- added new mathutils.Color() type, use with rna so we can do for eg: material.diffuse_color.r = 1.0 # also has hsv access material.diffuse_color.s = 0.6 - made Mathutils and Geometry module names lowercase.
		
			
				
	
	
		
			842 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			842 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This is a new part of Blender.
 | |
|  *
 | |
|  * Contributor(s): Joseph Gilbert, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "geometry.h"
 | |
| 
 | |
| /* Used for PolyFill */
 | |
| #include "BKE_displist.h"
 | |
| #include "MEM_guardedalloc.h"
 | |
| #include "BLI_blenlib.h"
 | |
|  
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BKE_curve.h"
 | |
| #include "BLI_boxpack2d.h"
 | |
| #include "BLI_math.h"
 | |
| 
 | |
| #define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
 | |
| #define eps 0.000001
 | |
| 
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| static char M_Geometry_doc[] = "The Blender geometry module\n\n";
 | |
| static char M_Geometry_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
 | |
| static char M_Geometry_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
 | |
| static char M_Geometry_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
 | |
| static char M_Geometry_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
 | |
| static char M_Geometry_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
 | |
| static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
 | |
| static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
 | |
| static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, float) for the point on the line, and the bool so you can know if the point was between the 2 points";
 | |
| static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) - takes 4 vectors, one is the point and the next 3 define the triangle, only the x and y are used from the vectors";
 | |
| static char M_Geometry_PointInQuad2D_doc[] = "(pt, quad_p1, quad_p2, quad_p3, quad_p4) - takes 5 vectors, one is the point and the next 4 define the quad, only the x and y are used from the vectors";
 | |
| static char M_Geometry_BoxPack2D_doc[] = "";
 | |
| static char M_Geometry_BezierInterp_doc[] = "";
 | |
| 
 | |
| //---------------------------------INTERSECTION FUNCTIONS--------------------
 | |
| //----------------------------------geometry.Intersect() -------------------
 | |
| static PyObject *M_Geometry_Intersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
 | |
| 	float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
 | |
| 	float det, inv_det, u, v, t;
 | |
| 	int clip = 1;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
 | |
| 		return NULL;
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	VECCOPY(dir, ray->vec);
 | |
| 	normalize_v3(dir);
 | |
| 
 | |
| 	VECCOPY(orig, ray_off->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v1 */
 | |
| 	sub_v3_v3v3(e1, v2, v1);
 | |
| 	sub_v3_v3v3(e2, v3, v1);
 | |
| 
 | |
| 	/* begin calculating determinant - also used to calculated U parameter */
 | |
| 	cross_v3_v3v3(pvec, dir, e2);
 | |
| 
 | |
| 	/* if determinant is near zero, ray lies in plane of triangle */
 | |
| 	det = dot_v3v3(e1, pvec);
 | |
| 
 | |
| 	if (det > -0.000001 && det < 0.000001) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	inv_det = 1.0f / det;
 | |
| 
 | |
| 	/* calculate distance from v1 to ray origin */
 | |
| 	sub_v3_v3v3(tvec, orig, v1);
 | |
| 
 | |
| 	/* calculate U parameter and test bounds */
 | |
| 	u = dot_v3v3(tvec, pvec) * inv_det;
 | |
| 	if (clip && (u < 0.0f || u > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare to test the V parameter */
 | |
| 	cross_v3_v3v3(qvec, tvec, e1);
 | |
| 
 | |
| 	/* calculate V parameter and test bounds */
 | |
| 	v = dot_v3v3(dir, qvec) * inv_det;
 | |
| 
 | |
| 	if (clip && (v < 0.0f || u + v > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate t, ray intersects triangle */
 | |
| 	t = dot_v3v3(e2, qvec) * inv_det;
 | |
| 
 | |
| 	mul_v3_fl(dir, t);
 | |
| 	add_v3_v3v3(pvec, orig, dir);
