel_col[1] / 255.0f;
sel_col[2] = (float)edit->sel_col[2] / 255.0f;
nosel_col[0] = (float)edit->nosel_col[0] / 255.0f;
nosel_col[1] = (float)edit->nosel_col[1] / 255.0f;
nosel_col[2] = (float)edit->nosel_col[2] / 255.0f;
}
/*---first main loop: create all actual particles' paths---*/
for(i=0, point=edit->points; i<totpart; i++, pa+=pa?1:0, point++){
if(edit->totcached && !(point->flag & PEP_EDIT_RECALC))
continue;
ekey = point->keys;
pind.keyed = 0;
pind.cache = NULL;
pind.epoint = point;
pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0;
pind.dm = NULL;
/* should init_particle_interpolation set this ? */
if(pset->brushtype==PE_BRUSH_WEIGHT){
pind.hkey[0] = NULL;
/* pa != NULL since the weight brush is only available for hair */
pind.hkey[1] = pa->hair;
}
memset(cache[i], 0, sizeof(*cache[i])*(steps+1));
cache[i]->steps = steps;
/*--get the first data points--*/
init_particle_interpolation(ob, psys, pa, &pind);
if(psys) {
psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
}
birthtime = pind.birthtime;
dietime = pind.dietime;
if(birthtime >= dietime) {
cache[i]->steps = -1;
continue;
}
/*--interpolate actual path from data points--*/
for(k=0, ca=cache[i]; k<=steps; k++, ca++){
time = (float)k / (float)steps;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, i, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* non-hair points are already in global space */
if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
mul_m4_v3(hairmat, ca->co);
if(k) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if(k == steps)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if(k==1)
copy_v3_v3((ca - 1)->vel, ca->vel);
}
}
else {
ca->vel[0] = ca->vel[1] = 0.0f;
ca->vel[1] = 1.0f;
}
/* selection coloring in edit mode */
if(pset->brushtype==PE_BRUSH_WEIGHT){
float t2;
if(k==0) {
weight_to_rgb(pind.hkey[1]->weight, ca->col, ca->col+1, ca->col+2);
} else {
float w1[3], w2[3];
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
weight_to_rgb(pind.hkey[0]->weight, w1, w1+1, w1+2);
weight_to_rgb(pind.hkey[1]->weight, w2, w2+1, w2+2);
interp_v3_v3v3(ca->col, w1, w2, keytime);
}
/* at the moment this is only used for weight painting.
* will need to move out of this check if its used elsewhere. */
t2 = birthtime + ((float)k/(float)steps) * (dietime - birthtime);
while (pind.hkey[1]->time < t2) pind.hkey[1]++;
pind.hkey[0] = pind.hkey[1] - 1;
}
else {
if((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT){
if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){
VECCOPY(ca->col, sel_col);
}
else{
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime);
}
}
else{
if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime);
}
else{
VECCOPY(ca->col, nosel_col);
}
}
}
ca->time = t;
}
if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[i]->rot, rotmat);
}
}
edit->totcached = totpart;
if(psys) {
ParticleSimulationData sim= {0};
sim.scene= scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psys_get_modifier(ob, psys);
psys_cache_child_paths(&sim, cfra, 1);
}
/* clear recalc flag if set here */
if(recalc_set) {
for(i=0, point=edit->points; i<totpart; i++, point++)
point->flag &= ~PEP_EDIT_RECALC;
}
}
/************************************************/
/* Particle Key handling */
/************************************************/
void copy_particle_key(ParticleKey *to, ParticleKey *from, int time){
if(time){
memcpy(to,from,sizeof(ParticleKey));
}
else{
float to_time=to->time;
memcpy(to,from,sizeof(ParticleKey));
to->time=to_time;
}
}
void psys_get_from_key(ParticleKey *key, float *loc, float *vel, float *rot, float *time){
if(loc) VECCOPY(loc,key->co);
if(vel) VECCOPY(vel,key->vel);
if(rot) QUATCOPY(rot,key->rot);
if(time) *time=key->time;
}
/*-------changing particle keys from space to another-------*/
#if 0
static void key_from_object(Object *ob, ParticleKey *key){
float q[4];
VECADD(key->vel,key->vel,key->co);
mul_m4_v3(ob->obmat,key->co);
mul_m4_v3(ob->obmat,key->vel);
mat4_to_quat(q,ob->obmat);
VECSUB(key->vel,key->vel,key->co);
mul_qt_qtqt(key->rot,q,key->rot);
}
#endif
static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[][4])
{
float det, w1, w2, d1[2], d2[2];
memset(mat, 0, sizeof(float)*4*4);
mat[3][3]= 1.0f;
/* first axis is the normal */
normal_tri_v3( mat[2],v1, v2, v3);
/* second axis along (1, 0) in uv space */
if(uv) {
d1[0]= uv[1][0] - uv[0][0];
d1[1]= uv[1][1] - uv[0][1];
d2[0]= uv[2][0] - uv[0][0];
d2[1]= uv[2][1] - uv[0][1];
det = d2[0]*d1[1] - d2[1]*d1[0];
if(det != 0.0f) {
det= 1.0f/det;
w1= -d2[1]*det;
w2= d1[1]*det;
