2971 lines
72 KiB
C
2971 lines
72 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
|
|
* The Original Code is: some of this file.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
* */
|
|
|
|
/** \file blender/blenlib/intern/math_geom.c
|
|
* \ingroup bli
|
|
*/
|
|
|
|
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
/********************************** Polygons *********************************/
|
|
|
|
void cent_tri_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
cent[0]= 0.33333f*(v1[0]+v2[0]+v3[0]);
|
|
cent[1]= 0.33333f*(v1[1]+v2[1]+v3[1]);
|
|
cent[2]= 0.33333f*(v1[2]+v2[2]+v3[2]);
|
|
}
|
|
|
|
void cent_quad_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
|
|
{
|
|
cent[0]= 0.25f*(v1[0]+v2[0]+v3[0]+v4[0]);
|
|
cent[1]= 0.25f*(v1[1]+v2[1]+v3[1]+v4[1]);
|
|
cent[2]= 0.25f*(v1[2]+v2[2]+v3[2]+v4[2]);
|
|
}
|
|
|
|
float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v2[0];
|
|
n2[0]= v2[0]-v3[0];
|
|
n1[1]= v1[1]-v2[1];
|
|
n2[1]= v2[1]-v3[1];
|
|
n1[2]= v1[2]-v2[2];
|
|
n2[2]= v2[2]-v3[2];
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
|
|
return normalize_v3(n);
|
|
}
|
|
|
|
float normal_quad_v3(float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
|
|
{
|
|
/* real cross! */
|
|
float n1[3],n2[3];
|
|
|
|
n1[0]= v1[0]-v3[0];
|
|
n1[1]= v1[1]-v3[1];
|
|
n1[2]= v1[2]-v3[2];
|
|
|
|
n2[0]= v2[0]-v4[0];
|
|
n2[1]= v2[1]-v4[1];
|
|
n2[2]= v2[2]-v4[2];
|
|
|
|
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
|
|
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
|
|
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
|
|
|
|
return normalize_v3(n);
|
|
}
|
|
|
|
float area_tri_v2(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
return 0.5f * fabsf((v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]));
|
|
}
|
|
|
|
float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
return 0.5f * ((v1[0]-v2[0])*(v2[1]-v3[1]) + (v1[1]-v2[1])*(v3[0]-v2[0]));
|
|
}
|
|
|
|
float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]) /* only convex Quadrilaterals */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
sub_v3_v3v3(vec1, v2, v1);
|
|
sub_v3_v3v3(vec2, v4, v1);
|
|
cross_v3_v3v3(n, vec1, vec2);
|
|
len= normalize_v3(n);
|
|
|
|
sub_v3_v3v3(vec1, v4, v3);
|
|
sub_v3_v3v3(vec2, v2, v3);
|
|
cross_v3_v3v3(n, vec1, vec2);
|
|
len+= normalize_v3(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
float area_tri_v3(const float v1[3], const float v2[3], const float v3[3]) /* Triangles */
|
|
{
|
|
float len, vec1[3], vec2[3], n[3];
|
|
|
|
sub_v3_v3v3(vec1, v3, v2);
|
|
sub_v3_v3v3(vec2, v1, v2);
|
|
cross_v3_v3v3(n, vec1, vec2);
|
|
len= normalize_v3(n);
|
|
|
|
return (len/2.0f);
|
|
}
|
|
|
|
float area_poly_v3(int nr, float verts[][3], const float normal[3])
|
|
{
|
|
float x, y, z, area, max;
|
|
float *cur, *prev;
|
|
int a, px=0, py=1;
|
|
|
|
/* first: find dominant axis: 0==X, 1==Y, 2==Z */
|
|
x= (float)fabs(normal[0]);
|
|
y= (float)fabs(normal[1]);
|
|
z= (float)fabs(normal[2]);
|
|
max = MAX3(x, y, z);
|
|
if(max==y) py=2;
|
|
else if(max==x) {
|
|
px=1;
|
|
py= 2;
|
|
}
|
|
|
|
/* The Trapezium Area Rule */
|
|
prev= verts[nr-1];
|
|
cur= verts[0];
|
|
area= 0;
|
|
for(a=0; a<nr; a++) {
|
|
area+= (cur[px]-prev[px])*(cur[py]+prev[py]);
|
|
prev= verts[a];
|
|
cur= verts[a+1];
|
|
}
|
|
|
|
return fabsf(0.5f * area / max);
|
|
}
|
|
|
|
/********************************* Distance **********************************/
|
|
|
|
/* distance v1 to line v2-v3 */
|
|
/* using Hesse formula, NO LINE PIECE! */
|
|
float dist_to_line_v2(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
float a[2],deler;
|
|
|
|
a[0]= v2[1]-v3[1];
|
|
a[1]= v3[0]-v2[0];
|
|
deler= (float)sqrt(a[0]*a[0]+a[1]*a[1]);
|
|
if(deler== 0.0f) return 0;
|
|
|
|
return fabsf((v1[0]-v2[0])*a[0]+(v1[1]-v2[1])*a[1])/deler;
|
|
|
|
}
|
|
|
|
/* distance v1 to line-piece v2-v3 */
|
|
float dist_to_line_segment_v2(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
float labda, rc[2], pt[2], len;
|
|
|
|
rc[0]= v3[0]-v2[0];
|
|
rc[1]= v3[1]-v2[1];
|
|
len= rc[0]*rc[0]+ rc[1]*rc[1];
|
|
if(len==0.0f) {
|
|
rc[0]= v1[0]-v2[0];
|
|
rc[1]= v1[1]-v2[1];
|
|
return (float)(sqrt(rc[0]*rc[0]+ rc[1]*rc[1]));
|
|
}
|
|
|
|
labda= (rc[0]*(v1[0]-v2[0]) + rc[1]*(v1[1]-v2[1]))/len;
|
|
if(labda <= 0.0f) {
|
|
pt[0]= v2[0];
|
|
pt[1]= v2[1];
|
|
}
|
|
else if(labda >= 1.0f) {
|
|
pt[0]= v3[0];
|
|
pt[1]= v3[1];
|
|
}
|
|
else {
|
|
pt[0]= labda*rc[0]+v2[0];
|
|
pt[1]= labda*rc[1]+v2[1];
|
|
}
|
|
|
|
rc[0]= pt[0]-v1[0];
|
|
rc[1]= pt[1]-v1[1];
|
|
return sqrtf(rc[0]*rc[0]+ rc[1]*rc[1]);
|
|
}
|
|
|
|
/* point closest to v1 on line v2-v3 in 2D */
|
|
void closest_to_line_segment_v2(float *closest, float p[2], float l1[2], float l2[2])
|
|
{
|
|
float lambda, cp[2];
|
|
|
|
lambda= closest_to_line_v2(cp,p, l1, l2);
|
|
|
|
if(lambda <= 0.0f)
|
|
copy_v2_v2(closest, l1);
|
|
else if(lambda >= 1.0f)
|
|
copy_v2_v2(closest, l2);
|
|
else
|
|
copy_v2_v2(closest, cp);
|
|
}
|
|
|
|
/* point closest to v1 on line v2-v3 in 3D */
|
|
void closest_to_line_segment_v3(float closest[3], const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float lambda, cp[3];
|
|
|
|
lambda= closest_to_line_v3(cp,v1, v2, v3);
|
|
|
|
if(lambda <= 0.0f)
|
|
copy_v3_v3(closest, v2);
|
|
else if(lambda >= 1.0f)
|
|
copy_v3_v3(closest, v3);
|
|
else
|
|
copy_v3_v3(closest, cp);
|
|
}
|
|
|
|
/* distance v1 to line-piece v2-v3 in 3D */
|
|
float dist_to_line_segment_v3(const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float closest[3];
|
|
|
|
closest_to_line_segment_v3(closest, v1, v2, v3);
|
|
|
|
return len_v3v3(closest, v1);
|
|
}
|
|
|
|
/******************************* Intersection ********************************/
|
|
|
|
/* intersect Line-Line, shorts */
|
|
int isect_line_line_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2])
|
|
{
|
|
float div, labda, mu;
|
|
|
|
div= (float)((v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]));
|
|
if(div==0.0f) return ISECT_LINE_LINE_COLINEAR;
|
|
|
|
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
|
|
|
|
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
|
|
|
|
if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
|
|
if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return ISECT_LINE_LINE_EXACT;
|
|
return ISECT_LINE_LINE_CROSS;
|
|
}
|
|
return ISECT_LINE_LINE_NONE;
|
|
}
|
|
|
|
/* intersect Line-Line, floats */
|
|
int isect_line_line_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
|
|
{
|
|
float div, labda, mu;
|
|
|
|
div= (v2[0]-v1[0])*(v4[1]-v3[1])-(v2[1]-v1[1])*(v4[0]-v3[0]);
|
|
if(div==0.0f) return ISECT_LINE_LINE_COLINEAR;
|
|
|
|
labda= ((float)(v1[1]-v3[1])*(v4[0]-v3[0])-(v1[0]-v3[0])*(v4[1]-v3[1]))/div;
|
|
|
|
mu= ((float)(v1[1]-v3[1])*(v2[0]-v1[0])-(v1[0]-v3[0])*(v2[1]-v1[1]))/div;
|
|
|
|
if(labda>=0.0f && labda<=1.0f && mu>=0.0f && mu<=1.0f) {
|
|
if(labda==0.0f || labda==1.0f || mu==0.0f || mu==1.0f) return ISECT_LINE_LINE_EXACT;
|
|
return ISECT_LINE_LINE_CROSS;
|
|
}
|
|
return ISECT_LINE_LINE_NONE;
|
|
}
|
|
|
|
/* get intersection point of two 2D segments and return intersection type:
|
|
-1: colliniar
|
|
1: intersection */
|
|
int isect_seg_seg_v2_point(const float v1[2], const float v2[2], const float v3[2], const float v4[2], float vi[2])
|
|
{
|
|
float a1, a2, b1, b2, c1, c2, d;
|
|
float u, v;
|
|
const float eps= 0.000001f;
|
|
|
|
a1= v2[0]-v1[0];
|
|
b1= v4[0]-v3[0];
|
|
c1= v1[0]-v4[0];
|
|
|
|
a2= v2[1]-v1[1];
|
|
b2= v4[1]-v3[1];
|
|
c2= v1[1]-v4[1];
|
|
|
|
d= a1*b2-a2*b1;
|
|
|
|
if(d==0) {
|
|
if(a1*c2-a2*c1==0.0f && b1*c2-b2*c1==0.0f) { /* equal lines */
|
|
float a[2], b[2], c[2];
|
|
float u2;
|
|
|
|
if(len_v2v2(v1, v2)==0.0f) {
|
|
if(len_v2v2(v3, v4)>eps) {
|
|
/* use non-point segment as basis */
|
|
SWAP(const float *, v1, v3);
|
|
SWAP(const float *, v2, v4);
|
|
} else { /* both of segments are points */
|
|
if(equals_v2v2(v1, v3)) { /* points are equal */
|
|
copy_v2_v2(vi, v1);
|
|
return 1;
|
|
}
|
|
|
|
/* two different points */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
sub_v2_v2v2(a, v3, v1);
|
|
sub_v2_v2v2(b, v2, v1);
|
|
sub_v2_v2v2(c, v2, v1);
|
|
u= dot_v2v2(a, b) / dot_v2v2(c, c);
|
|
|
|
sub_v2_v2v2(a, v4, v1);
|
|
u2= dot_v2v2(a, b) / dot_v2v2(c, c);
|
|
|
|
if(u>u2) SWAP(float, u, u2);
|
|
|
|
if(u>1.0f+eps || u2<-eps) return -1; /* non-ovlerlapping segments */
|
|
else if(maxf(0.0f, u) == minf(1.0f, u2)){ /* one common point: can return result */
|
|
interp_v2_v2v2(vi, v1, v2, maxf(0, u));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* lines are colliniar */
|
|
return -1;
|
|
}
|
|
|
|
u= (c2*b1-b2*c1)/d;
|
|
v= (c1*a2-a1*c2)/d;
|
|
|
|
if(u>=-eps && u<=1.0f+eps && v>=-eps && v<=1.0f+eps) { /* intersection */
|
|
interp_v2_v2v2(vi, v1, v2, u);
|
|
return 1;
|
|
}
|
|
|
|
/* out of segment intersection */
|
|
return -1;
|
|
}
|
|
|
|
int isect_line_sphere_v3(const float l1[3], const float l2[3],
|
|
const float sp[3], const float r,
|
|
float r_p1[3], float r_p2[3])
|
|
{
|
|
/* l1: coordinates (point of line)
|
|
* l2: coordinates (point of line)
|
|
* sp, r: coordinates and radius (sphere)
|
|
* r_p1, r_p2: return intersection coordinates
|
|
*/
|
|
|
|
|
|
/* adapted for use in blender by Campbell Barton - 2011
|
|
*
|
|
* atelier iebele abel - 2001
|
|
* atelier@iebele.nl
|
|
* http://www.iebele.nl
|
|
*
|
|
* sphere_line_intersection function adapted from:
|
|
* http://astronomy.swin.edu.au/pbourke/geometry/sphereline
|
|
* Paul Bourke pbourke@swin.edu.au
|
|
*/
|
|
|
|
const float ldir[3]= {
|
|
l2[0] - l1[0],
|
|
l2[1] - l1[1],
|
|
l2[2] - l1[2]
|
|
};
|
|
|
|
const float a= dot_v3v3(ldir, ldir);
|
|
|
|
const float b= 2.0f *
|
|
(ldir[0] * (l1[0] - sp[0]) +
|
|
ldir[1] * (l1[1] - sp[1]) +
|
|
ldir[2] * (l1[2] - sp[2]));
|
|
|
|
const float c=
|
|
dot_v3v3(sp, sp) +
|
|
dot_v3v3(l1, l1) -
|
|
(2.0f * dot_v3v3(sp, l1)) -
|
|
(r * r);
|
|
|
|
const float i = b * b - 4.0f * a * c;
|
|
|
|
float mu;
|
|
|
|
if (i < 0.0f) {
|
|
/* no intersections */
|
|
return 0;
|
|
}
|
|
else if (i == 0.0f) {
|
|
/* one intersection */
|
|
mu = -b / (2.0f * a);
|
|
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
|
|
return 1;
|
|
}
|
|
else if (i > 0.0) {
|
|
const float i_sqrt= sqrt(i); /* avoid calc twice */
|
|
|
|
/* first intersection */
|
|
mu = (-b + i_sqrt) / (2.0f * a);
|
|
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