 | |
| 
 | |
| 	return newVectorObject(pvec, 3, Py_NEW, NULL);
 | |
| }
 | |
| //----------------------------------geometry.LineIntersect() -------------------
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| static PyObject *M_Geometry_LineIntersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	PyObject * tuple;
 | |
| 	VectorObject *vec1, *vec2, *vec3, *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
 | |
| 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if( vec1->size == 3 || vec1->size == 2) {
 | |
| 		int result;
 | |
| 
 | |
| 		if (vec1->size == 3) {
 | |
| 			VECCOPY(v1, vec1->vec);
 | |
| 			VECCOPY(v2, vec2->vec);
 | |
| 			VECCOPY(v3, vec3->vec);
 | |
| 			VECCOPY(v4, vec4->vec);
 | |
| 		}
 | |
| 		else {
 | |
| 			v1[0] = vec1->vec[0];
 | |
| 			v1[1] = vec1->vec[1];
 | |
| 			v1[2] = 0.0f;
 | |
| 
 | |
| 			v2[0] = vec2->vec[0];
 | |
| 			v2[1] = vec2->vec[1];
 | |
| 			v2[2] = 0.0f;
 | |
| 
 | |
| 			v3[0] = vec3->vec[0];
 | |
| 			v3[1] = vec3->vec[1];
 | |
| 			v3[2] = 0.0f;
 | |
| 
 | |
| 			v4[0] = vec4->vec[0];
 | |
| 			v4[1] = vec4->vec[1];
 | |
| 			v4[2] = 0.0f;
 | |
| 		}
 | |
| 
 | |
| 		result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
 | |
| 
 | |
| 		if (result == 0) {
 | |
| 			/* colinear */
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		else {
 | |
| 			tuple = PyTuple_New( 2 );
 | |
| 			PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
 | |
| 			PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
 | |
| 			return tuple;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---------------------------------NORMALS FUNCTIONS--------------------
 | |
| //----------------------------------geometry.QuadNormal() -------------------
 | |
| static PyObject *M_Geometry_QuadNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1;
 | |
| 	VectorObject *vec2;
 | |
| 	VectorObject *vec3;
 | |
| 	VectorObject *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
 | |
| 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != 3 ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
 | |
| 		return NULL;
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 	VECCOPY(v4, vec4->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	sub_v3_v3v3(e1, v1, v2);
 | |
| 	sub_v3_v3v3(e2, v3, v2);
 | |
| 
 | |
| 	cross_v3_v3v3(n1, e2, e1);
 | |
| 	normalize_v3(n1);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v4 */
 | |
| 	sub_v3_v3v3(e1, v3, v4);
 | |
| 	sub_v3_v3v3(e2, v1, v4);
 | |
| 
 | |
| 	cross_v3_v3v3(n2, e2, e1);
 | |
| 	normalize_v3(n2);
 | |
| 
 | |
| 	/* adding and averaging the normals of both triangles */
 | |
| 	add_v3_v3v3(n1, n2, n1);
 | |
| 	normalize_v3(n1);
 | |
| 
 | |
| 	return newVectorObject(n1, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| //----------------------------geometry.TriangleNormal() -------------------
 | |
| static PyObject *M_Geometry_TriangleNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != 3 ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
 | |
| 		return NULL;
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	sub_v3_v3v3(e1, v1, v2);
 | |
| 	sub_v3_v3v3(e2, v3, v2);
 | |
| 
 | |
| 	cross_v3_v3v3(n, e2, e1);
 | |
| 	normalize_v3(n);
 | |
| 
 | |
| 	return newVectorObject(n, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| //--------------------------------- AREA FUNCTIONS--------------------
 | |
| //----------------------------------geometry.TriangleArea() -------------------
 | |
| static PyObject *M_Geometry_TriangleArea( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 		( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (vec1->size == 3) {
 | |
| 		VECCOPY(v1, vec1->vec);
 | |
| 		VECCOPY(v2, vec2->vec);
 | |
| 		VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 		return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) );
 | |
| 	}
 | |
| 	else if (vec1->size == 2) {
 | |
| 		v1[0] = vec1->vec[0];
 | |
| 		v1[1] = vec1->vec[1];
 | |
| 
 | |
| 		v2[0] = vec2->vec[0];
 | |
| 		v2[1] = vec2->vec[1];
 | |
| 
 | |
| 		v3[0] = vec3->vec[0];