mat[1][0]= w1*(v2[0] - v1[0]) + w2*(v3[0] - v1[0]);
mat[1][1]= w1*(v2[1] - v1[1]) + w2*(v3[1] - v1[1]);
mat[1][2]= w1*(v2[2] - v1[2]) + w2*(v3[2] - v1[2]);
normalize_v3(mat[1]);
}
else
mat[1][0]= mat[1][1]= mat[1][2]= 0.0f;
}
else {
sub_v3_v3v3(mat[1], v2, v1);
normalize_v3(mat[1]);
}
/* third as a cross product */
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[][4], int orco)
{
float v[3][3];
MFace *mface;
OrigSpaceFace *osface;
float (*orcodata)[3];
int i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache;
if (i==-1 || i >= dm->getNumFaces(dm)) { unit_m4(mat); return; }
mface=dm->getFaceData(dm,i,CD_MFACE);
osface=dm->getFaceData(dm,i,CD_ORIGSPACE);
if(orco && (orcodata=dm->getVertDataArray(dm, CD_ORCO))) {
VECCOPY(v[0], orcodata[mface->v1]);
VECCOPY(v[1], orcodata[mface->v2]);
VECCOPY(v[2], orcodata[mface->v3]);
/* ugly hack to use non-transformed orcos, since only those
* give symmetric results for mirroring in particle mode */
if(DM_get_vert_data_layer(dm, CD_ORIGINDEX))
transform_mesh_orco_verts(ob->data, v, 3, 1);
}
else {
dm->getVertCo(dm,mface->v1,v[0]);
dm->getVertCo(dm,mface->v2,v[1]);
dm->getVertCo(dm,mface->v3,v[2]);
}
triatomat(v[0], v[1], v[2], (osface)? osface->uv: NULL, mat);
}
void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3];
psys_face_mat(0, dm, pa, hairmat, 0);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0);
VECCOPY(hairmat[3],vec);
}
void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3], orco[3];
psys_face_mat(ob, dm, pa, hairmat, 1);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0);
/* see psys_face_mat for why this function is called */
if(DM_get_vert_data_layer(dm, CD_ORIGINDEX))
transform_mesh_orco_verts(ob->data, &orco, 1, 1);
VECCOPY(hairmat[3],orco);
}
void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float *vec)
{
float mat[4][4];
psys_face_mat(0, dm, pa, mat, 0);
transpose_m4(mat); /* cheap inverse for rotation matrix */
mul_mat3_m4_v3(mat, vec);
}
void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float facemat[4][4];
psys_mat_hair_to_object(ob, dm, from, pa, facemat);
mul_m4_m4m4(hairmat, facemat, ob->obmat);
}
/************************************************/
/* ParticleSettings handling */
/************************************************/
ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name)
{
ParticleSystem *psys;
ModifierData *md;
ParticleSystemModifierData *psmd;
if(!ob || ob->type != OB_MESH)
return NULL;
psys = ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag &= ~PSYS_CURRENT;
psys = MEM_callocN(sizeof(ParticleSystem), "particle_system");
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
BLI_addtail(&ob->particlesystem, psys);
psys->part = psys_new_settings("ParticleSettings", NULL);
if(BLI_countlist(&ob->particlesystem)>1)
sprintf(psys->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem));
else
strcpy(psys->name, "ParticleSystem");
md= modifier_new(eModifierType_ParticleSystem);
if(name) BLI_strncpy(md->name, name, sizeof(md->name));
else sprintf(md->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem));
modifier_unique_name(&ob->modifiers, md);
psmd= (ParticleSystemModifierData*) md;
psmd->psys=psys;
BLI_addtail(&ob->modifiers, md);
psys->totpart=0;
psys->flag = PSYS_ENABLED|PSYS_CURRENT;
psys->cfra=bsystem_time(scene,ob,scene->r.cfra+1,0.0);
DAG_scene_sort(G.main, scene);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
return md;
}
void object_remove_particle_system(Scene *scene, Object *ob)
{
ParticleSystem *psys = psys_get_current(ob);
ParticleSystemModifierData *psmd;
ModifierData *md;
if(!psys)
return;
/* clear all other appearances of this pointer (like on smoke flow modifier) */
if((md = modifiers_findByType(ob, eModifierType_Smoke)))
{
SmokeModifierData *smd = (SmokeModifierData *)md;
if((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys)
if(smd->flow->psys == psys)
smd->flow->psys = NULL;
}
if((md = modifiers_findByType(ob, eModifierType_DynamicPaint)))
{
DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md;
if((pmd->type == MOD_DYNAMICPAINT_TYPE_BRUSH) && pmd->brush && pmd->brush->psys)
if(pmd->brush->psys == psys)
pmd->brush->psys = NULL;
}
/* clear modifier */
psmd= psys_get_modifier(ob, psys);
BLI_remlink(&ob->modifiers, psmd);
modifier_free((ModifierData *)psmd);
/* clear particle system */
BLI_remlink(&ob->particlesystem, psys);
psys_free(ob,psys);
if(ob->particlesystem.first)
((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT;
else
ob->mode &= ~OB_MODE_PARTICLE_EDIT;
DAG_scene_sort(G.main, scene);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