|
|
|
|
/* second intersection */
|
|
mu = (-b - i_sqrt) / (2.0f * a);
|
|
madd_v3_v3v3fl(r_p2, l1, ldir, mu);
|
|
return 2;
|
|
}
|
|
else {
|
|
/* math domain error - nan */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* keep in sync with isect_line_sphere_v3 */
|
|
int isect_line_sphere_v2(const float l1[2], const float l2[2],
|
|
const float sp[2], const float r,
|
|
float r_p1[2], float r_p2[2])
|
|
{
|
|
const float ldir[2]= {
|
|
l2[0] - l1[0],
|
|
l2[1] - l1[1]
|
|
};
|
|
|
|
const float a= dot_v3v3(ldir, ldir);
|
|
|
|
const float b= 2.0f *
|
|
(ldir[0] * (l1[0] - sp[0]) +
|
|
ldir[1] * (l1[1] - sp[1]));
|
|
|
|
const float c=
|
|
dot_v2v2(sp, sp) +
|
|
dot_v2v2(l1, l1) -
|
|
(2.0f * dot_v2v2(sp, l1)) -
|
|
(r * r);
|
|
|
|
const float i = b * b - 4.0f * a * c;
|
|
|
|
float mu;
|
|
|
|
if (i < 0.0f) {
|
|
/* no intersections */
|
|
return 0;
|
|
}
|
|
else if (i == 0.0f) {
|
|
/* one intersection */
|
|
mu = -b / (2.0f * a);
|
|
madd_v2_v2v2fl(r_p1, l1, ldir, mu);
|
|
return 1;
|
|
}
|
|
else if (i > 0.0) {
|
|
const float i_sqrt= sqrt(i); /* avoid calc twice */
|
|
|
|
/* first intersection */
|
|
mu = (-b + i_sqrt) / (2.0f * a);
|
|
madd_v2_v2v2fl(r_p1, l1, ldir, mu);
|
|
|
|
/* second intersection */
|
|
mu = (-b - i_sqrt) / (2.0f * a);
|
|
madd_v2_v2v2fl(r_p2, l1, ldir, mu);
|
|
return 2;
|
|
}
|
|
else {
|
|
/* math domain error - nan */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
-1: colliniar
|
|
1: intersection
|
|
|
|
*/
|
|
static short IsectLLPt2Df(const float x0, const float y0, const float x1, const float y1,
|
|
const float x2, const float y2, const float x3, const float y3, float *xi,float *yi)
|
|
|
|
{
|
|
/*
|
|
this function computes the intersection of the sent lines
|
|
and returns the intersection point, note that the function assumes
|
|
the lines intersect. the function can handle vertical as well
|
|
as horizontal lines. note the function isn't very clever, it simply
|
|
applies the math, but we don't need speed since this is a
|
|
pre-processing step
|
|
*/
|
|
float c1,c2, // constants of linear equations
|
|
det_inv, // the inverse of the determinant of the coefficient
|
|
m1,m2; // the slopes of each line
|
|
/*
|
|
compute slopes, note the cludge for infinity, however, this will
|
|
be close enough
|
|
*/
|
|
if (fabs(x1-x0) > 0.000001)
|
|
m1 = (y1-y0) / (x1-x0);
|
|
else
|
|
return -1; /*m1 = (float) 1e+10;*/ // close enough to infinity
|
|
|
|
if (fabs(x3-x2) > 0.000001)
|
|
m2 = (y3-y2) / (x3-x2);
|
|
else
|
|
return -1; /*m2 = (float) 1e+10;*/ // close enough to infinity
|
|
|
|
if (fabs(m1-m2) < 0.000001)
|
|
return -1; /* parallel lines */
|
|
|
|
// compute constants
|
|
|
|
c1 = (y0-m1*x0);
|
|
c2 = (y2-m2*x2);
|
|
|
|
// compute the inverse of the determinate
|
|
|
|
det_inv = 1.0f / (-m1 + m2);
|
|
|
|
// use Kramers rule to compute xi and yi
|
|
|
|
*xi= ((-c2 + c1) *det_inv);
|
|
*yi= ((m2*c1 - m1*c2) *det_inv);
|
|
|
|
return 1;
|
|
} // end Intersect_Lines
|
|
|
|
/* point in tri */
|
|
|
|
int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
if (line_point_side_v2(v1,v2,pt)>=0.0f) {
|
|
if (line_point_side_v2(v2,v3,pt)>=0.0f) {
|
|
if (line_point_side_v2(v3,v1,pt)>=0.0f) {
|
|
return 1;
|
|
}
|
|
}
|
|
} else {
|
|
if (! (line_point_side_v2(v2,v3,pt)>=0.0f)) {
|
|
if (! (line_point_side_v2(v3,v1,pt)>=0.0f)) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* point in quad - only convex quads */
|
|
int isect_point_quad_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2])
|
|
{
|
|
if (line_point_side_v2(v1,v2,pt)>=0.0f) {
|
|
if (line_point_side_v2(v2,v3,pt)>=0.0f) {
|
|
if (line_point_side_v2(v3,v4,pt)>=0.0f) {
|
|
if (line_point_side_v2(v4,v1,pt)>=0.0f) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (! (line_point_side_v2(v2,v3,pt)>=0.0f)) {
|
|
if (! (line_point_side_v2(v3,v4,pt)>=0.0f)) {
|
|
if (! (line_point_side_v2(v4,v1,pt)>=0.0f)) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* moved from effect.c
|
|
test if the line starting at p1 ending at p2 intersects the triangle v0..v2
|
|
return non zero if it does
|
|
*/
|
|
int isect_line_tri_v3(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3], float *lambda, float uv[2])
|
|
{
|
|
|
|
float p[3], s[3], d[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
|
|
sub_v3_v3v3(e1, v1, v0);
|
|
sub_v3_v3v3(e2, v2, v0);
|
|
sub_v3_v3v3(d, p2, p1);
|
|
|
|
cross_v3_v3v3(p, d, e2);
|
|
a = dot_v3v3(e1, p);
|
|
if ((a > -0.000001f) && (a < 0.000001f)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
sub_v3_v3v3(s, p1, v0);
|
|
|
|
u = f * dot_v3v3(s, p);
|
|
if ((u < 0.0f)||(u > 1.0f)) return 0;
|
|
|
|
cross_v3_v3v3(q, s, e1);
|
|
|
|
v = f * dot_v3v3(d, q);
|
|
if ((v < 0.0f)||((u + v) > 1.0f)) return 0;
|
|
|
|
*lambda = f * dot_v3v3(e2, q);
|
|
if ((*lambda < 0.0f)||(*lambda > 1.0f)) return 0;
|
|
|
|
if(uv) {
|
|
uv[0]= u;
|
|
uv[1]= v;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
/* moved from effect.c
|
|
test if the ray starting at p1 going in d direction intersects the triangle v0..v2
|
|
return non zero if it does
|
|
*/
|
|
int isect_ray_tri_v3(const float p1[3], const float d[3], const float v0[3], const float v1[3], const float v2[3], float *lambda, float uv[2])
|
|
{
|
|
float p[3], s[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
|
|
sub_v3_v3v3(e1, v1, v0);
|
|
sub_v3_v3v3(e2, v2, v0);
|
|
|
|
cross_v3_v3v3(p, d, e2);
|
|
a = dot_v3v3(e1, p);
|
|
/* note: these values were 0.000001 in 2.4x but for projection snapping on
|
|
* a human head (1BU==1m), subsurf level 2, this gave many errors - campbell */
|
|
if ((a > -0.00000001f) && (a < 0.00000001f)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
sub_v3_v3v3(s, p1, v0);
|
|
|
|
u = f * dot_v3v3(s, p);
|
|
if ((u < 0.0f)||(u > 1.0f)) return 0;
|
|
|
|
cross_v3_v3v3(q, s, e1);
|
|
|
|
v = f * dot_v3v3(d, q);
|
|
if ((v < 0.0f)||((u + v) > 1.0f)) return 0;
|
|
|
|
*lambda = f * dot_v3v3(e2, q);
|
|
if ((*lambda < 0.0f)) return 0;
|
|
|
|
if(uv) {
|
|
uv[0]= u;
|
|
uv[1]= v;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isect_ray_plane_v3(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, int clip)
|
|
{
|
|
float p[3], s[3], e1[3], e2[3], q[3];
|
|
float a, f;
|
|
/* float u, v; */ /*UNUSED*/
|
|
|
|
sub_v3_v3v3(e1, v1, v0);
|
|
sub_v3_v3v3(e2, v2, v0);
|
|
|
|
cross_v3_v3v3(p, d, e2);
|
|
a = dot_v3v3(e1, p);
|
|
/* note: these values were 0.000001 in 2.4x but for projection snapping on
|
|
* a human head (1BU==1m), subsurf level 2, this gave many errors - campbell */
|
|
if ((a > -0.00000001f) && (a < 0.00000001f)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
sub_v3_v3v3(s, p1, v0);
|
|
|
|
/* u = f * dot_v3v3(s, p); */ /*UNUSED*/
|
|
|
|
cross_v3_v3v3(q, s, e1);
|
|
|
|
/* v = f * dot_v3v3(d, q); */ /*UNUSED*/
|
|
|
|
*lambda = f * dot_v3v3(e2, q);
|
|
if (clip && (*lambda < 0.0f)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isect_ray_tri_epsilon_v3(const float p1[3], const float d[3], const float v0[3], const float v1[3], const float v2[3], float *lambda, float uv[2], const float epsilon)
|
|
{
|
|
float p[3], s[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
|
|
sub_v3_v3v3(e1, v1, v0);
|
|
sub_v3_v3v3(e2, v2, v0);
|
|
|
|
cross_v3_v3v3(p, d, e2);
|
|
a = dot_v3v3(e1, p);
|
|
if (a == 0.0f) return 0;
|
|
f = 1.0f/a;
|
|
|
|
sub_v3_v3v3(s, p1, v0);
|
|
|
|
u = f * dot_v3v3(s, p);
|
|
if ((u < -epsilon)||(u > 1.0f+epsilon)) return 0;
|
|
|
|
cross_v3_v3v3(q, s, e1);
|
|
|
|
v = f * dot_v3v3(d, q);
|
|
if ((v < -epsilon)||((u + v) > 1.0f+epsilon)) return 0;
|
|
|
|
*lambda = f * dot_v3v3(e2, q);
|
|
if ((*lambda < 0.0f)) return 0;
|
|
|
|
if(uv) {
|
|
uv[0]= u;
|
|
uv[1]= v;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isect_ray_tri_threshold_v3(const float p1[3], const float d[3], const float v0[3], const float v1[3], const float v2[3], float *lambda, float *uv, const float threshold)
|
|
{
|
|
float p[3], s[3], e1[3], e2[3], q[3];
|
|
float a, f, u, v;
|
|
float du = 0, dv = 0;
|
|
|
|
sub_v3_v3v3(e1, v1, v0);
|
|
sub_v3_v3v3(e2, v2, v0);
|
|
|
|
cross_v3_v3v3(p, d, e2);
|
|
a = dot_v3v3(e1, p);
|
|
if ((a > -0.000001f) && (a < 0.000001f)) return 0;
|
|
f = 1.0f/a;
|
|
|
|
sub_v3_v3v3(s, p1, v0);
|
|
|
|
cross_v3_v3v3(q, s, e1);
|
|
*lambda = f * dot_v3v3(e2, q);
|
|
if ((*lambda < 0.0f)) return 0;
|
|
|
|
u = f * dot_v3v3(s, p);
|
|
v = f * dot_v3v3(d, q);
|
|
|
|
if (u < 0) du = u;
|
|
if (u > 1) du = u - 1;
|
|
if (v < 0) dv = v;
|
|
if (v > 1) dv = v - 1;
|
|
if (u > 0 && v > 0 && u + v > 1)
|
|
{
|
|
float t = u + v - 1;
|
|
du = u - t/2;
|
|
dv = v - t/2;
|
|
}
|
|
|
|
mul_v3_fl(e1, du);
|
|
mul_v3_fl(e2, dv);
|
|
|
|
if (dot_v3v3(e1, e1) + dot_v3v3(e2, e2) > threshold * threshold)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if(uv) {
|
|
uv[0]= u;
|
|
uv[1]= v;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isect_line_plane_v3(float out[3], const float l1[3], const float l2[3], const float plane_co[3], const float plane_no[3], const short no_flip)
|
|
{
|
|
float l_vec[3]; /* l1 -> l2 normalized vector */
|
|
float p_no[3]; /* 'plane_no' normalized */
|
|
float dot;
|
|
|
|
sub_v3_v3v3(l_vec, l2, l1);
|
|
|
|
normalize_v3(l_vec);
|
|
normalize_v3_v3(p_no, plane_no);
|
|
|
|
dot= dot_v3v3(l_vec, p_no);
|
|
if(dot == 0.0f) {
|
|
return 0;
|
|
}
|
|
else {
|
|
float l1_plane[3]; /* line point aligned with the plane */
|
|
float dist; /* 'plane_no' aligned distance to the 'plane_co' */
|
|
|
|
/* for pradictable flipping since the plane is only used to
|
|
* define a direction, ignore its flipping and aligned with 'l_vec' */
|
|
if(dot < 0.0f) {
|
|
dot= -dot;
|
|
negate_v3(p_no);
|
|
}
|
|
|
|
add_v3_v3v3(l1_plane, l1, p_no);
|
|
|
|
dist = line_point_factor_v3(plane_co, l1, l1_plane);
|
|
|
|
/* treat line like a ray, when 'no_flip' is set */
|
|
if(no_flip && dist < 0.0f) {
|
|
dist= -dist;
|
|
}
|
|
|
|
mul_v3_fl(l_vec, dist / dot);
|
|
|
|
add_v3_v3v3(out, l1, l_vec);
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Adapted from the paper by Kasper Fauerby */
|
|
/* "Improved Collision detection and Response" */
|
|
static int getLowestRoot(const float a, const float b, const float c, const float maxR, float *root)
|
|
{
|
|
// Check if a solution exists
|
|
float determinant = b*b - 4.0f*a*c;
|
|
|
|
// If determinant is negative it means no solutions.