 | |
| 		v3[1] = vec3->vec[1];
 | |
| 
 | |
| 		return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) );
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*----------------------------------geometry.PolyFill() -------------------*/
 | |
| /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
 | |
| static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
 | |
| {
 | |
| 	PyObject *tri_list; /*return this list of tri's */
 | |
| 	PyObject *polyLine, *polyVec;
 | |
| 	int i, len_polylines, len_polypoints, ls_error = 0;
 | |
| 	
 | |
| 	/* display listbase */
 | |
| 	ListBase dispbase={NULL, NULL};
 | |
| 	DispList *dl;
 | |
| 	float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
 | |
| 	int index, *dl_face, totpoints=0;
 | |
| 	
 | |
| 	
 | |
| 	dispbase.first= dispbase.last= NULL;
 | |
| 	
 | |
| 	
 | |
| 	if(!PySequence_Check(polyLineSeq)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected a sequence of poly lines" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	len_polylines = PySequence_Size( polyLineSeq );
 | |
| 	
 | |
| 	for( i = 0; i < len_polylines; ++i ) {
 | |
| 		polyLine= PySequence_GetItem( polyLineSeq, i );
 | |
| 		if (!PySequence_Check(polyLine)) {
 | |
| 			freedisplist(&dispbase);
 | |
| 			Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
 | |
| 			PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's" );
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		len_polypoints= PySequence_Size( polyLine );
 | |
| 		if (len_polypoints>0) { /* dont bother adding edges as polylines */
 | |
| #if 0
 | |
| 			if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
 | |
| 				freedisplist(&dispbase);
 | |
| 				Py_DECREF(polyLine);
 | |
| 				PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
 | |
| 				return NULL;
 | |
| 			}
 | |
| #endif
 | |
| 			dl= MEM_callocN(sizeof(DispList), "poly disp");
 | |
| 			BLI_addtail(&dispbase, dl);
 | |
| 			dl->type= DL_INDEX3;
 | |
| 			dl->nr= len_polypoints;
 | |
| 			dl->type= DL_POLY;
 | |
| 			dl->parts= 1; /* no faces, 1 edge loop */
 | |
| 			dl->col= 0; /* no material */
 | |
| 			dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
 | |
| 			dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
 | |
| 			
 | |
| 			for( index = 0; index<len_polypoints; ++index, fp+=3) {
 | |
| 				polyVec= PySequence_GetItem( polyLine, index );
 | |
| 				if(VectorObject_Check(polyVec)) {
 | |
| 					
 | |
| 					if(!BaseMath_ReadCallback((VectorObject *)polyVec))
 | |
| 						ls_error= 1;
 | |
| 					
 | |
| 					fp[0] = ((VectorObject *)polyVec)->vec[0];
 | |
| 					fp[1] = ((VectorObject *)polyVec)->vec[1];
 | |
| 					if( ((VectorObject *)polyVec)->size > 2 )
 | |
| 						fp[2] = ((VectorObject *)polyVec)->vec[2];
 | |
| 					else
 | |
| 						fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
 | |
| 				}
 | |
| 				else {
 | |
| 					ls_error= 1;
 | |
| 				}
 | |
| 				
 | |
| 				totpoints++;
 | |
| 				Py_DECREF(polyVec);
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(polyLine);
 | |
| 	}
 | |
| 	
 | |
| 	if(ls_error) {
 | |
| 		freedisplist(&dispbase); /* possible some dl was allocated */
 | |
| 		PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (totpoints) {
 | |
| 		/* now make the list to return */
 | |
| 		filldisplist(&dispbase, &dispbase);
 | |
| 		
 | |
| 		/* The faces are stored in a new DisplayList
 | |
| 		thats added to the head of the listbase */
 | |
| 		dl= dispbase.first; 
 | |
| 		
 | |
| 		tri_list= PyList_New(dl->parts);
 | |
| 		if( !tri_list ) {
 | |
| 			freedisplist(&dispbase);
 | |
| 			PyErr_SetString( PyExc_RuntimeError, "geometry.PolyFill failed to make a new list" );
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		index= 0;
 | |
| 		dl_face= dl->index;
 | |
| 		while(index < dl->parts) {
 | |
| 			PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
 | |
| 			dl_face+= 3;
 | |
| 			index++;
 | |
| 		}
 | |
| 		freedisplist(&dispbase);
 | |
| 	} else {
 | |
| 		/* no points, do this so scripts dont barf */
 | |
