This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_python.cpp
Sergey Sharybin c8d2bc7890 Cycles: Always use guarded allocator of vectors
We don't have vectors re-allocation happening multiple times from inside
a loop anymore, so we can safely switch to a memory guarded allocator for
vectors and keep track on the memory usage at various stages of rendering.

Additionally, when building from inside Blender repository, Cycles will
use Blender's guarded allocator, so actual memory usage will be displayed
in the Space Info header.

There are couple of tricky aspects of the patch:

- TaskScheduler::exit() now explicitly frees memory used by `threads`.
  This is needed because `threads` is a static member which destructor
  isn't getting called on Blender's exit which caused memory leak print
  to happen.

  This shouldn't give any measurable speed issues, reallocation of that
  vector is only one of fewzillion other allocations happening during
  synchronization.

- Use regular guarded malloc (not aligned one). No idea why it was
  made to be aligned in the first place. Perhaps some corner case tests
  or so. Vector was never expected to be aligned anyway. Let's see if
  we'll have actual bugs with this.

Reviewers: dingto, lukasstockner97, juicyfruit, brecht

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D1774
2016-02-12 15:43:26 +01:00

764 lines
21 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <Python.h>
#include "CCL_api.h"
#include "blender_sync.h"
#include "blender_session.h"
#include "util_foreach.h"
#include "util_logging.h"
#include "util_md5.h"
#include "util_opengl.h"
#include "util_path.h"
#include "util_types.h"
#ifdef WITH_OSL
#include "osl.h"
#include <OSL/oslquery.h>
#include <OSL/oslconfig.h>
#endif
CCL_NAMESPACE_BEGIN
namespace {
/* Device list stored static (used by compute_device_list()). */
static ccl::vector<CCLDeviceInfo> device_list;
static ccl::DeviceType device_type = DEVICE_NONE;
/* Flag describing whether debug flags were synchronized from scene. */
bool debug_flags_set = false;
void *pylong_as_voidptr_typesafe(PyObject *object)
{
if(object == Py_None)
return NULL;
return PyLong_AsVoidPtr(object);
}
/* Synchronize debug flags from a given Blender scene.
* Return truth when device list needs invalidation.
*/
bool debug_flags_sync_from_scene(BL::Scene b_scene)
{
DebugFlagsRef flags = DebugFlags();
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
DebugFlags::OpenCL::KernelType opencl_kernel_type = flags.opencl.kernel_type;
/* Synchronize CPU flags. */
flags.cpu.avx2 = get_boolean(cscene, "debug_use_cpu_avx2");
flags.cpu.avx = get_boolean(cscene, "debug_use_cpu_avx");
flags.cpu.sse41 = get_boolean(cscene, "debug_use_cpu_sse41");
flags.cpu.sse3 = get_boolean(cscene, "debug_use_cpu_sse3");
flags.cpu.sse2 = get_boolean(cscene, "debug_use_cpu_sse2");
flags.cpu.qbvh = get_boolean(cscene, "debug_use_qbvh");
/* Synchronize OpenCL kernel type. */
switch(get_enum(cscene, "debug_opencl_kernel_type")) {
case 0:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_DEFAULT;
break;
case 1:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_MEGA;
break;
case 2:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_SPLIT;
break;
}
/* Synchronize OpenCL device type. */
switch(get_enum(cscene, "debug_opencl_device_type")) {
case 0:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
break;
case 1:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ALL;
break;
case 2:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_DEFAULT;
break;
case 3:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_CPU;
break;
case 4:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_GPU;
break;
case 5:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ACCELERATOR;
break;
}
/* Synchronize other OpenCL flags. */
flags.opencl.debug = get_boolean(cscene, "debug_use_opencl_debug");
return flags.opencl.device_type != opencl_device_type ||
flags.opencl.kernel_type != opencl_kernel_type;
}
/* Reset debug flags to default values.
* Return truth when device list needs invalidation.