|
|
if (determinant >= 0.0f)
|
|
{
|
|
// calculate the two roots: (if determinant == 0 then
|
|
// x1==x2 but lets disregard that slight optimization)
|
|
float sqrtD = (float)sqrt(determinant);
|
|
float r1 = (-b - sqrtD) / (2.0f*a);
|
|
float r2 = (-b + sqrtD) / (2.0f*a);
|
|
|
|
// Sort so x1 <= x2
|
|
if (r1 > r2)
|
|
SWAP(float, r1, r2);
|
|
|
|
// Get lowest root:
|
|
if (r1 > 0.0f && r1 < maxR)
|
|
{
|
|
*root = r1;
|
|
return 1;
|
|
}
|
|
|
|
// It is possible that we want x2 - this can happen
|
|
// if x1 < 0
|
|
if (r2 > 0.0f && r2 < maxR)
|
|
{
|
|
*root = r2;
|
|
return 1;
|
|
}
|
|
}
|
|
// No (valid) solutions
|
|
return 0;
|
|
}
|
|
|
|
int isect_sweeping_sphere_tri_v3(const float p1[3], const float p2[3], const float radius, const float v0[3], const float v1[3], const float v2[3], float *lambda, float ipoint[3])
|
|
{
|
|
float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
|
|
float a, b, c, d, e, x, y, z, radius2=radius*radius;
|
|
float elen2,edotv,edotbv,nordotv;
|
|
float newLambda;
|
|
int found_by_sweep=0;
|
|
|
|
sub_v3_v3v3(e1,v1,v0);
|
|
sub_v3_v3v3(e2,v2,v0);
|
|
sub_v3_v3v3(vel,p2,p1);
|
|
|
|
/*---test plane of tri---*/
|
|
cross_v3_v3v3(nor,e1,e2);
|
|
normalize_v3(nor);
|
|
|
|
/* flip normal */
|
|
if(dot_v3v3(nor,vel)>0.0f) negate_v3(nor);
|
|
|
|
a=dot_v3v3(p1,nor)-dot_v3v3(v0,nor);
|
|
nordotv=dot_v3v3(nor,vel);
|
|
|
|
if (fabsf(nordotv) < 0.000001f)
|
|
{
|
|
if(fabsf(a) >= radius) {
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float t0=(-a+radius)/nordotv;
|
|
float t1=(-a-radius)/nordotv;
|
|
|
|
if(t0>t1)
|
|
SWAP(float, t0, t1);
|
|
|
|
if(t0>1.0f || t1<0.0f) return 0;
|
|
|
|
/* clamp to [0,1] */
|
|
CLAMP(t0, 0.0f, 1.0f);
|
|
CLAMP(t1, 0.0f, 1.0f);
|
|
|
|
/*---test inside of tri---*/
|
|
/* plane intersection point */
|
|
|
|
point[0] = p1[0] + vel[0]*t0 - nor[0]*radius;
|
|
point[1] = p1[1] + vel[1]*t0 - nor[1]*radius;
|
|
point[2] = p1[2] + vel[2]*t0 - nor[2]*radius;
|
|
|
|
|
|
/* is the point in the tri? */
|
|
a=dot_v3v3(e1,e1);
|
|
b=dot_v3v3(e1,e2);
|
|
c=dot_v3v3(e2,e2);
|
|
|
|
sub_v3_v3v3(temp,point,v0);
|
|
d=dot_v3v3(temp,e1);
|
|
e=dot_v3v3(temp,e2);
|
|
|
|
x=d*c-e*b;
|
|
y=e*a-d*b;
|
|
z=x+y-(a*c-b*b);
|
|
|
|
|
|
if(z <= 0.0f && (x >= 0.0f && y >= 0.0f))
|
|
{
|
|
//(((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y))) & 0x80000000){
|
|
*lambda=t0;
|
|
copy_v3_v3(ipoint,point);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
*lambda=1.0f;
|
|
|
|
/*---test points---*/
|
|
a=dot_v3v3(vel,vel);
|
|
|
|
/*v0*/
|
|
sub_v3_v3v3(temp,p1,v0);
|
|
b=2.0f*dot_v3v3(vel,temp);
|
|
c=dot_v3v3(temp,temp)-radius2;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, lambda))
|
|
{
|
|
copy_v3_v3(ipoint,v0);
|
|
found_by_sweep=1;
|
|
}
|
|
|
|
/*v1*/
|
|
sub_v3_v3v3(temp,p1,v1);
|
|
b=2.0f*dot_v3v3(vel,temp);
|
|
c=dot_v3v3(temp,temp)-radius2;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, lambda))
|
|
{
|
|
copy_v3_v3(ipoint,v1);
|
|
found_by_sweep=1;
|
|
}
|
|
|
|
/*v2*/
|
|
sub_v3_v3v3(temp,p1,v2);
|
|
b=2.0f*dot_v3v3(vel,temp);
|
|
c=dot_v3v3(temp,temp)-radius2;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, lambda))
|
|
{
|
|
copy_v3_v3(ipoint,v2);
|
|
found_by_sweep=1;
|
|
}
|
|
|
|
/*---test edges---*/
|
|
sub_v3_v3v3(e3,v2,v1); //wasnt yet calculated
|
|
|
|
|
|
/*e1*/
|
|
sub_v3_v3v3(bv,v0,p1);
|
|
|
|
elen2 = dot_v3v3(e1,e1);
|
|
edotv = dot_v3v3(e1,vel);
|
|
edotbv = dot_v3v3(e1,bv);
|
|
|
|
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, &newLambda))
|
|
{
|
|
e=(edotv*newLambda-edotbv)/elen2;
|
|
|
|
if(e >= 0.0f && e <= 1.0f)
|
|
{
|
|
*lambda = newLambda;
|
|
copy_v3_v3(ipoint,e1);
|
|
mul_v3_fl(ipoint,e);
|
|
add_v3_v3(ipoint, v0);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
|
|
/*e2*/
|
|
/*bv is same*/
|
|
elen2 = dot_v3v3(e2,e2);
|
|
edotv = dot_v3v3(e2,vel);
|
|
edotbv = dot_v3v3(e2,bv);
|
|
|
|
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, &newLambda))
|
|
{
|
|
e=(edotv*newLambda-edotbv)/elen2;
|
|
|
|
if(e >= 0.0f && e <= 1.0f)
|
|
{
|
|
*lambda = newLambda;
|
|
copy_v3_v3(ipoint,e2);
|
|
mul_v3_fl(ipoint,e);
|
|
add_v3_v3(ipoint, v0);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
|
|
/*e3*/
|
|
/* sub_v3_v3v3(bv,v0,p1); */ /* UNUSED */
|
|
/* elen2 = dot_v3v3(e1,e1); */ /* UNUSED */
|
|
/* edotv = dot_v3v3(e1,vel); */ /* UNUSED */
|
|
/* edotbv = dot_v3v3(e1,bv); */ /* UNUSED */
|
|
|
|
sub_v3_v3v3(bv,v1,p1);
|
|
elen2 = dot_v3v3(e3,e3);
|
|
edotv = dot_v3v3(e3,vel);
|
|
edotbv = dot_v3v3(e3,bv);
|
|
|
|
a=elen2*(-dot_v3v3(vel,vel))+edotv*edotv;
|
|
b=2.0f*(elen2*dot_v3v3(vel,bv)-edotv*edotbv);
|
|
c=elen2*(radius2-dot_v3v3(bv,bv))+edotbv*edotbv;
|
|
|
|
if(getLowestRoot(a, b, c, *lambda, &newLambda))
|
|
{
|
|
e=(edotv*newLambda-edotbv)/elen2;
|
|
|
|
if(e >= 0.0f && e <= 1.0f)
|
|
{
|
|
*lambda = newLambda;
|
|
copy_v3_v3(ipoint,e3);
|
|
mul_v3_fl(ipoint,e);
|
|
add_v3_v3(ipoint, v1);
|
|
found_by_sweep=1;
|
|
}
|
|
}
|
|
|
|
|
|
return found_by_sweep;
|
|
}
|
|
int isect_axial_line_tri_v3(const int axis, const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3], float *lambda)
|
|
{
|
|
float p[3], e1[3], e2[3];
|
|
float u, v, f;
|
|
int a0=axis, a1=(axis+1)%3, a2=(axis+2)%3;
|
|
|
|
//return isect_line_tri_v3(p1,p2,v0,v1,v2,lambda);
|
|
|
|
///* first a simple bounding box test */
|
|
//if(MIN3(v0[a1],v1[a1],v2[a1]) > p1[a1]) return 0;
|
|
//if(MIN3(v0[a2],v1[a2],v2[a2]) > p1[a2]) return 0;
|
|
//if(MAX3(v0[a1],v1[a1],v2[a1]) < p1[a1]) return 0;
|
|
//if(MAX3(v0[a2],v1[a2],v2[a2]) < p1[a2]) return 0;
|
|
|
|
///* then a full intersection test */
|
|
|
|
sub_v3_v3v3(e1,v1,v0);
|
|
sub_v3_v3v3(e2,v2,v0);
|
|
sub_v3_v3v3(p,v0,p1);
|
|
|
|
f= (e2[a1]*e1[a2]-e2[a2]*e1[a1]);
|
|
if ((f > -0.000001f) && (f < 0.000001f)) return 0;
|
|
|
|
v= (p[a2]*e1[a1]-p[a1]*e1[a2])/f;
|
|
if ((v < 0.0f)||(v > 1.0f)) return 0;
|
|
|
|
f= e1[a1];
|
|
if((f > -0.000001f) && (f < 0.000001f)){
|
|
f= e1[a2];
|
|
if((f > -0.000001f) && (f < 0.000001f)) return 0;
|
|
u= (-p[a2]-v*e2[a2])/f;
|
|
}
|
|
else
|
|
u= (-p[a1]-v*e2[a1])/f;
|
|
|
|
if ((u < 0.0f) || ((u + v) > 1.0f)) return 0;
|
|
|
|
*lambda = (p[a0]+u*e1[a0]+v*e2[a0])/(p2[a0]-p1[a0]);
|
|
|
|
if ((*lambda < 0.0f) || (*lambda > 1.0f)) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Returns the number of point of interests
|
|
* 0 - lines are colinear
|
|
* 1 - lines are coplanar, i1 is set to intersection
|
|
* 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
|
|
* */
|
|
int isect_line_line_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float i1[3], float i2[3])
|
|
{
|
|
float a[3], b[3], c[3], ab[3], cb[3], dir1[3], dir2[3];
|
|
float d;
|
|
|
|
sub_v3_v3v3(c, v3, v1);
|
|
sub_v3_v3v3(a, v2, v1);
|
|
sub_v3_v3v3(b, v4, v3);
|
|
|
|
normalize_v3_v3(dir1, a);
|
|
normalize_v3_v3(dir2, b);
|
|
d = dot_v3v3(dir1, dir2);
|
|
if (d == 1.0f || d == -1.0f) {
|
|
/* colinear */
|
|
return 0;
|
|
}
|
|
|
|
cross_v3_v3v3(ab, a, b);
|
|
d = dot_v3v3(c, ab);
|
|
|
|
/* test if the two lines are coplanar */
|
|
if (d > -0.000001f && d < 0.000001f) {
|
|
cross_v3_v3v3(cb, c, b);
|
|
|
|
mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab));
|
|
add_v3_v3v3(i1, v1, a);
|
|
copy_v3_v3(i2, i1);
|
|
|
|
return 1; /* one intersection only */
|
|
}
|
|
/* if not */
|
|
else {
|
|
float n[3], t[3];
|
|
float v3t[3], v4t[3];
|
|
sub_v3_v3v3(t, v1, v3);
|
|
|
|
/* offset between both plane where the lines lies */
|
|
cross_v3_v3v3(n, a, b);
|
|
project_v3_v3v3(t, t, n);
|
|
|
|
/* for the first line, offset the second line until it is coplanar */
|
|
add_v3_v3v3(v3t, v3, t);
|
|
add_v3_v3v3(v4t, v4, t);
|
|
|
|
sub_v3_v3v3(c, v3t, v1);
|
|
sub_v3_v3v3(a, v2, v1);
|
|
sub_v3_v3v3(b, v4t, v3t);
|
|
|
|
cross_v3_v3v3(ab, a, b);
|
|
cross_v3_v3v3(cb, c, b);
|
|
|
|
mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab));
|
|
add_v3_v3v3(i1, v1, a);
|
|
|
|
/* for the second line, just substract the offset from the first intersection point */
|
|
sub_v3_v3v3(i2, i1, t);
|
|
|
|
return 2; /* two nearest points */
|
|
}
|
|
}
|
|
|
|
/* Intersection point strictly between the two lines
|
|
* 0 when no intersection is found
|
|
* */
|
|
int isect_line_line_strict_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3], float vi[3], float *lambda)
|
|
{
|
|
float a[3], b[3], c[3], ab[3], cb[3], ca[3], dir1[3], dir2[3];
|
|
float d;
|
|
|
|
sub_v3_v3v3(c, v3, v1);
|
|
sub_v3_v3v3(a, v2, v1);
|
|
sub_v3_v3v3(b, v4, v3);
|
|
|
|
normalize_v3_v3(dir1, a);
|
|
normalize_v3_v3(dir2, b);
|
|
d = dot_v3v3(dir1, dir2);
|
|
if (d == 1.0f || d == -1.0f || d == 0) {
|
|
/* colinear or one vector is zero-length*/
|
|
return 0;