}
static void default_particle_settings(ParticleSettings *part)
{
part->type= PART_EMITTER;
part->distr= PART_DISTR_JIT;
part->draw_as = PART_DRAW_REND;
part->ren_as = PART_DRAW_HALO;
part->bb_uv_split=1;
part->bb_align=PART_BB_VIEW;
part->bb_split_offset=PART_BB_OFF_LINEAR;
part->flag=PART_EDISTR|PART_TRAND|PART_HIDE_ADVANCED_HAIR;
part->sta= 1.0;
part->end= 200.0;
part->lifetime= 50.0;
part->jitfac= 1.0;
part->totpart= 1000;
part->grid_res= 10;
part->timetweak= 1.0;
part->integrator= PART_INT_MIDPOINT;
part->phystype= PART_PHYS_NEWTON;
part->hair_step= 5;
part->keys_step= 5;
part->draw_step= 2;
part->ren_step= 3;
part->adapt_angle= 5;
part->adapt_pix= 3;
part->kink_axis= 2;
part->kink_amp_clump= 1.f;
part->reactevent= PART_EVENT_DEATH;
part->disp=100;
part->from= PART_FROM_FACE;
part->normfac= 1.0f;
part->mass=1.0;
part->size=0.05;
part->childsize=1.0;
part->rotmode = PART_ROT_VEL;
part->avemode = PART_AVE_SPIN;
part->child_nbr=10;
part->ren_child_nbr=100;
part->childrad=0.2f;
part->childflat=0.0f;
part->clumppow=0.0f;
part->kink_amp=0.2f;
part->kink_freq=2.0;
part->rough1_size=1.0;
part->rough2_size=1.0;
part->rough_end_shape=1.0;
part->clength=1.0f;
part->clength_thres=0.0f;
part->draw= PART_DRAW_EMITTER;
part->draw_line[0]=0.5;
part->path_start = 0.0f;
part->path_end = 1.0f;
part->bb_size[0] = part->bb_size[1] = 1.0f;
part->keyed_loops = 1;
part->color_vec_max = 1.f;
part->draw_col = PART_DRAW_COL_MAT;
part->simplify_refsize= 1920;
part->simplify_rate= 1.0f;
part->simplify_transition= 0.1f;
part->simplify_viewport= 0.8;
if(!part->effector_weights)
part->effector_weights = BKE_add_effector_weights(NULL);
}
ParticleSettings *psys_new_settings(const char *name, Main *main)
{
ParticleSettings *part;
if(main==NULL)
main = G.main;
part= alloc_libblock(&main->particle, ID_PA, name);
default_particle_settings(part);
return part;
}
ParticleSettings *psys_copy_settings(ParticleSettings *part)
{
ParticleSettings *partn;
int a;
partn= copy_libblock(part);
partn->pd= MEM_dupallocN(part->pd);
partn->pd2= MEM_dupallocN(part->pd2);
partn->effector_weights= MEM_dupallocN(part->effector_weights);
partn->fluid= MEM_dupallocN(part->fluid);
partn->boids = boid_copy_settings(part->boids);
for(a=0; a<MAX_MTEX; a++) {
if(part->mtex[a]) {
partn->mtex[a]= MEM_mallocN(sizeof(MTex), "psys_copy_tex");
memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex));
id_us_plus((ID *)partn->mtex[a]->tex);
}
}
BLI_duplicatelist(&partn->dupliweights, &part->dupliweights);
return partn;
}
static void expand_local_particlesettings(ParticleSettings *part)
{
int i;
id_lib_extern((ID *)part->dup_group);
for(i=0; i<MAX_MTEX; i++) {
if(part->mtex[i]) id_lib_extern((ID *)part->mtex[i]->tex);
}
}
void make_local_particlesettings(ParticleSettings *part)
{
Main *bmain= G.main;
Object *ob;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(part->id.lib==0) return;
if(part->id.us==1) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(&bmain->particle, (ID *)part, 0);
expand_local_particlesettings(part);
return;
}
/* test objects */
for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) {
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next){
if(psys->part==part) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
}
if(local && lib==0) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(&bmain->particle, (ID *)part, 0);
expand_local_particlesettings(part);
}
else if(local && lib) {
ParticleSettings *partn= psys_copy_settings(part);
partn->id.us= 0;
/* do objects */
for(ob= bmain->object.first; ob; ob= ob->id.next) {
ParticleSystem *psys;
for(psys= ob->particlesystem.first; psys; psys=psys->next){
if(psys->part==part && ob->id.lib==0) {
psys->part= partn;
partn->id.us++;
part->id.us--;
}
}
}
}
}
/************************************************/
/* Textures */
/************************************************/
static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, float *fuv, char *name, float *texco)
{
MFace *mf;
MTFace *tf;
int i;
tf= CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name);
if(tf == NULL)
tf= CustomData_get_layer(&dm->faceData, CD_MTFACE);
if(tf == NULL)
return 0;
if(pa) {
i= (pa->num_dmcache==DMCACHE_NOTFOUND)? pa->num: pa->num_dmcache;
if(i >= dm->getNumFaces(dm))
i = -1;
}
else
i= face_index;
if (i==-1) {
texco[0]= 0.0f;
texco[1]= 0.0f;
texco[2]= 0.0f;
}
else {
mf= dm->getFaceData(dm, i, CD_MFACE);
psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco);
texco[0]= texco[0]*2.0f - 1.0f;
texco[1]= texco[1]*2.0f - 1.0f;