| 		freedisplist(&dispbase); /* possible some dl was allocated */
 | |
| 		tri_list= PyList_New(0);
 | |
| 	}
 | |
| 	
 | |
| 	return tri_list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
 | |
| 	float a1x, a1y, a2x, a2y,  b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2];
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!O!",
 | |
| 	  &vector_Type, &line_a1,
 | |
| 	  &vector_Type, &line_a2,
 | |
| 	  &vector_Type, &line_b1,
 | |
| 	  &vector_Type, &line_b2)
 | |
| 	) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	a1x= line_a1->vec[0];
 | |
| 	a1y= line_a1->vec[1];
 | |
| 	a2x= line_a2->vec[0];
 | |
| 	a2y= line_a2->vec[1];
 | |
| 
 | |
| 	b1x= line_b1->vec[0];
 | |
| 	b1y= line_b1->vec[1];
 | |
| 	b2x= line_b2->vec[0];
 | |
| 	b2y= line_b2->vec[1];
 | |
| 	
 | |
| 	if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
 | |
| 	   (MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
 | |
| 	   (MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
 | |
| 	   (MAX2(a1y, a2y) < MIN2(b1y, b2y))  ) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	/* Make sure the hoz/vert line comes first. */
 | |
| 	if (fabs(b1x - b2x) < eps || fabs(b1y - b2y) < eps) {
 | |
| 		SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
 | |
| 		SWAP_FLOAT(a1y, b1y, xi);
 | |
| 		SWAP_FLOAT(a2x, b2x, xi);
 | |
| 		SWAP_FLOAT(a2y, b2y, xi);
 | |
| 	}
 | |
| 	
 | |
| 	if (fabs(a1x-a2x) < eps) { /* verticle line */
 | |
| 		if (fabs(b1x-b2x) < eps){ /*verticle second line */
 | |
| 			Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
 | |
| 		}
 | |
| 		else if (fabs(b1y-b2y) < eps) {
 | |
| 			/*X of vert, Y of hoz. no calculation needed */
 | |
| 			newvec[0]= a1x;
 | |
| 			newvec[1]= b1y;
 | |
| 			return newVectorObject(newvec, 2, Py_NEW, NULL);
 | |
| 		}
 | |
| 		
 | |
| 		yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
 | |
| 		
 | |
| 		if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
 | |
| 			Py_RETURN_NONE;
 | |
| 		} else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		newvec[0]= a1x;
 | |
| 		newvec[1]= yi;
 | |
| 		return newVectorObject(newvec, 2, Py_NEW, NULL);
 | |
| 	} else if (fabs(a2y-a1y) < eps) {  /* hoz line1 */
 | |
| 		if (fabs(b2y-b1y) < eps) { /*hoz line2*/
 | |
| 			Py_RETURN_NONE; /*2 hoz lines dont intersect*/
 | |
| 		}
 | |
| 		
 | |
| 		/* Can skip vert line check for seg 2 since its covered above. */
 | |
| 		xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
 | |
| 		if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
 | |
| 			Py_RETURN_NONE;
 | |
| 		} else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		newvec[0]= xi;
 | |
| 		newvec[1]= a1y;
 | |
| 		return newVectorObject(newvec, 2, Py_NEW, NULL);
 | |
| 	}
 | |
| 	
 | |
| 	b1 = (a2y-a1y)/(a2x-a1x);
 | |
| 	b2 = (b2y-b1y)/(b2x-b1x);
 | |
| 	a1 = a1y-b1*a1x;
 | |
| 	a2 = b1y-b2*b1x;
 | |
| 	
 | |
| 	if (b1 - b2 == 0.0) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	
 | |
| 	xi = - (a1-a2)/(b1-b2);
 | |
| 	yi = a1+b1*xi;
 | |
| 	if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
 | |
| 		newvec[0]= xi;
 | |
| 		newvec[1]= yi;
 | |
| 		return newVectorObject(newvec, 2, Py_NEW, NULL);
 | |
| 	}
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *pt, *line_1, *line_2;
 | |
| 	float pt_in[3], pt_out[3], l1[3], l2[3];
 | |
| 	float lambda;
 | |
| 	PyObject *ret;
 | |
| 	
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!",
 | |
| 	&vector_Type, &pt,
 | |
| 	&vector_Type, &line_1,
 | |
| 	&vector_Type, &line_2)
 | |
| 	  ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(pt) || !BaseMath_ReadCallback(line_1) || !BaseMath_ReadCallback(line_2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	/* accept 2d verts */
 | |
| 	if (pt->size==3) { VECCOPY(pt_in, pt->vec);}
 | |
| 	else { pt_in[2]=0.0;	VECCOPY2D(pt_in, pt->vec) }
 | |
| 	
 | |
| 	if (line_1->size==3) { VECCOPY(l1, line_1->vec);}
 | |
| 	else { l1[2]=0.0;	VECCOPY2D(l1, line_1->vec) }
 | |
| 	
 | |
| 	if (line_2->size==3) { VECCOPY(l2, line_2->vec);}
 | |
| 	else { l2[2]=0.0;	VECCOPY2D(l2, line_2->vec) }