|
|
}
|
|
|
|
cross_v3_v3v3(ab, a, b);
|
|
d = dot_v3v3(c, ab);
|
|
|
|
/* test if the two lines are coplanar */
|
|
if (d > -0.000001f && d < 0.000001f) {
|
|
float f1, f2;
|
|
cross_v3_v3v3(cb, c, b);
|
|
cross_v3_v3v3(ca, c, a);
|
|
|
|
f1 = dot_v3v3(cb, ab) / dot_v3v3(ab, ab);
|
|
f2 = dot_v3v3(ca, ab) / dot_v3v3(ab, ab);
|
|
|
|
if (f1 >= 0 && f1 <= 1 &&
|
|
f2 >= 0 && f2 <= 1)
|
|
{
|
|
mul_v3_fl(a, f1);
|
|
add_v3_v3v3(vi, v1, a);
|
|
|
|
if (lambda != NULL)
|
|
{
|
|
*lambda = f1;
|
|
}
|
|
|
|
return 1; /* intersection found */
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int isect_aabb_aabb_v3(const float min1[3], const float max1[3], const float min2[3], const float max2[3])
|
|
{
|
|
return (min1[0]<max2[0] && min1[1]<max2[1] && min1[2]<max2[2] &&
|
|
min2[0]<max1[0] && min2[1]<max1[1] && min2[2]<max1[2]);
|
|
}
|
|
|
|
/* find closest point to p on line through l1,l2 and return lambda,
|
|
* where (0 <= lambda <= 1) when cp is in the line segement l1,l2
|
|
*/
|
|
float closest_to_line_v3(float cp[3], const float p[3], const float l1[3], const float l2[3])
|
|
{
|
|
float h[3],u[3],lambda;
|
|
sub_v3_v3v3(u, l2, l1);
|
|
sub_v3_v3v3(h, p, l1);
|
|
lambda =dot_v3v3(u,h)/dot_v3v3(u,u);
|
|
cp[0] = l1[0] + u[0] * lambda;
|
|
cp[1] = l1[1] + u[1] * lambda;
|
|
cp[2] = l1[2] + u[2] * lambda;
|
|
return lambda;
|
|
}
|
|
|
|
float closest_to_line_v2(float cp[2],const float p[2], const float l1[2], const float l2[2])
|
|
{
|
|
float h[2],u[2],lambda;
|
|
sub_v2_v2v2(u, l2, l1);
|
|
sub_v2_v2v2(h, p, l1);
|
|
lambda =dot_v2v2(u,h)/dot_v2v2(u,u);
|
|
cp[0] = l1[0] + u[0] * lambda;
|
|
cp[1] = l1[1] + u[1] * lambda;
|
|
return lambda;
|
|
}
|
|
|
|
/* little sister we only need to know lambda */
|
|
float line_point_factor_v3(const float p[3], const float l1[3], const float l2[3])
|
|
{
|
|
float h[3],u[3];
|
|
sub_v3_v3v3(u, l2, l1);
|
|
sub_v3_v3v3(h, p, l1);
|
|
return(dot_v3v3(u,h)/dot_v3v3(u,u));
|
|
}
|
|
|
|
float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2])
|
|
{
|
|
float h[2], u[2];
|
|
sub_v2_v2v2(u, l2, l1);
|
|
sub_v2_v2v2(h, p, l1);
|
|
return(dot_v2v2(u, h)/dot_v2v2(u, u));
|
|
}
|
|
|
|
/* Similar to LineIntersectsTriangleUV, except it operates on a quad and in 2d, assumes point is in quad */
|
|
void isect_point_quad_uv_v2(const float v0[2], const float v1[2], const float v2[2], const float v3[2], const float pt[2], float *uv)
|
|
{
|
|
float x0,y0, x1,y1, wtot, v2d[2], w1, w2;
|
|
|
|
/* used for parallel lines */
|
|
float pt3d[3], l1[3], l2[3], pt_on_line[3];
|
|
|
|
/* compute 2 edges of the quad intersection point */
|
|
if (IsectLLPt2Df(v0[0],v0[1],v1[0],v1[1], v2[0],v2[1],v3[0],v3[1], &x0,&y0) == 1) {
|
|
/* the intersection point between the quad-edge intersection and the point in the quad we want the uv's for */
|
|
/* should never be paralle !! */
|
|
/*printf("\tnot parallel 1\n");*/
|
|
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v3[0],v3[1], &x1,&y1);
|
|
|
|
/* Get the weights from the new intersection point, to each edge */
|
|
v2d[0] = x1-v0[0];
|
|
v2d[1] = y1-v0[1];
|
|
w1 = len_v2(v2d);
|
|
|
|
v2d[0] = x1-v3[0]; /* some but for the other vert */
|
|
v2d[1] = y1-v3[1];
|
|
w2 = len_v2(v2d);
|
|
wtot = w1+w2;
|
|
/*w1 = w1/wtot;*/
|
|
/*w2 = w2/wtot;*/
|
|
uv[0] = w1/wtot;
|
|
} else {
|
|
/* lines are parallel, lambda_cp_line_ex is 3d grrr */
|
|
/*printf("\tparallel1\n");*/
|
|
pt3d[0] = pt[0];
|
|
pt3d[1] = pt[1];
|
|
pt3d[2] = l1[2] = l2[2] = 0.0f;
|
|
|
|
l1[0] = v0[0]; l1[1] = v0[1];
|
|
l2[0] = v1[0]; l2[1] = v1[1];
|
|
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w1 = len_v2(v2d);
|
|
|
|
l1[0] = v2[0]; l1[1] = v2[1];
|
|
l2[0] = v3[0]; l2[1] = v3[1];
|
|
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* same, for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w2 = len_v2(v2d);
|
|
wtot = w1+w2;
|
|
uv[0] = w1/wtot;
|
|
}
|
|
|
|
/* Same as above to calc the uv[1] value, alternate calculation */
|
|
|
|
if (IsectLLPt2Df(v0[0],v0[1],v3[0],v3[1], v1[0],v1[1],v2[0],v2[1], &x0,&y0) == 1) { /* was v0,v1 v2,v3 now v0,v3 v1,v2*/
|
|
/* never paralle if above was not */
|
|
/*printf("\tnot parallel2\n");*/
|
|
IsectLLPt2Df(pt[0],pt[1],x0,y0, v0[0],v0[1],v1[0],v1[1], &x1,&y1);/* was v0,v3 now v0,v1*/
|
|
|
|
v2d[0] = x1-v0[0];
|
|
v2d[1] = y1-v0[1];
|
|
w1 = len_v2(v2d);
|
|
|
|
v2d[0] = x1-v1[0];
|
|
v2d[1] = y1-v1[1];
|
|
w2 = len_v2(v2d);
|
|
wtot = w1+w2;
|
|
uv[1] = w1/wtot;
|
|
} else {
|
|
/* lines are parallel, lambda_cp_line_ex is 3d grrr */
|
|
/*printf("\tparallel2\n");*/
|
|
pt3d[0] = pt[0];
|
|
pt3d[1] = pt[1];
|
|
pt3d[2] = l1[2] = l2[2] = 0.0f;
|
|
|
|
|
|
l1[0] = v0[0]; l1[1] = v0[1];
|
|
l2[0] = v3[0]; l2[1] = v3[1];
|
|
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w1 = len_v2(v2d);
|
|
|
|
l1[0] = v1[0]; l1[1] = v1[1];
|
|
l2[0] = v2[0]; l2[1] = v2[1];
|
|
closest_to_line_v3(pt_on_line,pt3d, l1, l2);
|
|
v2d[0] = pt[0]-pt_on_line[0]; /* some but for the other vert */
|
|
v2d[1] = pt[1]-pt_on_line[1];
|
|
w2 = len_v2(v2d);
|
|
wtot = w1+w2;
|
|
uv[1] = w1/wtot;
|
|
}
|
|
/* may need to flip UV's here */
|
|
}
|
|
|
|
/* same as above but does tri's and quads, tri's are a bit of a hack */
|
|
void isect_point_face_uv_v2(const int isquad, const float v0[2], const float v1[2], const float v2[2], const float v3[2], const float pt[2], float *uv)
|
|
{
|
|
if (isquad) {
|
|
isect_point_quad_uv_v2(v0, v1, v2, v3, pt, uv);
|
|
}
|
|
else {
|
|
/* not for quads, use for our abuse of LineIntersectsTriangleUV */
|
|
float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3], lambda;
|
|
|
|
p1_3d[0] = p2_3d[0] = uv[0];
|
|
p1_3d[1] = p2_3d[1] = uv[1];
|
|
p1_3d[2] = 1.0f;
|
|
p2_3d[2] = -1.0f;
|
|
v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
|
|
|
|
/* generate a new fuv, (this is possibly a non optimal solution,
|
|
* since we only need 2d calculation but use 3d func's)
|
|
*
|
|
* this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
|
|
* Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
|
|
* This means the new values will be correct in relation to the derived meshes face.
|
|
*/
|
|
copy_v2_v2(v0_3d, v0);
|
|
copy_v2_v2(v1_3d, v1);
|
|
copy_v2_v2(v2_3d, v2);
|
|
|
|
/* Doing this in 3D is not nice */
|
|
isect_line_tri_v3(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
|
|
}
|
|
}
|
|
|
|
#if 0 // XXX this version used to be used in isect_point_tri_v2_int() and was called IsPointInTri2D
|
|
int isect_point_tri_v2(float pt[2], float v1[2], float v2[2], float v3[2])
|
|
{
|
|
float inp1, inp2, inp3;
|
|
|
|
inp1= (v2[0]-v1[0])*(v1[1]-pt[1]) + (v1[1]-v2[1])*(v1[0]-pt[0]);
|
|
inp2= (v3[0]-v2[0])*(v2[1]-pt[1]) + (v2[1]-v3[1])*(v2[0]-pt[0]);
|
|
inp3= (v1[0]-v3[0])*(v3[1]-pt[1]) + (v3[1]-v1[1])*(v3[0]-pt[0]);
|
|
|
|
if(inp1<=0.0f && inp2<=0.0f && inp3<=0.0f) return 1;
|
|
if(inp1>=0.0f && inp2>=0.0f && inp3>=0.0f) return 1;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
int isect_point_tri_v2(float v0[2], float v1[2], float v2[2], float pt[2])
|
|
{
|
|
/* not for quads, use for our abuse of LineIntersectsTriangleUV */
|
|
float p1_3d[3], p2_3d[3], v0_3d[3], v1_3d[3], v2_3d[3];
|
|
/* not used */
|
|
float lambda, uv[3];
|
|
|
|
p1_3d[0] = p2_3d[0] = uv[0]= pt[0];
|
|
p1_3d[1] = p2_3d[1] = uv[1]= uv[2]= pt[1];
|
|
p1_3d[2] = 1.0f;
|
|
p2_3d[2] = -1.0f;
|
|
v0_3d[2] = v1_3d[2] = v2_3d[2] = 0.0;
|
|
|
|
/* generate a new fuv, (this is possibly a non optimal solution,
|
|
* since we only need 2d calculation but use 3d func's)
|
|
*
|
|
* this method makes an imaginary triangle in 2d space using the UV's from the derived mesh face
|
|
* Then find new uv coords using the fuv and this face with LineIntersectsTriangleUV.
|
|
* This means the new values will be correct in relation to the derived meshes face.
|
|
*/
|
|
copy_v2_v2(v0_3d, v0);
|
|
copy_v2_v2(v1_3d, v1);
|
|
copy_v2_v2(v2_3d, v2);
|
|
|
|
/* Doing this in 3D is not nice */
|
|
return isect_line_tri_v3(p1_3d, p2_3d, v0_3d, v1_3d, v2_3d, &lambda, uv);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
|
|
x1,y2
|
|
| \
|
|
| \ .(a,b)
|
|
| \
|
|
x1,y1-- x2,y1
|
|
|
|
*/
|
|
int isect_point_tri_v2_int(const int x1, const int y1, const int x2, const int y2, const int a, const int b)
|
|
{
|
|
float v1[2], v2[2], v3[2], p[2];
|
|
|
|
v1[0]= (float)x1;
|
|
v1[1]= (float)y1;
|
|
|
|
v2[0]= (float)x1;
|
|
v2[1]= (float)y2;
|
|
|
|
v3[0]= (float)x2;
|
|
v3[1]= (float)y1;
|
|
|
|
p[0]= (float)a;
|
|
p[1]= (float)b;
|
|
|
|
return isect_point_tri_v2(p, v1, v2, v3);
|
|
}
|
|
|
|
static int point_in_slice(const float p[3], const float v1[3], const float l1[3], const float l2[3])
|
|
{
|
|
/*
|
|
what is a slice ?