*/
bool debug_flags_reset()
{
DebugFlagsRef flags = DebugFlags();
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
DebugFlags::OpenCL::KernelType opencl_kernel_type = flags.opencl.kernel_type;
flags.reset();
return flags.opencl.device_type != opencl_device_type ||
flags.opencl.kernel_type != opencl_kernel_type;
}
} /* namespace */
void python_thread_state_save(void **python_thread_state)
{
*python_thread_state = (void*)PyEval_SaveThread();
}
void python_thread_state_restore(void **python_thread_state)
{
PyEval_RestoreThread((PyThreadState*)*python_thread_state);
*python_thread_state = NULL;
}
static const char *PyC_UnicodeAsByte(PyObject *py_str, PyObject **coerce)
{
#ifdef WIN32
/* bug [#31856] oddly enough, Python3.2 --> 3.3 on Windows will throw an
* exception here this needs to be fixed in python:
* see: bugs.python.org/issue15859 */
if(!PyUnicode_Check(py_str)) {
PyErr_BadArgument();
return "";
}
#endif
if((*coerce = PyUnicode_EncodeFSDefault(py_str))) {
return PyBytes_AS_STRING(*coerce);
}
return "";
}
static PyObject *init_func(PyObject * /*self*/, PyObject *args)
{
PyObject *path, *user_path;
int headless;
if(!PyArg_ParseTuple(args, "OOi", &path, &user_path, &headless)) {
return NULL;
}
PyObject *path_coerce = NULL, *user_path_coerce = NULL;
path_init(PyC_UnicodeAsByte(path, &path_coerce),
PyC_UnicodeAsByte(user_path, &user_path_coerce));
Py_XDECREF(path_coerce);
Py_XDECREF(user_path_coerce);
BlenderSession::headless = headless;
VLOG(2) << "Debug flags initialized to:\n"
<< DebugFlags();
Py_RETURN_NONE;
}
static PyObject *exit_func(PyObject * /*self*/, PyObject * /*args*/)
{
ShaderManager::free_memory();
TaskScheduler::free_memory();
Device::free_memory();
device_list.free_memory();
Py_RETURN_NONE;
}
static PyObject *create_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyengine, *pyuserpref, *pydata, *pyscene, *pyregion, *pyv3d, *pyrv3d;
int preview_osl;
if(!PyArg_ParseTuple(args, "OOOOOOOi", &pyengine, &pyuserpref, &pydata, &pyscene,
&pyregion, &pyv3d, &pyrv3d, &preview_osl))
{
return NULL;
}
/* RNA */
PointerRNA engineptr;
RNA_pointer_create(NULL, &RNA_RenderEngine, (void*)PyLong_AsVoidPtr(pyengine), &engineptr);
BL::RenderEngine engine(engineptr);
PointerRNA userprefptr;
RNA_pointer_create(NULL, &RNA_UserPreferences, (void*)PyLong_AsVoidPtr(pyuserpref), &userprefptr);
BL::UserPreferences userpref(userprefptr);
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene scene(sceneptr);
PointerRNA regionptr;
RNA_pointer_create(NULL, &RNA_Region, pylong_as_voidptr_typesafe(pyregion), &regionptr);
BL::Region region(regionptr);
PointerRNA v3dptr;
RNA_pointer_create(NULL, &RNA_SpaceView3D, pylong_as_voidptr_typesafe(pyv3d), &v3dptr);
BL::SpaceView3D v3d(v3dptr);
PointerRNA rv3dptr;
RNA_pointer_create(NULL, &RNA_RegionView3D, pylong_as_voidptr_typesafe(pyrv3d), &rv3dptr);
BL::RegionView3D rv3d(rv3dptr);
/* create session */
BlenderSession *session;
if(rv3d) {
/* interactive viewport session */
int width = region.width();
int height = region.height();
session = new BlenderSession(engine, userpref, data, scene, v3d, rv3d, width, height);
}
else {
/* override some settings for preview */
if(engine.is_preview()) {
PointerRNA cscene = RNA_pointer_get(&sceneptr, "cycles");
RNA_boolean_set(&cscene, "shading_system", preview_osl);
RNA_boolean_set(&cscene, "use_progressive_refine", true);
}
/* offline session or preview render */
session = new BlenderSession(engine, userpref, data, scene);
}
python_thread_state_save(&session->python_thread_state);
session->create();
python_thread_state_restore(&session->python_thread_state);
return PyLong_FromVoidPtr(session);
}
static PyObject *free_func(PyObject * /*self*/, PyObject *value)
{
delete (BlenderSession*)PyLong_AsVoidPtr(value);
Py_RETURN_NONE;
}
