This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mesh.c
Brecht Van Lommel 3d3023126a Fix for bug #7965:
Array modifier could generate edges with twice the same vertex, fix
provided by Ken, thanks.
2008-01-29 19:49:03 +00:00

1300 lines
27 KiB
C

/* mesh.c
*
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_ID.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_image_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_ipo_types.h"
#include "BKE_customdata.h"
#include "BKE_depsgraph.h"
#include "BKE_main.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "BKE_subsurf.h"
#include "BKE_displist.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_key.h"
/* these 2 are only used by conversion functions */
#include "BKE_curve.h"
/* -- */
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"
#ifdef WITH_VERSE
#include "BKE_verse.h"
#endif
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_arithb.h"
int update_realtime_texture(MTFace *tface, double time)
{
Image *ima;
int inc = 0;
float diff;
int newframe;
ima = tface->tpage;
if (!ima)
return 0;
if (ima->lastupdate<0)
ima->lastupdate = 0;
if (ima->lastupdate>time)
ima->lastupdate=(float)time;
if(ima->tpageflag & IMA_TWINANIM) {
if(ima->twend >= ima->xrep*ima->yrep) ima->twend= ima->xrep*ima->yrep-1;
/* check: is the bindcode not in the array? Then free. (still to do) */
diff = (float)(time-ima->lastupdate);
inc = (int)(diff*(float)ima->animspeed);
ima->lastupdate+=((float)inc/(float)ima->animspeed);
newframe = ima->lastframe+inc;
if (newframe > (int)ima->twend)
newframe = (int)ima->twsta-1 + (newframe-ima->twend)%(ima->twend-ima->twsta);
ima->lastframe = newframe;
}
return inc;
}
void mesh_update_customdata_pointers(Mesh *me)
{
me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT);
me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT);
me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY);
me->medge = CustomData_get_layer(&me->edata, CD_MEDGE);
me->mface = CustomData_get_layer(&me->fdata, CD_MFACE);
me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL);
me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE);
}
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
* readfile.c */
void unlink_mesh(Mesh *me)
{
int a;
if(me==0) return;
for(a=0; a<me->totcol; a++) {
if(me->mat[a]) me->mat[a]->id.us--;
me->mat[a]= 0;
}
if(me->key) {
me->key->id.us--;
if (me->key->id.us == 0 && me->key->ipo )
me->key->ipo->id.us--;
}
me->key= 0;
if(me->texcomesh) me->texcomesh= 0;
}
/* do not free mesh itself */
void free_mesh(Mesh *me)
{
unlink_mesh(me);
if(me->pv) {
if(me->pv->vert_map) MEM_freeN(me->pv->vert_map);
if(me->pv->edge_map) MEM_freeN(me->pv->edge_map);
if(me->pv->old_faces) MEM_freeN(me->pv->old_faces);
if(me->pv->old_edges) MEM_freeN(me->pv->old_edges);
me->totvert= me->pv->totvert;
me->totedge= me->pv->totedge;
me->totface= me->pv->totface;
MEM_freeN(me->pv);
}
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
if(me->mat) MEM_freeN(me->mat);
if(me->bb) MEM_freeN(me->bb);
if(me->mselect) MEM_freeN(me->mselect);
if(me->mr) multires_free(me->mr);
}
void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount)
{
/* Assumes dst is already set up */
int i;
if (!src || !dst)
return;
memcpy (dst, src, copycount * sizeof(MDeformVert));
for (i=0; i<copycount; i++){
if (src[i].dw){
dst[i].dw = MEM_callocN (sizeof(MDeformWeight)*src[i].totweight, "copy_deformWeight");
memcpy (dst[i].dw, src[i].dw, sizeof (MDeformWeight)*src[i].totweight);
}
}
}
void free_dverts(MDeformVert *dvert, int totvert)
{
/* Instead of freeing the verts directly,
call this function to delete any special
vert data */
int i;
if (!dvert)
return;