|
|
some maths:
|
|
a line including l1,l2 and a point not on the line
|
|
define a subset of R3 delimeted by planes parallel to the line and orthogonal
|
|
to the (point --> line) distance vector,one plane on the line one on the point,
|
|
the room inside usually is rather small compared to R3 though still infinte
|
|
useful for restricting (speeding up) searches
|
|
e.g. all points of triangular prism are within the intersection of 3 'slices'
|
|
onother trivial case : cube
|
|
but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
|
|
*/
|
|
float h,rp[3],cp[3],q[3];
|
|
|
|
closest_to_line_v3(cp,v1,l1,l2);
|
|
sub_v3_v3v3(q,cp,v1);
|
|
|
|
sub_v3_v3v3(rp,p,v1);
|
|
h=dot_v3v3(q,rp)/dot_v3v3(q,q);
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
|
|
#if 0
|
|
/*adult sister defining the slice planes by the origin and the normal
|
|
NOTE |normal| may not be 1 but defining the thickness of the slice*/
|
|
static int point_in_slice_as(float p[3],float origin[3],float normal[3])
|
|
{
|
|
float h,rp[3];
|
|
sub_v3_v3v3(rp,p,origin);
|
|
h=dot_v3v3(normal,rp)/dot_v3v3(normal,normal);
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*mama (knowing the squared length of the normal)*/
|
|
static int point_in_slice_m(float p[3],float origin[3],float normal[3],float lns)
|
|
{
|
|
float h,rp[3];
|
|
sub_v3_v3v3(rp,p,origin);
|
|
h=dot_v3v3(normal,rp)/lns;
|
|
if (h < 0.0f || h > 1.0f) return 0;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
int isect_point_tri_prism_v3(const float p[3], const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
if(!point_in_slice(p,v1,v2,v3)) return 0;
|
|
if(!point_in_slice(p,v2,v3,v1)) return 0;
|
|
if(!point_in_slice(p,v3,v1,v2)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
int clip_line_plane(float p1[3], float p2[3], const float plane[4])
|
|
{
|
|
float dp[3], n[3], div, t, pc[3];
|
|
|
|
copy_v3_v3(n, plane);
|
|
sub_v3_v3v3(dp, p2, p1);
|
|
div= dot_v3v3(dp, n);
|
|
|
|
if(div == 0.0f) /* parallel */
|
|
return 1;
|
|
|
|
t= -(dot_v3v3(p1, n) + plane[3])/div;
|
|
|
|
if(div > 0.0f) {
|
|
/* behind plane, completely clipped */
|
|
if(t >= 1.0f) {
|
|
zero_v3(p1);
|
|
zero_v3(p2);
|
|
return 0;
|
|
}
|
|
|
|
/* intersect plane */
|
|
if(t > 0.0f) {
|
|
madd_v3_v3v3fl(pc, p1, dp, t);
|
|
copy_v3_v3(p1, pc);
|
|
return 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
else {
|
|
/* behind plane, completely clipped */
|
|
if(t <= 0.0f) {
|
|
zero_v3(p1);
|
|
zero_v3(p2);
|
|
return 0;
|
|
}
|
|
|
|
/* intersect plane */
|
|
if(t < 1.0f) {
|
|
madd_v3_v3v3fl(pc, p1, dp, t);
|
|
copy_v3_v3(p2, pc);
|
|
return 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
void plot_line_v2v2i(const int p1[2], const int p2[2], int (*callback)(int, int, void *), void *userData)
|
|
{
|
|
int x1= p1[0];
|
|
int y1= p1[1];
|
|
int x2= p2[0];
|
|
int y2= p2[1];
|
|
|
|
signed char ix;
|
|
signed char iy;
|
|
|
|
// if x1 == x2 or y1 == y2, then it does not matter what we set here
|
|
int delta_x = (x2 > x1?(ix = 1, x2 - x1):(ix = -1, x1 - x2)) << 1;
|
|
int delta_y = (y2 > y1?(iy = 1, y2 - y1):(iy = -1, y1 - y2)) << 1;
|
|
|
|
if(callback(x1, y1, userData) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (delta_x >= delta_y) {
|
|
// error may go below zero
|
|
int error = delta_y - (delta_x >> 1);
|
|
|
|
while (x1 != x2) {
|
|
if (error >= 0) {
|
|
if (error || (ix > 0)) {
|
|
y1 += iy;
|
|
error -= delta_x;
|
|
}
|
|
// else do nothing
|
|
}
|
|
// else do nothing
|
|
|
|
x1 += ix;
|
|
error += delta_y;
|
|
|
|
if(callback(x1, y1, userData) == 0) {
|
|
return ;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// error may go below zero
|
|
int error = delta_x - (delta_y >> 1);
|
|
|
|
while (y1 != y2) {
|
|
if (error >= 0) {
|
|
if (error || (iy > 0)) {
|
|
x1 += ix;
|
|
error -= delta_y;
|
|
}
|
|
// else do nothing
|
|
}
|
|
// else do nothing
|
|
|
|
y1 += iy;
|
|
error += delta_x;
|
|
|
|
if(callback(x1, y1, userData) == 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/****************************** Interpolation ********************************/
|
|
|
|
static float tri_signed_area(const float v1[3], const float v2[3], const float v3[3], const int i, const int j)
|
|
{
|
|
return 0.5f*((v1[i]-v2[i])*(v2[j]-v3[j]) + (v1[j]-v2[j])*(v3[i]-v2[i]));
|
|
}
|
|
|
|
static int barycentric_weights(const float v1[3], const float v2[3], const float v3[3], const float co[3], const float n[3], float w[3])
|
|
{
|
|
float xn, yn, zn, a1, a2, a3, asum;
|
|
short i, j;
|
|
|
|
/* find best projection of face XY, XZ or YZ: barycentric weights of
|
|
the 2d projected coords are the same and faster to compute */
|
|
xn= (float)fabs(n[0]);
|
|
yn= (float)fabs(n[1]);
|
|
zn= (float)fabs(n[2]);
|
|
if(zn>=xn && zn>=yn) {i= 0; j= 1;}
|
|
else if(yn>=xn && yn>=zn) {i= 0; j= 2;}
|
|
else {i= 1; j= 2;}
|
|
|
|
a1= tri_signed_area(v2, v3, co, i, j);
|
|
a2= tri_signed_area(v3, v1, co, i, j);
|
|
a3= tri_signed_area(v1, v2, co, i, j);
|
|
|
|
asum= a1 + a2 + a3;
|
|
|
|
if (fabsf(asum) < FLT_EPSILON) {
|
|
/* zero area triangle */
|
|
w[0]= w[1]= w[2]= 1.0f/3.0f;
|
|
return 1;
|
|
}
|
|
|
|
asum= 1.0f/asum;
|
|
w[0]= a1*asum;
|
|
w[1]= a2*asum;
|
|
w[2]= a3*asum;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void interp_weights_face_v3(float w[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float co[3])
|
|
{
|
|
float w2[3];
|
|
|
|
w[0]= w[1]= w[2]= w[3]= 0.0f;
|
|
|
|
/* first check for exact match */
|
|
if(equals_v3v3(co, v1))
|
|
w[0]= 1.0f;
|
|
else if(equals_v3v3(co, v2))
|
|
w[1]= 1.0f;
|
|
else if(equals_v3v3(co, v3))
|
|
w[2]= 1.0f;
|
|
else if(v4 && equals_v3v3(co, v4))
|
|
w[3]= 1.0f;
|
|
else {
|
|
/* otherwise compute barycentric interpolation weights */
|
|
float n1[3], n2[3], n[3];
|
|
int degenerate;
|
|
|
|
sub_v3_v3v3(n1, v1, v3);
|
|
if (v4) {
|
|
sub_v3_v3v3(n2, v2, v4);
|
|
}
|
|
else {
|
|
sub_v3_v3v3(n2, v2, v3);
|
|
}
|
|
cross_v3_v3v3(n, n1, n2);
|
|
|
|
/* OpenGL seems to split this way, so we do too */
|
|
if (v4) {
|
|
degenerate= barycentric_weights(v1, v2, v4, co, n, w);
|
|
SWAP(float, w[2], w[3]);
|
|
|
|
if(degenerate || (w[0] < 0.0f)) {
|
|
/* if w[1] is negative, co is on the other side of the v1-v3 edge,
|
|
so we interpolate using the other triangle */
|
|
degenerate= barycentric_weights(v2, v3, v4, co, n, w2);
|
|
|
|
if(!degenerate) {
|
|
w[0]= 0.0f;
|
|
w[1]= w2[0];
|
|
w[2]= w2[1];
|
|
w[3]= w2[2];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
barycentric_weights(v1, v2, v3, co, n, w);
|
|
}
|
|
}
|
|
|
|
/* used by projection painting
|
|
* note: using area_tri_signed_v2 means locations outside the triangle are correctly weighted */
|
|
void barycentric_weights_v2(const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3])
|
|
{
|
|
float wtot_inv, wtot;
|
|
|
|
w[0] = area_tri_signed_v2(v2, v3, co);
|
|
w[1] = area_tri_signed_v2(v3, v1, co);
|
|
w[2] = area_tri_signed_v2(v1, v2, co);
|
|
wtot = w[0]+w[1]+w[2];
|
|
|
|
if (wtot != 0.0f) {
|
|
wtot_inv = 1.0f/wtot;
|
|
|
|
w[0] = w[0]*wtot_inv;
|
|
w[1] = w[1]*wtot_inv;
|
|
w[2] = w[2]*wtot_inv;
|
|
}
|
|
else /* dummy values for zero area face */
|
|
w[0] = w[1] = w[2] = 1.0f/3.0f;
|
|
}
|
|
|
|
/* given 2 triangles in 3D space, and a point in relation to the first triangle.
|
|
* calculate the location of a point in relation to the second triangle.
|
|
* Useful for finding relative positions with geometry */
|
|
void barycentric_transform(float pt_tar[3], float const pt_src[3],
|
|
const float tri_tar_p1[3], const float tri_tar_p2[3], const float tri_tar_p3[3],
|
|
const float tri_src_p1[3], const float tri_src_p2[3], const float tri_src_p3[3])
|
|
{
|
|
/* this works by moving the source triangle so its normal is pointing on the Z
|
|
* axis where its barycentric wights can be calculated in 2D and its Z offset can
|
|
* be re-applied. The weights are applied directly to the targets 3D points and the
|
|
* z-depth is used to scale the targets normal as an offset.