 | |
| 	
 | |
| 	/* do the calculation */
 | |
| 	lambda = closest_to_line_v3( pt_out,pt_in, l1, l2);
 | |
| 	
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) );
 | |
| 	PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
 | |
| 	
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!O!",
 | |
| 	  &vector_Type, &pt_vec,
 | |
| 	  &vector_Type, &tri_p1,
 | |
| 	  &vector_Type, &tri_p2,
 | |
| 	  &vector_Type, &tri_p3)
 | |
| 	) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(tri_p1) || !BaseMath_ReadCallback(tri_p2) || !BaseMath_ReadCallback(tri_p3))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
 | |
| }
 | |
| 
 | |
| static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
 | |
| 	
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
 | |
| 	  &vector_Type, &pt_vec,
 | |
| 	  &vector_Type, &quad_p1,
 | |
| 	  &vector_Type, &quad_p2,
 | |
| 	  &vector_Type, &quad_p3,
 | |
| 	  &vector_Type, &quad_p4)
 | |
| 	) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(quad_p1) || !BaseMath_ReadCallback(quad_p2) || !BaseMath_ReadCallback(quad_p3) || !BaseMath_ReadCallback(quad_p4))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
 | |
| }
 | |
| 
 | |
| static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
 | |
| {
 | |
| 	int len, i;
 | |
| 	PyObject *list_item, *item_1, *item_2;
 | |
| 	boxPack *box;
 | |
| 	
 | |
| 	
 | |
| 	/* Error checking must alredy be done */
 | |
| 	if( !PyList_Check( value ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	len = PyList_Size( value );
 | |
| 	
 | |
| 	(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
 | |
| 	
 | |
| 	
 | |
| 	for( i = 0; i < len; i++ ) {
 | |
| 		list_item = PyList_GET_ITEM( value, i );
 | |
| 		if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
 | |
| 			return -1;
 | |
| 		}
 | |
| 		
 | |
| 		box = (*boxarray)+i;
 | |
| 		
 | |
| 		item_1 = PyList_GET_ITEM(list_item, 2);
 | |
| 		item_2 = PyList_GET_ITEM(list_item, 3);
 | |
| 		
 | |
| 		if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString( PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
 | |
| 			return -1;
 | |
| 		}
 | |
| 		
 | |
| 		box->w =  (float)PyFloat_AsDouble( item_1 );
 | |
| 		box->h =  (float)PyFloat_AsDouble( item_2 );
 | |
| 		box->index = i;
 | |
| 		/* verts will be added later */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
 | |
| {
 | |
| 	int len, i;
 | |
| 	PyObject *list_item;
 | |
| 	boxPack *box;
 | |
| 	
 | |
| 	len = PyList_Size( value );
 | |
| 	
 | |
| 	for( i = 0; i < len; i++ ) {
 | |
| 		box = (*boxarray)+i;
 | |
| 		list_item = PyList_GET_ITEM( value, box->index );
 | |
| 		PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
 | |
| 		PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
 | |
| 	}
 | |
| 	MEM_freeN(*boxarray);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * boxlist )
 | |
| {
 | |
| 	boxPack *boxarray = NULL;
 | |
| 	float tot_width, tot_height;
 | |
| 	int len;
 | |
| 	int error;
 | |
| 	
 | |
| 	if(!PyList_Check(boxlist)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	len = PyList_Size( boxlist );
 | |
| 	
 | |
| 	if (!len)
 | |
| 		return Py_BuildValue( "ff", 0.0, 0.0);
 | |
| 	
 | |
| 	error = boxPack_FromPyObject(boxlist, &boxarray);
 | |
| 	if (error!=0)	return NULL;
 | |
| 	
 | |
| 	/* Non Python function */
 | |
| 	boxPack2D(boxarray, len, &tot_width, &tot_height);
 | |
| 	
 | |
| 	boxPack_ToPyObject(boxlist, &boxarray);
 | |
| 	
 | |
| 	return Py_BuildValue( "ff", tot_width, tot_height);
 | |
| }
 | |
| 
 | |
| static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
 | |
| 	int resolu;
 | |
| 	int dims;
 | |
| 	int i;
 | |
| 	float *coord_array, *fp;
 | |
| 	PyObject *list;
 | |
| 	
 | |
| 	float k1[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float h1[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float k2[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	float h2[4] = {0.0, 0.0, 0.0, 0.0};
 | |
| 	
 | |
| 	
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
 | |
| 	  &vector_Type, &vec_k1,
 | |