texco[2]= 0.0f;
}
return 1;
}
#define SET_PARTICLE_TEXTURE(type, pvalue, texfac) if((event & mtex->mapto) & type) {pvalue = texture_value_blend(def, pvalue, value, texfac, blend);}
#define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) if(event & type) { if(pvalue < 0.f) pvalue = 1.f+pvalue; CLAMP(pvalue, 0.0f, 1.0f); }
#define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) if(event & type) { CLAMP(pvalue, -1.0f, 1.0f); }
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, float *fw, float *orco, ParticleTexture *ptex, int event, float cfra)
{
MTex *mtex, **mtexp = part->mtex;
int m;
float value, rgba[4], texvec[3];
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f;
ptex->length= 1.0f - part->randlength * PSYS_FRAND(child_index + 26);
ptex->length*= part->clength_thres < PSYS_FRAND(child_index + 27) ? part->clength : 1.0f;
for(m=0; m<MAX_MTEX; m++, mtexp++){
mtex = *mtexp;
if(mtex && mtex->mapto){
float def=mtex->def_var;
short blend=mtex->blendtype;
short texco = mtex->texco;
if(ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch(texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, par->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, par->state.co);
if(mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if(fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
copy_v3_v3(texvec, orco);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1,1] */
texvec[0] = 2.f * (cfra - par->time)/(par->dietime-par->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0);
if((event & mtex->mapto) & PAMAP_ROUGH)
ptex->rough1= ptex->rough2= ptex->roughe= texture_value_blend(def,ptex->rough1,value,mtex->roughfac,blend);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK, ptex->kink, mtex->kinkfac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_KINK, ptex->kink);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
}
void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra)
{
ParticleSettings *part = sim->psys->part;
MTex **mtexp = part->mtex;
MTex *mtex;
int m;
float value, rgba[4], co[3], texvec[3];
int setvars=0;
/* initialize ptex */
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f;
ptex->time = (float)(pa - sim->psys->particles)/(float)sim->psys->totpart;
for(m=0; m<MAX_MTEX; m++, mtexp++){
mtex = *mtexp;
if(mtex && mtex->mapto){
float def=mtex->def_var;
short blend=mtex->blendtype;
short texco = mtex->texco;
if(texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch(texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, pa->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, pa->state.co);
if(mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if(get_particle_uv(sim->psmd->dm, pa, 0, pa->fuv, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texvec, 0);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1,1] */
texvec[0] = 2.f * (cfra - pa->time)/(pa->dietime-pa->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0);
if((event & mtex->mapto) & PAMAP_TIME) {
/* the first time has to set the base value for time regardless of blend mode */
if((setvars&MAP_PA_TIME)==0){
int flip= (mtex->timefac < 0.0f);
float timefac= fabsf(mtex->timefac);
ptex->time *= 1.0f - timefac;
ptex->time += timefac * ((flip)? 1.0f - value : value);
setvars |= MAP_PA_TIME;
}
else
ptex->time= texture_value_blend(def,ptex->time,value,mtex->timefac,blend);
}
SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac)
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac)
SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac)
SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac)
SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac)
SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac)
SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac)
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac)
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length)
}
/************************************************/
/* Particle State */
/************************************************/
float psys_get_timestep(ParticleSimulationData *sim)
{
return 0.04f * sim->psys->part->timetweak;
}
float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime)
{
ParticleSettings *part = psys->part;
float time, life;
if(part->childtype==PART_CHILD_FACES){
int w=0;
time=0.0;
while(w<4 && cpa->pa[w]>=0){
time+=cpa->w[w]*(psys->particles+cpa->pa[w])->time;
w++;
}
life = part->lifetime * (1.0f - part->randlife * PSYS_FRAND(cpa - psys->child + 25));
}
else{
ParticleData *pa = psys->particles + cpa->parent;
time = pa->time;
life = pa->lifetime;
}