|
|
* This saves transforming the target into its Z-Up orientation and back (which could also work) */
|
|
const float z_up[3] = {0, 0, 1};
|
|
float no_tar[3], no_src[3];
|
|
float quat_src[4];
|
|
float pt_src_xy[3];
|
|
float tri_xy_src[3][3];
|
|
float w_src[3];
|
|
float area_tar, area_src;
|
|
float z_ofs_src;
|
|
|
|
normal_tri_v3(no_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3);
|
|
normal_tri_v3(no_src, tri_src_p1, tri_src_p2, tri_src_p3);
|
|
|
|
rotation_between_vecs_to_quat(quat_src, no_src, z_up);
|
|
normalize_qt(quat_src);
|
|
|
|
copy_v3_v3(pt_src_xy, pt_src);
|
|
copy_v3_v3(tri_xy_src[0], tri_src_p1);
|
|
copy_v3_v3(tri_xy_src[1], tri_src_p2);
|
|
copy_v3_v3(tri_xy_src[2], tri_src_p3);
|
|
|
|
/* make the source tri xy space */
|
|
mul_qt_v3(quat_src, pt_src_xy);
|
|
mul_qt_v3(quat_src, tri_xy_src[0]);
|
|
mul_qt_v3(quat_src, tri_xy_src[1]);
|
|
mul_qt_v3(quat_src, tri_xy_src[2]);
|
|
|
|
barycentric_weights_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2], pt_src_xy, w_src);
|
|
interp_v3_v3v3v3(pt_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3, w_src);
|
|
|
|
area_tar= sqrtf(area_tri_v3(tri_tar_p1, tri_tar_p2, tri_tar_p3));
|
|
area_src= sqrtf(area_tri_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2]));
|
|
|
|
z_ofs_src= pt_src_xy[2] - tri_xy_src[0][2];
|
|
madd_v3_v3v3fl(pt_tar, pt_tar, no_tar, (z_ofs_src / area_src) * area_tar);
|
|
}
|
|
|
|
/* given an array with some invalid values this function interpolates valid values
|
|
* replacing the invalid ones */
|
|
int interp_sparse_array(float *array, int const list_size, const float skipval)
|
|
{
|
|
int found_invalid = 0;
|
|
int found_valid = 0;
|
|
int i;
|
|
|
|
for (i=0; i < list_size; i++) {
|
|
if(array[i] == skipval)
|
|
found_invalid= 1;
|
|
else
|
|
found_valid= 1;
|
|
}
|
|
|
|
if(found_valid==0) {
|
|
return -1;
|
|
}
|
|
else if (found_invalid==0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
/* found invalid depths, interpolate */
|
|
float valid_last= skipval;
|
|
int valid_ofs= 0;
|
|
|
|
float *array_up= MEM_callocN(sizeof(float) * list_size, "interp_sparse_array up");
|
|
float *array_down= MEM_callocN(sizeof(float) * list_size, "interp_sparse_array up");
|
|
|
|
int *ofs_tot_up= MEM_callocN(sizeof(int) * list_size, "interp_sparse_array tup");
|
|
int *ofs_tot_down= MEM_callocN(sizeof(int) * list_size, "interp_sparse_array tdown");
|
|
|
|
for (i=0; i < list_size; i++) {
|
|
if(array[i] == skipval) {
|
|
array_up[i]= valid_last;
|
|
ofs_tot_up[i]= ++valid_ofs;
|
|
}
|
|
else {
|
|
valid_last= array[i];
|
|
valid_ofs= 0;
|
|
}
|
|
}
|
|
|
|
valid_last= skipval;
|
|
valid_ofs= 0;
|
|
|
|
for (i=list_size-1; i >= 0; i--) {
|
|
if(array[i] == skipval) {
|
|
array_down[i]= valid_last;
|
|
ofs_tot_down[i]= ++valid_ofs;
|
|
}
|
|
else {
|
|
valid_last= array[i];
|
|
valid_ofs= 0;
|
|
}
|
|
}
|
|
|
|
/* now blend */
|
|
for (i=0; i < list_size; i++) {
|
|
if(array[i] == skipval) {
|
|
if(array_up[i] != skipval && array_down[i] != skipval) {
|
|
array[i]= ((array_up[i] * ofs_tot_down[i]) + (array_down[i] * ofs_tot_up[i])) / (float)(ofs_tot_down[i] + ofs_tot_up[i]);
|
|
} else if (array_up[i] != skipval) {
|
|
array[i]= array_up[i];
|
|
} else if (array_down[i] != skipval) {
|
|
array[i]= array_down[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(array_up);
|
|
MEM_freeN(array_down);
|
|
|
|
MEM_freeN(ofs_tot_up);
|
|
MEM_freeN(ofs_tot_down);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Mean value weights - smooth interpolation weights for polygons with
|
|
* more than 3 vertices */
|
|
static float mean_value_half_tan(const float v1[3], const float v2[3], const float v3[3])
|
|
{
|
|
float d2[3], d3[3], cross[3], area, dot, len;
|
|
|
|
sub_v3_v3v3(d2, v2, v1);
|
|
sub_v3_v3v3(d3, v3, v1);
|
|
cross_v3_v3v3(cross, d2, d3);
|
|
|
|
area= len_v3(cross);
|
|
dot= dot_v3v3(d2, d3);
|
|
len= len_v3(d2)*len_v3(d3);
|
|
|
|
if(area == 0.0f)
|
|
return 0.0f;
|
|
else
|
|
return (len - dot)/area;
|
|
}
|
|
|
|
void interp_weights_poly_v3(float *w, float v[][3], const int n, const float co[3])
|
|
{
|
|
float totweight, t1, t2, len, *vmid, *vprev, *vnext;
|
|
int i;
|
|
|
|
totweight= 0.0f;
|
|
|
|
for(i=0; i<n; i++) {
|
|
vmid= v[i];
|
|
vprev= (i == 0)? v[n-1]: v[i-1];
|
|
vnext= (i == n-1)? v[0]: v[i+1];
|
|
|
|
t1= mean_value_half_tan(co, vprev, vmid);
|
|
t2= mean_value_half_tan(co, vmid, vnext);
|
|
|
|
len= len_v3v3(co, vmid);
|
|
w[i]= (t1+t2)/len;
|
|
totweight += w[i];
|
|
}
|
|
|
|
if(totweight != 0.0f)
|
|
for(i=0; i<n; i++)
|
|
w[i] /= totweight;
|
|
}
|
|
|
|
/* (x1,v1)(t1=0)------(x2,v2)(t2=1), 0<t<1 --> (x,v)(t) */
|
|
void interp_cubic_v3(float x[3], float v[3], const float x1[3], const float v1[3], const float x2[3], const float v2[3], const float t)
|
|
{
|
|
float a[3],b[3];
|
|
float t2= t*t;
|
|
float t3= t2*t;
|
|
|
|
/* cubic interpolation */
|
|
a[0]= v1[0] + v2[0] + 2*(x1[0] - x2[0]);
|
|
a[1]= v1[1] + v2[1] + 2*(x1[1] - x2[1]);
|
|
a[2]= v1[2] + v2[2] + 2*(x1[2] - x2[2]);
|
|
|
|
b[0]= -2*v1[0] - v2[0] - 3*(x1[0] - x2[0]);
|
|
b[1]= -2*v1[1] - v2[1] - 3*(x1[1] - x2[1]);
|
|
b[2]= -2*v1[2] - v2[2] - 3*(x1[2] - x2[2]);
|
|
|
|
x[0]= a[0]*t3 + b[0]*t2 + v1[0]*t + x1[0];
|
|
x[1]= a[1]*t3 + b[1]*t2 + v1[1]*t + x1[1];
|
|
x[2]= a[2]*t3 + b[2]*t2 + v1[2]*t + x1[2];
|
|
|
|
v[0]= 3*a[0]*t2 + 2*b[0]*t + v1[0];
|
|
v[1]= 3*a[1]*t2 + 2*b[1]*t + v1[1];
|
|
v[2]= 3*a[2]*t2 + 2*b[2]*t + v1[2];
|
|
}
|
|
|
|
/* unfortunately internal calculations have to be done at double precision to achieve correct/stable results. */
|
|
|
|
#define IS_ZERO(x) ((x>(-DBL_EPSILON) && x<DBL_EPSILON) ? 1 : 0)
|
|
|
|
/* Barycentric reverse */
|
|
void resolve_tri_uv(float uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2])
|
|
{
|
|
/* find UV such that
|
|
t= u*t0 + v*t1 + (1-u-v)*t2
|
|
u*(t0-t2) + v*(t1-t2)= t-t2 */
|
|
const double a= st0[0]-st2[0], b= st1[0]-st2[0];
|
|
const double c= st0[1]-st2[1], d= st1[1]-st2[1];
|
|
const double det= a*d - c*b;
|
|
|
|
if(IS_ZERO(det)==0) { /* det should never be zero since the determinant is the signed ST area of the triangle. */
|
|
const double x[]= {st[0]-st2[0], st[1]-st2[1]};
|
|
|
|
uv[0]= (float)((d*x[0] - b*x[1])/det);
|
|
uv[1]= (float)(((-c)*x[0] + a*x[1])/det);
|
|
} else zero_v2(uv);
|
|
}
|
|
|
|
/* bilinear reverse */
|
|
void resolve_quad_uv(float uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2])
|
|
{
|
|
const double signed_area= (st0[0]*st1[1] - st0[1]*st1[0]) + (st1[0]*st2[1] - st1[1]*st2[0]) +
|
|
(st2[0]*st3[1] - st2[1]*st3[0]) + (st3[0]*st0[1] - st3[1]*st0[0]);
|
|
|
|
/* X is 2D cross product (determinant)
|
|
A= (p0-p) X (p0-p3)*/
|
|
const double a= (st0[0]-st[0])*(st0[1]-st3[1]) - (st0[1]-st[1])*(st0[0]-st3[0]);
|
|
|
|
/* B= ( (p0-p) X (p1-p2) + (p1-p) X (p0-p3) ) / 2 */
|
|
const double b= 0.5 * ( ((st0[0]-st[0])*(st1[1]-st2[1]) - (st0[1]-st[1])*(st1[0]-st2[0])) +
|
|
((st1[0]-st[0])*(st0[1]-st3[1]) - (st1[1]-st[1])*(st0[0]-st3[0])) );
|
|
|
|
/* C = (p1-p) X (p1-p2) */
|
|
const double fC= (st1[0]-st[0])*(st1[1]-st2[1]) - (st1[1]-st[1])*(st1[0]-st2[0]);
|
|
const double denom= a - 2*b + fC;
|
|
|
|
// clear outputs
|
|
zero_v2(uv);
|
|
|
|
if(IS_ZERO(denom)!=0) {
|
|
const double fDen= a-fC;
|
|
if(IS_ZERO(fDen)==0)
|
|
uv[0]= (float)(a / fDen);
|
|
} else {
|
|
const double desc_sq= b*b - a*fC;
|
|
const double desc= sqrt(desc_sq<0.0?0.0:desc_sq);
|
|
const double s= signed_area>0 ? (-1.0) : 1.0;
|
|
|
|
uv[0]= (float)(( (a-b) + s * desc ) / denom);
|
|
}
|
|
|
|
/* find UV such that
|
|
fST = (1-u)(1-v)*ST0 + u*(1-v)*ST1 + u*v*ST2 + (1-u)*v*ST3 */
|
|
{
|
|
const double denom_s= (1-uv[0])*(st0[0]-st3[0]) + uv[0]*(st1[0]-st2[0]);
|
|
const double denom_t= (1-uv[0])*(st0[1]-st3[1]) + uv[0]*(st1[1]-st2[1]);
|
|
int i= 0; double denom= denom_s;
|
|
|
|
if(fabs(denom_s)<fabs(denom_t)) {
|
|
i= 1;
|
|
denom=denom_t;
|
|
}
|
|
|
|
if(IS_ZERO(denom)==0)
|
|
uv[1]= (float) (( (1-uv[0])*(st0[i]-st[i]) + uv[0]*(st1[i]-st[i]) ) / denom);
|
|
}
|
|
}
|
|
|
|
#undef IS_ZERO
|
|
|
|
/***************************** View & Projection *****************************/
|
|
|
|
void orthographic_m4(float matrix[][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip)
|
|
{
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
|
|
return;
|
|
}
|
|
unit_m4(matrix);
|
|
matrix[0][0] = 2.0f/Xdelta;
|
|
matrix[3][0] = -(right + left)/Xdelta;
|
|
matrix[1][1] = 2.0f/Ydelta;
|
|
matrix[3][1] = -(top + bottom)/Ydelta;
|
|
matrix[2][2] = -2.0f/Zdelta; /* note: negate Z */
|
|
matrix[3][2] = -(farClip + nearClip)/Zdelta;
|
|
}
|
|
|
|
void perspective_m4(float mat[4][4], const float left, const float right, const float bottom, const float top, const float nearClip, const float farClip)
|
|
{
|
|
float Xdelta, Ydelta, Zdelta;
|
|
|
|
Xdelta = right - left;
|
|
Ydelta = top - bottom;
|
|
Zdelta = farClip - nearClip;
|
|
|
|
if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
|
|
return;
|
|
}
|
|
mat[0][0] = nearClip * 2.0f/Xdelta;
|
|
mat[1][1] = nearClip * 2.0f/Ydelta;
|
|
mat[2][0] = (right + left)/Xdelta; /* note: negate Z */
|
|
mat[2][1] = (top + bottom)/Ydelta;
|
|
mat[2][2] = -(farClip + nearClip)/Zdelta;
|
|
mat[2][3] = -1.0f;
|
|
mat[3][2] = (-2.0f * nearClip * farClip)/Zdelta;
|
|
mat[0][1] = mat[0][2] = mat[0][3] =
|
|
mat[1][0] = mat[1][2] = mat[1][3] =
|
|
mat[3][0] = mat[3][1] = mat[3][3] = 0.0;
|
|
|
|
}
|
|
|
|
/* translate a matrix created by orthographic_m4 or perspective_m4 in XY coords (used to jitter the view) */
|
|
void window_translate_m4(float winmat[][4], float perspmat[][4], const float x, const float y)
|
|
{
|
|
if(winmat[2][3] == -1.0f) {
|
|
/* in the case of a win-matrix, this means perspective always */
|
|
float v1[3];
|
|
float v2[3];
|
|
float len1, len2;
|
|
|
|
v1[0]= perspmat[0][0];
|
|
v1[1]= perspmat[1][0];
|
|
v1[2]= perspmat[2][0];
|
|
|
|
v2[0]= perspmat[0][1];
|
|
v2[1]= perspmat[1][1];
|
|
v2[2]= perspmat[2][1];
|
|
|
|
len1= (1.0f / len_v3(v1));
|
|
len2= (1.0f / len_v3(v2));
|
|
|
|
winmat[2][0] += len1 * winmat[0][0] * x;
|
|
winmat[2][1] += len2 * winmat[1][1] * y;
|
|
}
|
|
else {
|
|
winmat[3][0] += x;
|
|
winmat[3][1] += y;
|
|
}
|
|
}
|
|
|
|
static void i_multmatrix(float icand[][4], float Vm[][4])
|
|
{
|
|
int row, col;
|
|
float temp[4][4];
|
|
|
|
for(row=0 ; row<4 ; row++)
|
|
for(col=0 ; col<4 ; col++)
|
|
temp[row][col] = icand[row][0] * Vm[0][col]
|
|
+ icand[row][1] * Vm[1][col]
|
|
+ icand[row][2] * Vm[2][col]
|
|
+ icand[row][3] * Vm[3][col];
|
|
copy_m4_m4(Vm, temp);
|
|
}
|
|
|
|
|
|
void polarview_m4(float Vm[][4],float dist, float azimuth, float incidence, float twist)
|
|
{
|
|
|
|
unit_m4(Vm);
|
|
|
|
translate_m4(Vm,0.0, 0.0, -dist);
|
|
rotate_m4(Vm,'Z',-twist);
|
|
rotate_m4(Vm,'X',-incidence);