static PyObject *render_func(PyObject * /*self*/, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->render();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
/* pixel_array and result passed as pointers */
static PyObject *bake_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pyobject;
PyObject *pypixel_array, *pyresult;
const char *pass_type;
int num_pixels, depth, object_id, pass_filter;
if(!PyArg_ParseTuple(args, "OOsiiOiiO", &pysession, &pyobject, &pass_type, &pass_filter, &object_id, &pypixel_array, &num_pixels, &depth, &pyresult))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA objectptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyobject), &objectptr);
BL::Object b_object(objectptr);
void *b_result = PyLong_AsVoidPtr(pyresult);
PointerRNA bakepixelptr;
RNA_pointer_create(NULL, &RNA_BakePixel, PyLong_AsVoidPtr(pypixel_array), &bakepixelptr);
BL::BakePixel b_bake_pixel(bakepixelptr);
python_thread_state_save(&session->python_thread_state);
session->bake(b_object, pass_type, pass_filter, object_id, b_bake_pixel, (size_t)num_pixels, depth, (float *)b_result);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *draw_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pyv3d, *pyrv3d;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pyv3d, &pyrv3d))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
if(PyLong_AsVoidPtr(pyrv3d)) {
/* 3d view drawing */
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
session->draw(viewport[2], viewport[3]);
}
Py_RETURN_NONE;
}
static PyObject *reset_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydata, *pyscene;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pydata, &pyscene))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
python_thread_state_save(&session->python_thread_state);
session->reset_session(b_data, b_scene);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *sync_func(PyObject * /*self*/, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->synchronize();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *available_devices_func(PyObject * /*self*/, PyObject * /*args*/)
{
vector<DeviceInfo>& devices = Device::available_devices();
PyObject *ret = PyTuple_New(devices.size());
for(size_t i = 0; i < devices.size(); i++) {
DeviceInfo& device = devices[i];
PyTuple_SET_ITEM(ret, i, PyUnicode_FromString(device.description.c_str()));
}
return ret;
}
#ifdef WITH_OSL
static PyObject *osl_update_node_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pynodegroup, *pynode;
const char *filepath = NULL;
if(!PyArg_ParseTuple(args, "OOs", &pynodegroup, &pynode, &filepath))
return NULL;
/* RNA */
PointerRNA nodeptr;
RNA_pointer_create((ID*)PyLong_AsVoidPtr(pynodegroup), &RNA_ShaderNodeScript, (void*)PyLong_AsVoidPtr(pynode), &nodeptr);
BL::ShaderNodeScript b_node(nodeptr);
/* update bytecode hash */
string bytecode = b_node.bytecode();
if(!bytecode.empty()) {
MD5Hash md5;
md5.append((const uint8_t*)bytecode.c_str(), bytecode.size());
b_node.bytecode_hash(md5.get_hex().c_str());
}
else
b_node.bytecode_hash("");
/* query from file path */
OSL::OSLQuery query;
if(!OSLShaderManager::osl_query(query, filepath))
Py_RETURN_FALSE;
/* add new sockets from parameters */
set<void*> used_sockets;
for(int i = 0; i < query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = query.getparam(i);
/* skip unsupported types */
if(param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
/* determine socket type */
std::string socket_type;
BL::NodeSocket::type_enum data_type = BL::NodeSocket::type_VALUE;
float4 default_float4 = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
float default_float = 0.0f;
int default_int = 0;
std::string default_string = "";
if(param->isclosure) {
socket_type = "NodeSocketShader";
data_type = BL::NodeSocket::type_SHADER;
}
else if(param->type.vecsemantics == TypeDesc::COLOR) {