/* Free any special data from the verts */
for (i=0; i<totvert; i++){
if (dvert[i].dw) MEM_freeN (dvert[i].dw);
}
MEM_freeN (dvert);
}
Mesh *add_mesh(char *name)
{
Mesh *me;
me= alloc_libblock(&G.main->mesh, ID_ME, name);
me->size[0]= me->size[1]= me->size[2]= 1.0;
me->smoothresh= 30;
me->texflag= AUTOSPACE;
me->flag= ME_TWOSIDED;
me->bb= unit_boundbox();
#ifdef WITH_VERSE
me->vnode = NULL;
#endif
return me;
}
Mesh *copy_mesh(Mesh *me)
{
Mesh *men;
MTFace *tface;
int a, i;
men= copy_libblock(me);
men->mat= MEM_dupallocN(me->mat);
for(a=0; a<men->totcol; a++) {
id_us_plus((ID *)men->mat[a]);
}
id_us_plus((ID *)men->texcomesh);
CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert);
CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge);
CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface);
mesh_update_customdata_pointers(men);
/* ensure indirect linked data becomes lib-extern */
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++)
if(tface->tpage)
id_lib_extern((ID*)tface->tpage);
}
}
if(me->mr)
men->mr= multires_copy(me->mr);
men->mselect= NULL;
men->bb= MEM_dupallocN(men->bb);
men->key= copy_key(me->key);
if(men->key) men->key->from= (ID *)men;
#ifdef WITH_VERSE
men->vnode = NULL;
#endif
return men;
}
void make_local_tface(Mesh *me)
{
MTFace *tface;
Image *ima;
int a, i;
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++) {
/* special case: ima always local immediately */
if(tface->tpage) {
ima= tface->tpage;
if(ima->id.lib) {
ima->id.lib= 0;
ima->id.flag= LIB_LOCAL;
new_id(0, (ID *)ima, 0);
}
}
}
}
}
}
void make_local_mesh(Mesh *me)
{
Object *ob;
Mesh *men;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(me->id.lib==0) return;
if(me->id.us==1) {
me->id.lib= 0;
me->id.flag= LIB_LOCAL;
new_id(0, (ID *)me, 0);
if(me->mtface) make_local_tface(me);
return;
}
ob= G.main->object.first;
while(ob) {
if( me==get_mesh(ob) ) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
me->id.lib= 0;
me->id.flag= LIB_LOCAL;
new_id(0, (ID *)me, 0);
if(me->mtface) make_local_tface(me);
}
else if(local && lib) {
men= copy_mesh(me);
men->id.us= 0;
ob= G.main->object.first;
while(ob) {
if( me==get_mesh(ob) ) {
if(ob->id.lib==0) {
set_mesh(ob, men);
}
}
ob= ob->id.next;
}
}
}
void boundbox_mesh(Mesh *me, float *loc, float *size)
{
MVert *mvert;
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
int a;
if(me->bb==0) me->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= me->bb;
INIT_MINMAX(min, max);
if (!loc) loc= mloc;
if (!size) size= msize;
mvert= me->mvert;
for(a=0; a<me->totvert; a++, mvert++) {
DO_MINMAX(mvert->co, min, max);
}
if(!me->totvert) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
boundbox_set_from_min_max(bb, min, max);
}
void tex_space_mesh(Mesh *me)
{
KeyBlock *kb;
float *fp, loc[3], size[3], min[3], max[3];
int a;
boundbox_mesh(me, loc, size);
if(me->texflag & AUTOSPACE) {
if(me->key) {
kb= me->key->refkey;
if (kb) {
INIT_MINMAX(min, max);
fp= kb->data;
for(a=0; a<kb->totelem; a++, fp+=3) {
DO_MINMAX(fp, min, max);
}
if(kb->totelem) {
loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0;
size[0]= size[1]= size[2]= 0.0;
}
}
}
for (a=0; a<3; a++) {
if(size[a]==0.0) size[a]= 1.0;
else if(size[a]>0.0 && size[a]<0.00001) size[a]= 0.00001;
else if(size[a]<0.0 && size[a]> -0.00001) size[a]= -0.00001;
}
VECCOPY(me->loc, loc);
VECCOPY(me->size, size);
me->rot[0]= me->rot[1]= me->rot[2]= 0.0;
}
}
BoundBox *mesh_get_bb(Object *ob)
{
Mesh *me= ob->data;
if(ob->bb)
return ob->bb;
if (!me->bb)
tex_space_mesh(me);
return me->bb;
}
void mesh_get_texspace(Mesh *me, float *loc_r, float *rot_r, float *size_r)
{
if (!me->bb) {
tex_space_mesh(me);
}
if (loc_r) VECCOPY(loc_r, me->loc);