|
|
rotate_m4(Vm,'Z',-azimuth);
|
|
}
|
|
|
|
void lookat_m4(float mat[][4],float vx, float vy, float vz, float px, float py, float pz, float twist)
|
|
{
|
|
float sine, cosine, hyp, hyp1, dx, dy, dz;
|
|
float mat1[4][4]= MAT4_UNITY;
|
|
|
|
unit_m4(mat);
|
|
|
|
rotate_m4(mat, 'Z', -twist);
|
|
|
|
dx = px - vx;
|
|
dy = py - vy;
|
|
dz = pz - vz;
|
|
hyp = dx * dx + dz * dz; /* hyp squared */
|
|
hyp1 = (float)sqrt(dy*dy + hyp);
|
|
hyp = (float)sqrt(hyp); /* the real hyp */
|
|
|
|
if (hyp1 != 0.0f) { /* rotate X */
|
|
sine = -dy / hyp1;
|
|
cosine = hyp /hyp1;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[1][1] = cosine;
|
|
mat1[1][2] = sine;
|
|
mat1[2][1] = -sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
|
|
mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
|
|
mat1[1][2] = mat1[2][1] = 0.0; /* those modified by the last */
|
|
|
|
/* paragraph */
|
|
if (hyp != 0.0f) { /* rotate Y */
|
|
sine = dx / hyp;
|
|
cosine = -dz / hyp;
|
|
} else {
|
|
sine = 0;
|
|
cosine = 1.0f;
|
|
}
|
|
mat1[0][0] = cosine;
|
|
mat1[0][2] = -sine;
|
|
mat1[2][0] = sine;
|
|
mat1[2][2] = cosine;
|
|
|
|
i_multmatrix(mat1, mat);
|
|
translate_m4(mat,-vx,-vy,-vz); /* translate viewpoint to origin */
|
|
}
|
|
|
|
int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4])
|
|
{
|
|
float mat[4][4], vec[4];
|
|
int a, fl, flag= -1;
|
|
|
|
copy_m4_m4(mat, winmat);
|
|
|
|
for(a=0; a<8; a++) {
|
|
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
|
|
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
|
|
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
|
|
vec[3]= 1.0;
|
|
mul_m4_v4(mat, vec);
|
|
|
|
fl= 0;
|
|
if(bounds) {
|
|
if(vec[0] > bounds[1]*vec[3]) fl |= 1;
|
|
if(vec[0]< bounds[0]*vec[3]) fl |= 2;
|
|
if(vec[1] > bounds[3]*vec[3]) fl |= 4;
|
|
if(vec[1]< bounds[2]*vec[3]) fl |= 8;
|
|
}
|
|
else {
|
|
if(vec[0] < -vec[3]) fl |= 1;
|
|
if(vec[0] > vec[3]) fl |= 2;
|
|
if(vec[1] < -vec[3]) fl |= 4;
|
|
if(vec[1] > vec[3]) fl |= 8;
|
|
}
|
|
if(vec[2] < -vec[3]) fl |= 16;
|
|
if(vec[2] > vec[3]) fl |= 32;
|
|
|
|
flag &= fl;
|
|
if(flag==0) return 0;
|
|
}
|
|
|
|
return flag;
|
|
}
|
|
|
|
void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4])
|
|
{
|
|
float mn[3], mx[3], vec[3];
|
|
int a;
|
|
|
|
copy_v3_v3(mn, min);
|
|
copy_v3_v3(mx, max);
|
|
|
|
for(a=0; a<8; a++) {
|
|
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
|
|
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
|
|
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
|
|
|
|
mul_m4_v3(mat, vec);
|
|
DO_MINMAX(vec, mn, mx);
|
|
}
|
|
|
|
copy_v3_v3(min, mn);
|
|
copy_v3_v3(max, mx);
|
|
}
|
|
|
|
/********************************** Mapping **********************************/
|
|
|
|
void map_to_tube(float *u, float *v, const float x, const float y, const float z)
|
|
{
|
|
float len;
|
|
|
|
*v = (z + 1.0f) / 2.0f;
|
|
|
|
len= (float)sqrt(x*x+y*y);
|
|
if(len > 0.0f)
|
|
*u = (float)((1.0 - (atan2(x/len,y/len) / M_PI)) / 2.0);
|
|
else
|
|
*v = *u = 0.0f; /* to avoid un-initialized variables */
|
|
}
|
|
|
|
void map_to_sphere(float *u, float *v, const float x, const float y, const float z)
|
|
{
|
|
float len;
|
|
|
|
len= (float)sqrt(x*x+y*y+z*z);
|
|
if(len > 0.0f) {
|
|
if(x==0.0f && y==0.0f) *u= 0.0f; /* othwise domain error */
|
|
else *u = (1.0f - atan2f(x,y) / (float)M_PI) / 2.0f;
|
|
|
|
*v = 1.0f - (float)saacos(z/len)/(float)M_PI;
|
|
} else {
|
|
*v = *u = 0.0f; /* to avoid un-initialized variables */
|
|
}
|
|
}
|
|
|
|
/********************************* Normals **********************************/
|
|
|
|
void accumulate_vertex_normals(float n1[3], float n2[3], float n3[3],
|
|
float n4[3], const float f_no[3], const float co1[3], const float co2[3],
|
|
const float co3[3], const float co4[3])
|
|
{
|
|
float vdiffs[4][3];
|
|
const int nverts= (n4!=NULL && co4!=NULL)? 4: 3;
|
|
|
|
/* compute normalized edge vectors */
|
|
sub_v3_v3v3(vdiffs[0], co2, co1);
|
|
sub_v3_v3v3(vdiffs[1], co3, co2);
|
|
|
|
if(nverts==3) {
|
|
sub_v3_v3v3(vdiffs[2], co1, co3);
|
|
}
|
|
else {
|
|
sub_v3_v3v3(vdiffs[2], co4, co3);
|
|
sub_v3_v3v3(vdiffs[3], co1, co4);
|
|
normalize_v3(vdiffs[3]);
|
|
}
|
|
|
|
normalize_v3(vdiffs[0]);
|
|
normalize_v3(vdiffs[1]);
|
|
normalize_v3(vdiffs[2]);
|
|
|
|
/* accumulate angle weighted face normal */
|
|
{
|
|
float *vn[]= {n1, n2, n3, n4};
|
|
const float *prev_edge = vdiffs[nverts-1];
|
|
int i;
|
|
|
|
for(i=0; i<nverts; i++) {
|
|
const float *cur_edge= vdiffs[i];
|
|
const float fac= saacos(-dot_v3v3(cur_edge, prev_edge));
|
|
|
|
// accumulate
|
|
madd_v3_v3fl(vn[i], f_no, fac);
|
|
prev_edge = cur_edge;
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************* Tangents **********************************/
|
|
|
|
/* For normal map tangents we need to detect uv boundaries, and only average
|
|
* tangents in case the uvs are connected. Alternative would be to store 1
|
|
* tangent per face rather than 4 per face vertex, but that's not compatible
|
|
* with games */
|
|
|
|
|
|
/* from BKE_mesh.h */
|
|
#define STD_UV_CONNECT_LIMIT 0.0001f
|
|
|
|
void sum_or_add_vertex_tangent(void *arena, VertexTangent **vtang, const float tang[3], const float uv[2])
|
|
{
|
|
VertexTangent *vt;
|
|
|
|
/* find a tangent with connected uvs */
|
|
for(vt= *vtang; vt; vt=vt->next) {
|
|
if(fabsf(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabsf(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT) {
|
|
add_v3_v3(vt->tang, tang);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* if not found, append a new one */
|
|
vt= BLI_memarena_alloc((MemArena *)arena, sizeof(VertexTangent));
|
|
copy_v3_v3(vt->tang, tang);
|
|
vt->uv[0]= uv[0];
|
|
vt->uv[1]= uv[1];
|
|
|
|
if(*vtang)
|
|
vt->next= *vtang;
|
|
*vtang= vt;
|
|
}
|
|
|
|
float *find_vertex_tangent(VertexTangent *vtang, const float uv[2])
|
|
{
|
|
VertexTangent *vt;
|
|
static float nulltang[3] = {0.0f, 0.0f, 0.0f};
|
|
|
|
for(vt= vtang; vt; vt=vt->next)
|
|
if(fabsf(uv[0]-vt->uv[0]) < STD_UV_CONNECT_LIMIT && fabsf(uv[1]-vt->uv[1]) < STD_UV_CONNECT_LIMIT)
|
|
return vt->tang;
|
|
|
|
return nulltang; /* shouldn't happen, except for nan or so */
|
|
}
|
|
|
|
void tangent_from_uv(float uv1[2], float uv2[2], float uv3[3], float co1[3], float co2[3], float co3[3], float n[3], float tang[3])
|
|
{
|
|
float s1= uv2[0] - uv1[0];
|
|
float s2= uv3[0] - uv1[0];
|
|
float t1= uv2[1] - uv1[1];
|
|
float t2= uv3[1] - uv1[1];
|
|
float det= (s1 * t2 - s2 * t1);
|
|
|
|
if(det != 0.0f) { /* otherwise 'tang' becomes nan */
|
|
float tangv[3], ct[3], e1[3], e2[3];
|
|
|
|
det= 1.0f/det;
|
|
|
|
/* normals in render are inversed... */
|
|
sub_v3_v3v3(e1, co1, co2);
|
|
sub_v3_v3v3(e2, co1, co3);
|
|
tang[0] = (t2*e1[0] - t1*e2[0])*det;
|
|
tang[1] = (t2*e1[1] - t1*e2[1])*det;
|
|
tang[2] = (t2*e1[2] - t1*e2[2])*det;
|
|
tangv[0] = (s1*e2[0] - s2*e1[0])*det;
|
|
tangv[1] = (s1*e2[1] - s2*e1[1])*det;
|
|
tangv[2] = (s1*e2[2] - s2*e1[2])*det;
|
|
cross_v3_v3v3(ct, tang, tangv);
|
|
|
|
/* check flip */
|
|
if ((ct[0]*n[0] + ct[1]*n[1] + ct[2]*n[2]) < 0.0f)
|
|
negate_v3(tang);
|
|
}
|
|
else {
|
|
tang[0]= tang[1]= tang[2]= 0.0;
|
|
}
|
|
}
|
|
|
|
/****************************** Vector Clouds ********************************/
|
|
|
|
/* vector clouds */
|
|
/* void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight,float (*rpos)[3], float *rweight,
|
|
float lloc[3],float rloc[3],float lrot[3][3],float lscale[3][3])
|
|
|
|
input
|
|
(
|
|
int list_size
|
|
4 lists as pointer to array[list_size]
|
|
1. current pos array of 'new' positions
|
|
2. current weight array of 'new'weights (may be NULL pointer if you have no weights )
|
|
3. reference rpos array of 'old' positions
|
|
4. reference rweight array of 'old'weights (may be NULL pointer if you have no weights )
|
|
)
|
|
output
|
|
(
|
|
float lloc[3] center of mass pos
|
|
float rloc[3] center of mass rpos
|
|
float lrot[3][3] rotation matrix
|
|
float lscale[3][3] scale matrix
|
|
pointers may be NULL if not needed
|
|
)
|
|
|
|
*/
|
|
/* can't believe there is none in math utils */
|
|
static float _det_m3(float m2[3][3])
|
|
{
|
|
float det = 0.f;
|
|
if (m2){
|
|
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
|
|
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
|
|
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
|
|
}
|
|
return det;
|
|
}
|
|
|
|
|
|
void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight,float (*rpos)[3], float *rweight,
|
|
float lloc[3],float rloc[3],float lrot[3][3],float lscale[3][3])
|
|
{
|
|
float accu_com[3]= {0.0f,0.0f,0.0f}, accu_rcom[3]= {0.0f,0.0f,0.0f};
|
|
float accu_weight = 0.0f,accu_rweight = 0.0f,eps = 0.000001f;
|
|
|
|
int a;
|
|
/* first set up a nice default response */
|
|
if (lloc) zero_v3(lloc);
|
|
if (rloc) zero_v3(rloc);
|
|
if (lrot) unit_m3(lrot);
|
|
if (lscale) unit_m3(lscale);
|
|
/* do com for both clouds */
|
|
if (pos && rpos && (list_size > 0)) /* paranoya check */
|
|
{
|
|
/* do com for both clouds */
|
|
for(a=0; a<list_size; a++){
|
|
if (weight){
|
|
float v[3];
|
|
copy_v3_v3(v,pos[a]);
|
|
mul_v3_fl(v,weight[a]);
|
|
add_v3_v3(accu_com, v);
|
|
accu_weight +=weight[a];
|
|
}
|
|
else add_v3_v3(accu_com, pos[a]);
|
|
|
|
if (rweight){
|
|
float v[3];
|
|
copy_v3_v3(v,rpos[a]);
|
|
mul_v3_fl(v,rweight[a]);
|
|
add_v3_v3(accu_rcom, v);
|
|
accu_rweight +=rweight[a];
|
|
}
|
|
else add_v3_v3(accu_rcom, rpos[a]);
|
|
|
|
}
|
|
if (!weight || !rweight){
|
|
accu_weight = accu_rweight = list_size;
|
|
}
|
|
|
|
mul_v3_fl(accu_com,1.0f/accu_weight);
|
|
mul_v3_fl(accu_rcom,1.0f/accu_rweight);
|
|
if (lloc) copy_v3_v3(lloc,accu_com);
|
|
if (rloc) copy_v3_v3(rloc,accu_rcom);
|
|
if (lrot || lscale){ /* caller does not want rot nor scale, strange but legal */
|
|
/*so now do some reverse engeneering and see if we can split rotation from scale ->Polardecompose*/
|
|
/* build 'projection' matrix */
|
|
float m[3][3],mr[3][3],q[3][3],qi[3][3];
|
|
float va[3],vb[3],stunt[3];
|
|
float odet,ndet;
|
|
int i=0,imax=15;
|
|
zero_m3(m);
|
|
zero_m3(mr);
|
|
|
|
/* build 'projection' matrix */
|
|
for(a=0; a<list_size; a++){
|
|
sub_v3_v3v3(va,rpos[a],accu_rcom);
|
|
/* mul_v3_fl(va,bp->mass); mass needs renormalzation here ?? */
|
|
sub_v3_v3v3(vb,pos[a],accu_com);
|
|
/* mul_v3_fl(va,rp->mass); */
|
|
m[0][0] += va[0] * vb[0];
|
|
m[0][1] += va[0] * vb[1];
|
|
m[0][2] += va[0] * vb[2];
|
|
|
|
m[1][0] += va[1] * vb[0];
|
|
m[1][1] += va[1] * vb[1];
|
|
m[1][2] += va[1] * vb[2];
|
|
|
|
m[2][0] += va[2] * vb[0];
|
|
m[2][1] += va[2] * vb[1];
|
|
m[2][2] += va[2] * vb[2];
|
|
|
|
/* building the referenc matrix on the fly
|
|
needed to scale properly later*/
|
|
|
|
mr[0][0] += va[0] * va[0];
|
|