if(birthtime)
*birthtime = time;
if(dietime)
*dietime = time+life;
return (cfra-time)/life;
}
float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time))
{
ParticleSettings *part = psys->part;
float size; // time XXX
if(part->childtype==PART_CHILD_FACES)
size=part->size;
else
size=psys->particles[cpa->parent].size;
size*=part->childsize;
if(part->childrandsize != 0.0f)
size *= 1.0f - part->childrandsize * PSYS_FRAND(cpa - psys->child + 26);
return size;
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex)
{
ParticleSystem *psys = ctx->sim.psys;
int i = cpa - psys->child;
get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS|PAMAP_CHILD, psys->cfra);
if(ptex->exist < PSYS_FRAND(i + 24))
return;
if(ctx->vg_length)
ptex->length*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_length);
if(ctx->vg_clump)
ptex->clump*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_clump);
if(ctx->vg_kink)
ptex->kink*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_kink);
if(ctx->vg_rough1)
ptex->rough1*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough1);
if(ctx->vg_rough2)
ptex->rough2*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough2);
if(ctx->vg_roughe)
ptex->roughe*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_roughe);
if(ctx->vg_effector)
ptex->effector*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_effector);
}
static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t)
{
ParticleSettings *part = sim->psys->part;
int i = cpa - sim->psys->child;
int guided = 0;
float kink_freq = part->kink_freq;
float rough1 = part->rough1;
float rough2 = part->rough2;
float rough_end = part->rough_end;
if(ptex) {
kink_freq *= ptex->kink;
rough1 *= ptex->rough1;
rough2 *= ptex->rough2;
rough_end *= ptex->roughe;
}
if(part->flag & PART_CHILD_EFFECT)
/* state is safe to cast, since only co and vel are used */
guided = do_guides(sim->psys->effectors, (ParticleKey*)state, cpa->parent, t);
if(guided==0){
float clump = do_clump(state, par, t, part->clumpfac, part->clumppow, ptex ? ptex->clump : 1.f);
if(kink_freq != 0.f) {
float kink_amp = part->kink_amp * (1.f - part->kink_amp_clump * clump);
do_kink(state, par, par_rot, t, kink_freq, part->kink_shape,
kink_amp, part->kink_flat, part->kink, part->kink_axis,
sim->ob->obmat, sim->psys->part->childtype == PART_CHILD_FACES);
}
}
if(rough1 > 0.f)
do_rough(orco, mat, t, rough1, part->rough1_size, 0.0, state);
if(rough2 > 0.f)
do_rough(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough2, part->rough2_size, part->rough2_thres, state);
if(rough_end > 0.f)
do_rough_end(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough_end, part->rough_end_shape, state);
}
/* get's hair (or keyed) particles state at the "path time" specified in state->time */
void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, int vel)
{
PARTICLE_PSMD;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
Material *ma = give_current_material(sim->ob, part->omat);
ParticleData *pa;
ChildParticle *cpa;
ParticleTexture ptex;
ParticleKey *par=0, keys[4], tstate;
ParticleThreadContext ctx; /* fake thread context for child modifiers */
ParticleInterpolationData pind;
float t;
float co[3], orco[3];
float hairmat[4][4];
int totpart = psys->totpart;
int totchild = psys->totchild;
short between = 0, edit = 0;
int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED;
int cached = !keyed && part->type != PART_HAIR;
float *cpa_fuv; int cpa_num; short cpa_from;
/* initialize keys to zero */
memset(keys, 0, 4*sizeof(ParticleKey));
t=state->time;
CLAMP(t, 0.0f, 1.0f);
if(p<totpart){
pa = psys->particles + p;
pind.keyed = keyed;
pind.cache = cached ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
/* pind.dm disabled in editmode means we dont get effectors taken into
* account when subdividing for instance */
pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm;
init_particle_interpolation(sim->ob, psys, pa, &pind);
do_particle_interpolation(psys, p, pa, t, &pind, state);
if(pind.dm) {
mul_m4_v3(sim->ob->obmat, state->co);
mul_mat3_m4_v3(sim->ob->obmat, state->vel);
}
else if(!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) {
if((pa->flag & PARS_REKEY)==0) {
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, part->from, pa, hairmat);
mul_m4_v3(hairmat, state->co);
mul_mat3_m4_v3(hairmat, state->vel);
if(sim->psys->effectors && (part->flag & PART_CHILD_GUIDE)==0) {
do_guides(sim->psys->effectors, state, p, state->time);
/* TODO: proper velocity handling */
}
if(psys->lattice && edit==0)
calc_latt_deform(psys->lattice, state->co,1.0f);