| 	  &vector_Type, &vec_h1,
 | |
| 	  &vector_Type, &vec_h2,
 | |
| 	  &vector_Type, &vec_k2, &resolu) || (resolu<=1)
 | |
| 	) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types and an int greater then 1\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec_k1) || !BaseMath_ReadCallback(vec_h1) || !BaseMath_ReadCallback(vec_k2) || !BaseMath_ReadCallback(vec_h2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
 | |
| 	
 | |
| 	for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
 | |
| 	for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
 | |
| 	for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
 | |
| 	for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
 | |
| 	
 | |
| 	coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
 | |
| 	for(i=0; i<dims; i++) {
 | |
| 		forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, sizeof(float)*dims);
 | |
| 	}
 | |
| 	
 | |
| 	list= PyList_New(resolu);
 | |
| 	fp= coord_array;
 | |
| 	for(i=0; i<resolu; i++, fp= fp+dims) {
 | |
| 		PyList_SET_ITEM(list, i, newVectorObject(fp, dims, Py_NEW, NULL));
 | |
| 	}
 | |
| 	MEM_freeN(coord_array);
 | |
| 	return list;
 | |
| }
 | |
| 
 | |
| static PyObject *M_Geometry_BarycentricTransform(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec_pt;
 | |
| 	VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
 | |
| 	VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
 | |
| 	float vec[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple ( args, "O!O!O!O!O!O!O!",
 | |
| 	  &vector_Type, &vec_pt,
 | |
| 	  &vector_Type, &vec_t1_src,
 | |
| 	  &vector_Type, &vec_t2_src,
 | |
| 	  &vector_Type, &vec_t3_src,
 | |
| 	  &vector_Type, &vec_t1_tar,
 | |
| 	  &vector_Type, &vec_t2_tar,
 | |
| 	  &vector_Type, &vec_t3_tar) || (	vec_pt->size != 3 ||
 | |
| 										vec_t1_src->size != 3 ||
 | |
| 										vec_t2_src->size != 3 ||
 | |
| 										vec_t3_src->size != 3 ||
 | |
| 										vec_t1_tar->size != 3 ||
 | |
| 										vec_t2_tar->size != 3 ||
 | |
| 										vec_t3_tar->size != 3)
 | |
| 	) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 7, 3D vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	barycentric_transform(vec, vec_pt->vec,
 | |
| 			vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
 | |
| 			vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
 | |
| 
 | |
| 	return newVectorObject(vec, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| struct PyMethodDef M_Geometry_methods[] = {
 | |
| 	{"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc},
 | |
| 	{"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc},
 | |
| 	{"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc},
 | |
| 	{"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc},
 | |
| 	{"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc},
 | |
| 	{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
 | |
| 	{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
 | |
| 	{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
 | |
| 	{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
 | |
| 	{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
 | |
| 	{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
 | |
| 	{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
 | |
| 	{"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, NULL},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| static struct PyModuleDef M_Geometry_module_def = {
 | |
| 	PyModuleDef_HEAD_INIT,
 | |
| 	"geometry",  /* m_name */
 | |
| 	M_Geometry_doc,  /* m_doc */
 | |
| 	0,  /* m_size */
 | |
| 	M_Geometry_methods,  /* m_methods */
 | |
| 	0,  /* m_reload */
 | |
| 	0,  /* m_traverse */
 | |
| 	0,  /* m_clear */
 | |
| 	0,  /* m_free */
 | |
| };
 | |
| 
 | |
| /*----------------------------MODULE INIT-------------------------*/
 | |
| PyObject *Geometry_Init(void)
 | |
| {
 | |
| 	PyObject *submodule;
 | |
| 
 | |
| 	submodule = PyModule_Create(&M_Geometry_module_def);
 | |
| 	PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
 | |
| 
 | |
| 	return (submodule);
 | |
| }
 |