socket_type = "NodeSocketColor";
data_type = BL::NodeSocket::type_RGBA;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.vecsemantics == TypeDesc::POINT ||
param->type.vecsemantics == TypeDesc::VECTOR ||
param->type.vecsemantics == TypeDesc::NORMAL)
{
socket_type = "NodeSocketVector";
data_type = BL::NodeSocket::type_VECTOR;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.aggregate == TypeDesc::SCALAR) {
if(param->type.basetype == TypeDesc::INT) {
socket_type = "NodeSocketInt";
data_type = BL::NodeSocket::type_INT;
if(param->validdefault)
default_int = param->idefault[0];
}
else if(param->type.basetype == TypeDesc::FLOAT) {
socket_type = "NodeSocketFloat";
data_type = BL::NodeSocket::type_VALUE;
if(param->validdefault)
default_float = param->fdefault[0];
}
else if(param->type.basetype == TypeDesc::STRING) {
socket_type = "NodeSocketString";
data_type = BL::NodeSocket::type_STRING;
if(param->validdefault)
default_string = param->sdefault[0];
}
else
continue;
}
else
continue;
/* find socket socket */
BL::NodeSocket b_sock(PointerRNA_NULL);
if(param->isoutput) {
b_sock = b_node.outputs[param->name.string()];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.outputs.remove(b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
else {
b_sock = b_node.inputs[param->name.string()];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.inputs.remove(b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
if(!b_sock) {
/* create new socket */
if(param->isoutput)
b_sock = b_node.outputs.create(socket_type.c_str(), param->name.c_str(), param->name.c_str());
else
b_sock = b_node.inputs.create(socket_type.c_str(), param->name.c_str(), param->name.c_str());
/* set default value */
if(data_type == BL::NodeSocket::type_VALUE) {
set_float(b_sock.ptr, "default_value", default_float);
}
else if(data_type == BL::NodeSocket::type_INT) {
set_int(b_sock.ptr, "default_value", default_int);
}
else if(data_type == BL::NodeSocket::type_RGBA) {
set_float4(b_sock.ptr, "default_value", default_float4);
}
else if(data_type == BL::NodeSocket::type_VECTOR) {
set_float3(b_sock.ptr, "default_value", float4_to_float3(default_float4));
}
else if(data_type == BL::NodeSocket::type_STRING) {
set_string(b_sock.ptr, "default_value", default_string);
}
}
used_sockets.insert(b_sock.ptr.data);
}
/* remove unused parameters */
bool removed;
do {
BL::Node::inputs_iterator b_input;
BL::Node::outputs_iterator b_output;
removed = false;
for(b_node.inputs.begin(b_input); b_input != b_node.inputs.end(); ++b_input) {
if(used_sockets.find(b_input->ptr.data) == used_sockets.end()) {
b_node.inputs.remove(*b_input);
removed = true;
break;
}
}
for(b_node.outputs.begin(b_output); b_output != b_node.outputs.end(); ++b_output) {
if(used_sockets.find(b_output->ptr.data) == used_sockets.end()) {
b_node.outputs.remove(*b_output);
removed = true;
break;
}
}
} while(removed);
Py_RETURN_TRUE;
}
static PyObject *osl_compile_func(PyObject * /*self*/, PyObject *args)
{
const char *inputfile = NULL, *outputfile = NULL;
if(!PyArg_ParseTuple(args, "ss", &inputfile, &outputfile))
return NULL;
/* return */
if(!OSLShaderManager::osl_compile(inputfile, outputfile))
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
#endif
static PyObject *system_info_func(PyObject * /*self*/, PyObject * /*value*/)
{
string system_info = Device::device_capabilities();
return PyUnicode_FromString(system_info.c_str());
}
#ifdef WITH_OPENCL
static PyObject *opencl_disable_func(PyObject * /*self*/, PyObject * /*value*/)
{
VLOG(2) << "Disabling OpenCL platform.";
DebugFlags().opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
Py_RETURN_NONE;
}
#endif
static PyObject *debug_flags_update_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyscene;
if(!PyArg_ParseTuple(args, "O", &pyscene)) {
return NULL;
}