}
}
}
else if(totchild){
//invert_m4_m4(imat,ob->obmat);
cpa=psys->child+p-totpart;
if(state->time < 0.0f)
t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL);
if(totchild && part->childtype==PART_CHILD_FACES){
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(between){
int w = 0;
float foffset;
/* get parent states */
while(w<4 && cpa->pa[w]>=0){
keys[w].time = state->time;
psys_get_particle_on_path(sim, cpa->pa[w], keys+w, 1);
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num=cpa->num;
foffset= cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,0,0,0,orco,0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
//VECCOPY(cpa_1st,co);
//mul_m4_v3(ob->obmat,cpa_1st);
pa = psys->particles + cpa->parent;
if(part->type == PART_HAIR)
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
else
unit_m4(hairmat);
pa=0;
}
else{
/* get the parent state */
keys->time = state->time;
psys_get_particle_on_path(sim, cpa->parent, keys,1);
/* get the original coordinates (orco) for texture usage */
pa=psys->particles+cpa->parent;
cpa_from=part->from;
cpa_num=pa->num;
cpa_fuv=pa->fuv;
if(part->type == PART_HAIR) {
psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,0,0,0,orco,0);
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
}
else {
copy_v3_v3(orco, cpa->fuv);
unit_m4(hairmat);
}
}
/* correct child ipo timing */
#if 0 // XXX old animation system
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
calc_ipo(part->ipo, 100.0f*t);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
/* get different child parameters from textures & vgroups */
memset(&ctx, 0, sizeof(ParticleThreadContext));
ctx.sim = *sim;
ctx.dm = psmd->dm;
ctx.ma = ma;
/* TODO: assign vertex groups */
get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if(between){
int w=0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
/* child position is the weighted sum of parent positions */
while(w<4 && cpa->pa[w]>=0){
state->co[0] += cpa->w[w] * keys[w].co[0];
state->co[1] += cpa->w[w] * keys[w].co[1];
state->co[2] += cpa->w[w] * keys[w].co[2];
state->vel[0] += cpa->w[w] * keys[w].vel[0];
state->vel[1] += cpa->w[w] * keys[w].vel[1];
state->vel[2] += cpa->w[w] * keys[w].vel[2];
w++;
}
/* apply offset for correct positioning */
//VECADD(state->co,state->co,cpa_1st);
}
else{
/* offset the child from the parent position */
offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad);
}
par = keys;
if(vel)
copy_particle_key(&tstate, state, 1);
/* apply different deformations to the child path */
do_child_modifiers(sim, &ptex, par, par->rot, cpa, orco, hairmat, state, t);
/* try to estimate correct velocity */
if(vel){
ParticleKey tstate;
float length = len_v3(state->vel);
if(t>=0.001f){
tstate.time=t-0.001f;
psys_get_particle_on_path(sim,p,&tstate,0);
VECSUB(state->vel,state->co,tstate.co);
normalize_v3(state->vel);
}
else{
tstate.time=t+0.001f;
psys_get_particle_on_path(sim,p,&tstate,0);
VECSUB(state->vel,tstate.co,state->co);
normalize_v3(state->vel);
}
mul_v3_fl(state->vel, length);
}
}
}
/* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */
int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always){
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *pa = NULL;
ChildParticle *cpa = NULL;
float cfra;
int totpart = psys->totpart;
float timestep = psys_get_timestep(sim);
/* negative time means "use current time" */
cfra = state->time > 0 ? state->time : bsystem_time(sim->scene, 0, (float)sim->scene->r.cfra, 0.0);
if(p>=totpart){
if(!psys->totchild)
return 0;
if(part->childtype == PART_CHILD_FACES){
if(!(psys->flag & PSYS_KEYED))
return 0;
cpa = psys->child + p - totpart;
state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL);
if(!always)
if((state->time < 0.0f && !(part->flag & PART_UNBORN))
|| (state->time > 1.0f && !(part->flag & PART_DIED)))
return 0;
state->time= (cfra - (part->sta + (part->end - part->sta) * PSYS_FRAND(p + 23))) / (part->lifetime * PSYS_FRAND(p + 24));
psys_get_particle_on_path(sim, p, state,1);
return 1;
}
else {
cpa = sim->psys->child + p - totpart;
pa = sim->psys->particles + cpa->parent;
}
}
else {
pa = sim->psys->particles + p;
}
if(pa) {
if(!always)
if((cfra < pa->time && (part->flag & PART_UNBORN)==0)
|| (cfra > pa->dietime && (part->flag & PART_DIED)==0))
return 0;
cfra = MIN2(cfra, pa->dietime);
}
if(sim->psys->flag & PSYS_KEYED){
state->time= -cfra;
psys_get_particle_on_path(sim, p, state,1);
return 1;
}
else{
if(cpa){
float mat[4][4];
ParticleKey *key1;
float t = (cfra - pa->time) / pa->lifetime;
key1=&pa->state;
offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad);
CLAMP(t, 0.0f, 1.0f);
unit_m4(mat);
do_child_modifiers(sim, NULL, key1, key1->rot, cpa, cpa->fuv, mat, state, t);
if(psys->lattice)
calc_latt_deform(sim->psys->lattice, state->co,1.0f);
}
else{
if(pa->state.time==cfra || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED))
copy_particle_key(state, &pa->state, 1);
else if(pa->prev_state.time==cfra)
copy_particle_key(state, &pa->prev_state, 1);
else {
float dfra, frs_sec = sim->scene->r.frs_sec;
/* let's interpolate to try to be as accurate as possible */
if(pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) {
if(pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) {
/* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec);
}
else {
ParticleKey keys[4];
float keytime;
copy_particle_key(keys+1, &pa->prev_state, 1);
copy_particle_key(keys+2, &pa->state, 1);
dfra = keys[2].time - keys[1].time;
keytime = (state->time - keys[1].time) / dfra;
/* convert velocity to timestep size */
mul_v3_fl(keys[1].vel, dfra * timestep);
mul_v3_fl(keys[2].vel, dfra * timestep);
psys_interpolate_particle(-1, keys, keytime, state, 1);
/* convert back to real velocity */
mul_v3_fl(state->vel, 1.f / (dfra * timestep));
interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime);
interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime);
}
}
else if(pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) {
/* linear interpolation using only pa->state */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec);
}
else {
/* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */
copy_particle_key(state, &pa->state, 0);
}
}
if(sim->psys->lattice)
calc_latt_deform(sim->psys->lattice, state->co,1.0f);
}
return 1;
}
}
void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float *uv, float *orco)
{
MFace *mface;
MTFace *mtface;
float loc[3];
int num;
uv[0] = uv[1] = 0.f;
if(cpa) {
if(part->childtype == PART_CHILD_FACES) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
if(mtface) {
mface= psmd->dm->getFaceData(psmd->dm, cpa->num, CD_MFACE);
mtface += cpa->num;
psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv);
}
psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,0,0,0,orco,0);
return;
}
else {
pa = psys->particles + cpa->pa[0];
}
}
if(part->from == PART_FROM_FACE) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
num= pa->num_dmcache;
if(num == DMCACHE_NOTFOUND)
num= pa->num;
if (num >= psmd->dm->getNumFaces(psmd->dm)) {
/* happens when simplify is enabled
* gives invalid coords but would crash otherwise */
num= DMCACHE_NOTFOUND;
}
if(mtface && num != DMCACHE_NOTFOUND) {
mface= psmd->dm->getFaceData(psmd->dm, num, CD_MFACE);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv);
}
}
psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,orco,0);
}
void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[][4], float *scale)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSystemModifierData *psmd = sim->psmd;
float loc[3], nor[3], vec[3], side[3], len, obrotmat[4][4], qmat[4][4];
float xvec[3] = {-1.0, 0.0, 0.0}, q[4], nmat[3][3];
sub_v3_v3v3(vec, (cache+cache->steps)->co, cache->co);
len= normalize_v3(vec);
if(psys->part->rotmode) {
if(pa == NULL)
pa= psys->particles+cpa->pa[0];
vec_to_quat( q,xvec, ob->trackflag, ob->upflag);
quat_to_mat4( obrotmat,q);
obrotmat[3][3]= 1.0f;
quat_to_mat4( qmat,pa->state.rot);
mul_m4_m4m4(mat, obrotmat, qmat);
}
else {
if(pa == NULL && psys->part->childflat != PART_CHILD_FACES)
pa = psys->particles + cpa->pa[0];
if(pa)
psys_particle_on_emitter(psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,nor,0,0,0,0);
else
psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,nor,0,0,0,0);
copy_m3_m4(nmat, ob->imat);
transpose_m3(nmat);
mul_m3_v3(nmat, nor);
/* make sure that we get a proper side vector */
if(fabs(dot_v3v3(nor,vec))>0.999999) {
if(fabs(dot_v3v3(nor,xvec))>0.999999) {
nor[0] = 0.0f;
nor[1] = 1.0f;
nor[2] = 0.0f;
}
else {
nor[0] = 1.0f;
nor[1] = 0.0f;
nor[2] = 0.0f;
}
}
cross_v3_v3v3(side, nor, vec);
normalize_v3(side);
cross_v3_v3v3(nor, vec, side);
unit_m4(mat);
VECCOPY(mat[0], vec);
VECCOPY(mat[1], side);
VECCOPY(mat[2], nor);
}
*scale= len;
}
void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3])
{
float onevec[3] = {0.0f,0.0f,0.0f}, tvec[3], tvec2[3];
xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f;
yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f;
/* can happen with bad pointcache or physics calculation
* since this becomes geometry, nan's and inf's crash raytrace code.