mr[0][1] += va[0] * va[1];
|
|
mr[0][2] += va[0] * va[2];
|
|
|
|
mr[1][0] += va[1] * va[0];
|
|
mr[1][1] += va[1] * va[1];
|
|
mr[1][2] += va[1] * va[2];
|
|
|
|
mr[2][0] += va[2] * va[0];
|
|
mr[2][1] += va[2] * va[1];
|
|
mr[2][2] += va[2] * va[2];
|
|
}
|
|
copy_m3_m3(q,m);
|
|
stunt[0] = q[0][0]; stunt[1] = q[1][1]; stunt[2] = q[2][2];
|
|
/* renormalizing for numeric stability */
|
|
mul_m3_fl(q,1.f/len_v3(stunt));
|
|
|
|
/* this is pretty much Polardecompose 'inline' the algo based on Higham's thesis */
|
|
/* without the far case ... but seems to work here pretty neat */
|
|
odet = 0.f;
|
|
ndet = _det_m3(q);
|
|
while((odet-ndet)*(odet-ndet) > eps && i<imax){
|
|
invert_m3_m3(qi,q);
|
|
transpose_m3(qi);
|
|
add_m3_m3m3(q,q,qi);
|
|
mul_m3_fl(q,0.5f);
|
|
odet =ndet;
|
|
ndet =_det_m3(q);
|
|
i++;
|
|
}
|
|
|
|
if (i){
|
|
float scale[3][3];
|
|
float irot[3][3];
|
|
if(lrot) copy_m3_m3(lrot,q);
|
|
invert_m3_m3(irot,q);
|
|
invert_m3_m3(qi,mr);
|
|
mul_m3_m3m3(q,m,qi);
|
|
mul_m3_m3m3(scale,irot,q);
|
|
if(lscale) copy_m3_m3(lscale,scale);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************* Form Factor *********************************/
|
|
|
|
static void vec_add_dir(float r[3], const float v1[3], const float v2[3], const float fac)
|
|
{
|
|
r[0]= v1[0] + fac*(v2[0] - v1[0]);
|
|
r[1]= v1[1] + fac*(v2[1] - v1[1]);
|
|
r[2]= v1[2] + fac*(v2[2] - v1[2]);
|
|
}
|
|
|
|
static int ff_visible_quad(const float p[3], const float n[3], const float v0[3], const float v1[3], const float v2[3], float q0[3], float q1[3], float q2[3], float q3[3])
|
|
{
|
|
static const float epsilon = 1e-6f;
|
|
float c, sd[3];
|
|
|
|
c= dot_v3v3(n, p);
|
|
|
|
/* signed distances from the vertices to the plane. */
|
|
sd[0]= dot_v3v3(n, v0) - c;
|
|
sd[1]= dot_v3v3(n, v1) - c;
|
|
sd[2]= dot_v3v3(n, v2) - c;
|
|
|
|
if(fabsf(sd[0]) < epsilon) sd[0] = 0.0f;
|
|
if(fabsf(sd[1]) < epsilon) sd[1] = 0.0f;
|
|
if(fabsf(sd[2]) < epsilon) sd[2] = 0.0f;
|
|
|
|
if(sd[0] > 0) {
|
|
if(sd[1] > 0) {
|
|
if(sd[2] > 0) {
|
|
// +++
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// ++-
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
vec_add_dir(q3, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
}
|
|
else {
|
|
// ++0
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
}
|
|
else if(sd[1] < 0) {
|
|
if(sd[2] > 0) {
|
|
// +-+
|
|
copy_v3_v3(q0, v0);
|
|
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
copy_v3_v3(q3, v2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// +--
|
|
copy_v3_v3(q0, v0);
|
|
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
vec_add_dir(q2, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else {
|
|
// +-0
|
|
copy_v3_v3(q0, v0);
|
|
vec_add_dir(q1, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
}
|
|
else {
|
|
if(sd[2] > 0) {
|
|
// +0+
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// +0-
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
vec_add_dir(q2, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else {
|
|
// +00
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
}
|
|
}
|
|
else if(sd[0] < 0) {
|
|
if(sd[1] > 0) {
|
|
if(sd[2] > 0) {
|
|
// -++
|
|
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
vec_add_dir(q3, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// -+-
|
|
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
copy_v3_v3(q1, v1);
|
|
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else {
|
|
// -+0
|
|
vec_add_dir(q0, v0, v1, (sd[0]/(sd[0]-sd[1])));
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
}
|
|
else if(sd[1] < 0) {
|
|
if(sd[2] > 0) {
|
|
// --+
|
|
vec_add_dir(q0, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
vec_add_dir(q1, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// ---
|
|
return 0;
|
|
}
|
|
else {
|
|
// --0
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
if(sd[2] > 0) {
|
|
// -0+
|
|
vec_add_dir(q0, v0, v2, (sd[0]/(sd[0]-sd[2])));
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// -0-
|
|
return 0;
|
|
}
|
|
else {
|
|
// -00
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(sd[1] > 0) {
|
|
if(sd[2] > 0) {
|
|
// 0++
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// 0+-
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
vec_add_dir(q2, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else {
|
|
// 0+0
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
}
|
|
else if(sd[1] < 0) {
|
|
if(sd[2] > 0) {
|
|
// 0-+
|
|
copy_v3_v3(q0, v0);
|
|
vec_add_dir(q1, v1, v2, (sd[1]/(sd[1]-sd[2])));
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// 0--
|
|
return 0;
|
|
}
|
|
else {
|
|
// 0-0
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
if(sd[2] > 0) {
|
|
// 00+
|
|
copy_v3_v3(q0, v0);
|
|
copy_v3_v3(q1, v1);
|
|
copy_v3_v3(q2, v2);
|
|
copy_v3_v3(q3, q2);
|
|
}
|
|
else if(sd[2] < 0) {
|
|
// 00-
|
|
return 0;
|
|
}
|
|
else {
|
|
// 000
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* altivec optimization, this works, but is unused */
|
|
|
|
#if 0
|
|
#include <Accelerate/Accelerate.h>
|
|
|
|
typedef union {
|
|
vFloat v;
|
|
float f[4];
|
|
} vFloatResult;
|
|
|
|
static vFloat vec_splat_float(float val)
|
|
{
|
|
return (vFloat){val, val, val, val};
|
|
}
|
|
|
|
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
|
|
{
|
|
vFloat vcos, rlen, vrx, vry, vrz, vsrx, vsry, vsrz, gx, gy, gz, vangle;
|
|
vUInt8 rotate = (vUInt8){4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3};
|
|
vFloatResult vresult;
|
|
float result;
|
|
|
|
/* compute r* */
|
|
vrx = (vFloat){q0[0], q1[0], q2[0], q3[0]} - vec_splat_float(p[0]);
|
|
vry = (vFloat){q0[1], q1[1], q2[1], q3[1]} - vec_splat_float(p[1]);
|
|
vrz = (vFloat){q0[2], q1[2], q2[2], q3[2]} - vec_splat_float(p[2]);
|
|
|
|
/* normalize r* */
|
|
rlen = vec_rsqrte(vrx*vrx + vry*vry + vrz*vrz + vec_splat_float(1e-16f));
|
|
vrx = vrx*rlen;
|
|
vry = vry*rlen;
|
|
vrz = vrz*rlen;
|
|
|
|
/* rotate r* for cross and dot */
|
|
vsrx= vec_perm(vrx, vrx, rotate);
|
|
vsry= vec_perm(vry, vry, rotate);
|
|
vsrz= vec_perm(vrz, vrz, rotate);
|
|
|
|
/* cross product */
|
|
gx = vsry*vrz - vsrz*vry;
|
|
gy = vsrz*vrx - vsrx*vrz;
|
|
gz = vsrx*vry - vsry*vrx;
|
|
|
|
/* normalize */
|
|
rlen = vec_rsqrte(gx*gx + gy*gy + gz*gz + vec_splat_float(1e-16f));
|
|
gx = gx*rlen;
|
|
gy = gy*rlen;
|
|
gz = gz*rlen;
|
|
|
|
/* angle */
|
|
vcos = vrx*vsrx + vry*vsry + vrz*vsrz;
|
|
vcos= vec_max(vec_min(vcos, vec_splat_float(1.0f)), vec_splat_float(-1.0f));
|
|
vangle= vacosf(vcos);
|
|
|
|
/* dot */
|
|
vresult.v = (vec_splat_float(n[0])*gx +
|
|
vec_splat_float(n[1])*gy +
|
|
vec_splat_float(n[2])*gz)*vangle;
|
|
|
|
result= (vresult.f[0] + vresult.f[1] + vresult.f[2] + vresult.f[3])*(0.5f/(float)M_PI);
|
|
result= MAX2(result, 0.0f);
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* SSE optimization, acos code doesn't work */
|
|
|
|
#if 0
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
static __m128 sse_approx_acos(__m128 x)
|
|
{
|
|
/* needs a better approximation than taylor expansion of acos, since that
|
|
* gives big erros for near 1.0 values, sqrt(2*x)*acos(1-x) should work
|
|
* better, see http://www.tom.womack.net/projects/sse-fast-arctrig.html */
|
|
|
|
return _mm_set_ps1(1.0f);
|
|
}
|
|
|
|
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
|
|
{
|
|
float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
|
|
float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
|
|
float fresult[4] __attribute__((aligned(16)));
|
|
__m128 qx, qy, qz, rx, ry, rz, rlen, srx, sry, srz, gx, gy, gz, glen, rcos, angle, aresult;
|
|
|
|
/* compute r */
|
|
qx = _mm_set_ps(q3[0], q2[0], q1[0], q0[0]);
|
|
qy = _mm_set_ps(q3[1], q2[1], q1[1], q0[1]);
|
|
qz = _mm_set_ps(q3[2], q2[2], q1[2], q0[2]);
|
|
|
|
rx = qx - _mm_set_ps1(p[0]);
|
|
ry = qy - _mm_set_ps1(p[1]);
|
|
rz = qz - _mm_set_ps1(p[2]);
|
|
|
|
/* normalize r */
|
|
rlen = _mm_rsqrt_ps(rx*rx + ry*ry + rz*rz + _mm_set_ps1(1e-16f));
|
|
rx = rx*rlen;
|
|
ry = ry*rlen;
|
|
rz = rz*rlen;
|
|
|
|
/* cross product */
|
|
srx = _mm_shuffle_ps(rx, rx, _MM_SHUFFLE(0,3,2,1));
|
|
sry = _mm_shuffle_ps(ry, ry, _MM_SHUFFLE(0,3,2,1));
|
|
srz = _mm_shuffle_ps(rz, rz, _MM_SHUFFLE(0,3,2,1));
|
|
|
|
gx = sry*rz - srz*ry;
|
|
gy = srz*rx - srx*rz;
|
|
gz = srx*ry - sry*rx;
|
|
|
|
/* normalize g */
|
|
glen = _mm_rsqrt_ps(gx*gx + gy*gy + gz*gz + _mm_set_ps1(1e-16f));
|
|
gx = gx*glen;
|
|
gy = gy*glen;
|
|
gz = gz*glen;
|
|
|
|
/* compute angle */
|
|
rcos = rx*srx + ry*sry + rz*srz;
|
|
rcos= _mm_max_ps(_mm_min_ps(rcos, _mm_set_ps1(1.0f)), _mm_set_ps1(-1.0f));
|
|
|
|
angle = sse_approx_cos(rcos);
|
|
aresult = (_mm_set_ps1(n[0])*gx + _mm_set_ps1(n[1])*gy + _mm_set_ps1(n[2])*gz)*angle;
|
|
|
|
/* sum together */
|
|
result= (fresult[0] + fresult[1] + fresult[2] + fresult[3])*(0.5f/(float)M_PI);
|
|
result= MAX2(result, 0.0f);
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void ff_normalize(float n[3])
|
|
{
|
|
float d;
|
|
|
|
d= dot_v3v3(n, n);
|
|
|
|
if(d > 1.0e-35F) {
|
|
d= 1.0f/sqrtf(d);
|
|
|
|
n[0] *= d;
|
|
n[1] *= d;
|
|
n[2] *= d;
|
|
}
|
|
}
|
|
|
|
static float ff_quad_form_factor(const float p[3], const float n[3], const float q0[3], const float q1[3], const float q2[3], const float q3[3])
|
|
{
|
|
float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
|
|
float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
|
|
|
|
sub_v3_v3v3(r0, q0, p);
|
|
sub_v3_v3v3(r1, q1, p);
|
|
sub_v3_v3v3(r2, q2, p);
|
|
sub_v3_v3v3(r3, q3, p);
|
|
|
|
ff_normalize(r0);
|
|
ff_normalize(r1);
|
|
ff_normalize(r2);
|
|
ff_normalize(r3);
|
|
|
|
cross_v3_v3v3(g0, r1, r0); ff_normalize(g0);
|
|
cross_v3_v3v3(g1, r2, r1); ff_normalize(g1);
|
|
cross_v3_v3v3(g2, r3, r2); ff_normalize(g2);
|
|
cross_v3_v3v3(g3, r0, r3); ff_normalize(g3);
|
|
|
|
a1= saacosf(dot_v3v3(r0, r1));
|
|
a2= saacosf(dot_v3v3(r1, r2));
|
|
a3= saacosf(dot_v3v3(r2, r3));
|
|
a4= saacosf(dot_v3v3(r3, r0));
|
|
|
|
dot1= dot_v3v3(n, g0);
|
|
dot2= dot_v3v3(n, g1);
|
|
dot3= dot_v3v3(n, g2);
|
|
dot4= dot_v3v3(n, g3);
|
|
|
|
result= (a1*dot1 + a2*dot2 + a3*dot3 + a4*dot4)*0.5f/(float)M_PI;
|
|
result= MAX2(result, 0.0f);
|
|
|
|
return result;
|
|
}
|
|
|
|
float form_factor_hemi_poly(float p[3], float n[3], float v1[3], float v2[3], float v3[3], float v4[3])
|
|
{
|
|
/* computes how much hemisphere defined by point and normal is
|
|
covered by a quad or triangle, cosine weighted */
|
|
float q0[3], q1[3], q2[3], q3[3], contrib= 0.0f;
|
|
|
|
if(ff_visible_quad(p, n, v1, v2, v3, q0, q1, q2, q3))
|
|
contrib += ff_quad_form_factor(p, n, q0, q1, q2, q3);
|
|
|
|
if(v4 && ff_visible_quad(p, n, v1, v3, v4, q0, q1, q2, q3))
|
|
contrib += ff_quad_form_factor(p, n, q0, q1, q2, q3);
|
|
|
|
return contrib;
|
|
}
|