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
if(debug_flags_sync_from_scene(b_scene)) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
VLOG(2) << "Debug flags set to:\n"
<< DebugFlags();
debug_flags_set = true;
Py_RETURN_NONE;
}
static PyObject *debug_flags_reset_func(PyObject * /*self*/, PyObject * /*args*/)
{
if(debug_flags_reset()) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
if(debug_flags_set) {
VLOG(2) << "Debug flags reset to:\n"
<< DebugFlags();
debug_flags_set = false;
}
Py_RETURN_NONE;
}
static PyMethodDef methods[] = {
{"init", init_func, METH_VARARGS, ""},
{"exit", exit_func, METH_VARARGS, ""},
{"create", create_func, METH_VARARGS, ""},
{"free", free_func, METH_O, ""},
{"render", render_func, METH_O, ""},
{"bake", bake_func, METH_VARARGS, ""},
{"draw", draw_func, METH_VARARGS, ""},
{"sync", sync_func, METH_O, ""},
{"reset", reset_func, METH_VARARGS, ""},
#ifdef WITH_OSL
{"osl_update_node", osl_update_node_func, METH_VARARGS, ""},
{"osl_compile", osl_compile_func, METH_VARARGS, ""},
#endif
{"available_devices", available_devices_func, METH_NOARGS, ""},
{"system_info", system_info_func, METH_NOARGS, ""},
#ifdef WITH_OPENCL
{"opencl_disable", opencl_disable_func, METH_NOARGS, ""},
#endif
{"debug_flags_update", debug_flags_update_func, METH_VARARGS, ""},
{"debug_flags_reset", debug_flags_reset_func, METH_NOARGS, ""},
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"_cycles",
"Blender cycles render integration",
-1,
methods,
NULL, NULL, NULL, NULL
};
static CCLDeviceInfo *compute_device_list(DeviceType type)
{
/* create device list if it's not already done */
if(type != device_type) {
ccl::vector<DeviceInfo>& devices = ccl::Device::available_devices();
device_type = type;
device_list.clear();
/* add devices */
int i = 0;
foreach(DeviceInfo& info, devices) {
if(info.type == type ||
(info.type == DEVICE_MULTI && info.multi_devices[0].type == type))
{
CCLDeviceInfo cinfo;
strncpy(cinfo.identifier, info.id.c_str(), sizeof(cinfo.identifier));
cinfo.identifier[info.id.length()] = '\0';
strncpy(cinfo.name, info.description.c_str(), sizeof(cinfo.name));
cinfo.name[info.description.length()] = '\0';
cinfo.value = i++;
device_list.push_back(cinfo);
}
}
/* null terminate */
if(!device_list.empty()) {
CCLDeviceInfo cinfo = {"", "", 0};
device_list.push_back(cinfo);
}
}
return (device_list.empty())? NULL: &device_list[0];
}
CCL_NAMESPACE_END
void *CCL_python_module_init()
{
PyObject *mod = PyModule_Create(&ccl::module);
#ifdef WITH_OSL
/* TODO(sergey): This gives us library we've been linking against.
* In theory with dynamic OSL library it might not be
* accurate, but there's nothing in OSL API which we
* might use to get version in runtime.
*/
int curversion = OSL_LIBRARY_VERSION_CODE;
PyModule_AddObject(mod, "with_osl", Py_True);
Py_INCREF(Py_True);
PyModule_AddObject(mod, "osl_version",
Py_BuildValue("(iii)",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
PyModule_AddObject(mod, "osl_version_string",
PyUnicode_FromFormat("%2d, %2d, %2d",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
#else
PyModule_AddObject(mod, "with_osl", Py_False);
Py_INCREF(Py_False);
PyModule_AddStringConstant(mod, "osl_version", "unknown");
PyModule_AddStringConstant(mod, "osl_version_string", "unknown");
#endif
#ifdef WITH_NETWORK
PyModule_AddObject(mod, "with_network", Py_True);
Py_INCREF(Py_True);
#else /* WITH_NETWORK */
PyModule_AddObject(mod, "with_network", Py_False);
Py_INCREF(Py_False);
#endif /* WITH_NETWORK */
return (void*)mod;
}
CCLDeviceInfo *CCL_compute_device_list(int device_type)
{
ccl::DeviceType type;
switch(device_type) {
case 0:
type = ccl::DEVICE_CUDA;
break;
case 1:
type = ccl::DEVICE_OPENCL;
break;
case 2:
type = ccl::DEVICE_NETWORK;
break;
default:
type = ccl::DEVICE_NONE;
break;
}
return ccl::compute_device_list(type);
}