* better not allow this. */
if( !finite(bb->vec[0]) || !finite(bb->vec[1]) || !finite(bb->vec[2]) ||
!finite(bb->vel[0]) || !finite(bb->vel[1]) || !finite(bb->vel[2]) )
{
zero_v3(bb->vec);
zero_v3(bb->vel);
zero_v3(xvec);
zero_v3(yvec);
zero_v3(zvec);
zero_v3(center);
return;
}
if(bb->align < PART_BB_VIEW)
onevec[bb->align]=1.0f;
if(bb->lock && (bb->align == PART_BB_VIEW)) {
normalize_v3_v3(xvec, bb->ob->obmat[0]);
normalize_v3_v3(yvec, bb->ob->obmat[1]);
normalize_v3_v3(zvec, bb->ob->obmat[2]);
}
else if(bb->align == PART_BB_VEL) {
float temp[3];
normalize_v3_v3(temp, bb->vel);
VECSUB(zvec, bb->ob->obmat[3], bb->vec);
if(bb->lock) {
float fac = -dot_v3v3(zvec, temp);
VECADDFAC(zvec, zvec, temp, fac);
}
normalize_v3(zvec);
cross_v3_v3v3(xvec,temp,zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec,zvec,xvec);
}
else {
VECSUB(zvec, bb->ob->obmat[3], bb->vec);
if(bb->lock)
zvec[bb->align] = 0.0f;
normalize_v3(zvec);
if(bb->align < PART_BB_VIEW)
cross_v3_v3v3(xvec, onevec, zvec);
else
cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec,zvec,xvec);
}
VECCOPY(tvec, xvec);
VECCOPY(tvec2, yvec);
mul_v3_fl(xvec, cos(bb->tilt * (float)M_PI));
mul_v3_fl(tvec2, sin(bb->tilt * (float)M_PI));
VECADD(xvec, xvec, tvec2);
mul_v3_fl(yvec, cos(bb->tilt * (float)M_PI));
mul_v3_fl(tvec, -sin(bb->tilt * (float)M_PI));
VECADD(yvec, yvec, tvec);
mul_v3_fl(xvec, bb->size[0]);
mul_v3_fl(yvec, bb->size[1]);
VECADDFAC(center, bb->vec, xvec, bb->offset[0]);
VECADDFAC(center, center, yvec, bb->offset[1]);
}
void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys) {
ParticleSimulationData sim= {0};
sim.scene= scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psys_get_modifier(ob, psys);
psys->lattice = psys_get_lattice(&sim);
if(psys->lattice) {
ParticleData *pa = psys->particles;
HairKey *hkey;
int p, h;
float hairmat[4][4], imat[4][4];
for(p=0; p<psys->totpart; p++, pa++) {
psys_mat_hair_to_global(sim.ob, sim.psmd->dm, psys->part->from, pa, hairmat);
invert_m4_m4(imat, hairmat);
hkey = pa->hair;
for(h=0; h<pa->totkey; h++, hkey++) {
mul_m4_v3(hairmat, hkey->co);
calc_latt_deform(psys->lattice, hkey->co, 1.0f);
mul_m4_v3(imat, hkey->co);
}
}
end_latt_deform(psys->lattice);
psys->lattice= NULL;
/* protect the applied shape */
psys->flag |= PSYS_EDITED;
}
}