if (rot_r) VECCOPY(rot_r, me->rot);
if (size_r) VECCOPY(size_r, me->size);
}
float *get_mesh_orco_verts(Object *ob)
{
Mesh *me = ob->data;
int a, totvert;
float (*vcos)[3] = NULL;
/* Get appropriate vertex coordinates */
if(me->key && me->texcomesh==0 && me->key->refkey) {
vcos= mesh_getRefKeyCos(me, &totvert);
}
else {
MVert *mvert = NULL;
Mesh *tme = me->texcomesh?me->texcomesh:me;
vcos = MEM_callocN(sizeof(*vcos)*me->totvert, "orco mesh");
mvert = tme->mvert;
totvert = MIN2(tme->totvert, me->totvert);
for(a=0; a<totvert; a++, mvert++) {
vcos[a][0]= mvert->co[0];
vcos[a][1]= mvert->co[1];
vcos[a][2]= mvert->co[2];
}
}
return (float*)vcos;
}
void transform_mesh_orco_verts(Mesh *me, float (*orco)[3], int totvert, int invert)
{
float loc[3], size[3];
int a;
mesh_get_texspace(me->texcomesh?me->texcomesh:me, loc, NULL, size);
if(invert) {
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = co[0]*size[0] + loc[0];
co[1] = co[1]*size[1] + loc[1];
co[2] = co[2]*size[2] + loc[2];
}
}
else {
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = (co[0]-loc[0])/size[0];
co[1] = (co[1]-loc[1])/size[1];
co[2] = (co[2]-loc[2])/size[2];
}
}
}
/* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0.
this is necessary to make the if(mface->v4) check for quads work */
int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr)
{
/* first test if the face is legal */
if(mface->v3 && mface->v3==mface->v4) {
mface->v4= 0;
nr--;
}
if(mface->v2 && mface->v2==mface->v3) {
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
if(mface->v1==mface->v2) {
mface->v2= mface->v3;
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
/* prevent a zero at wrong index location */
if(nr==3) {
if(mface->v3==0) {
static int corner_indices[4] = {1, 2, 0, 3};
SWAP(int, mface->v1, mface->v2);
SWAP(int, mface->v2, mface->v3);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
else if(nr==4) {
if(mface->v3==0 || mface->v4==0) {
static int corner_indices[4] = {2, 3, 0, 1};
SWAP(int, mface->v1, mface->v3);
SWAP(int, mface->v2, mface->v4);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
return nr;
}
Mesh *get_mesh(Object *ob)
{
if(ob==0) return 0;
if(ob->type==OB_MESH) return ob->data;
else return 0;
}
void set_mesh(Object *ob, Mesh *me)
{
Mesh *old=0;
if(ob==0) return;
if(ob->type==OB_MESH) {
old= ob->data;
old->id.us--;
ob->data= me;
id_us_plus((ID *)me);
}
test_object_materials((ID *)me);
}
/* ************** make edges in a Mesh, for outside of editmode */
struct edgesort {
int v1, v2;
short is_loose, is_draw;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed, int v1, int v2, short is_loose, short is_draw)
{
if(v1<v2) {
ed->v1= v1; ed->v2= v2;
}
else {
ed->v1= v2; ed->v2= v1;
}
ed->is_loose= is_loose;
ed->is_draw= is_draw;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1=v1, *x2=v2;
if( x1->v1 > x2->v1) return 1;
else if( x1->v1 < x2->v1) return -1;
else if( x1->v2 > x2->v2) return 1;
else if( x1->v2 < x2->v2) return -1;
return 0;
}
void make_edges(Mesh *me, int old)
{
MFace *mface;
MEdge *medge;
struct edgesort *edsort, *ed;
int a, totedge=0, final=0;
/* we put all edges in array, sort them, and detect doubles that way */
for(a= me->totface, mface= me->mface; a>0; a--, mface++) {
if(mface->v4) totedge+=4;
else if(mface->v3) totedge+=3;
else totedge+=1;
}
if(totedge==0) {
/* flag that mesh has edges */
me->medge = MEM_callocN(0, "make mesh edges");
me->totedge = 0;
return;
}
ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort");
for(a= me->totface, mface= me->mface; a>0; a--, mface++) {
to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2);
if(mface->v4) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4);
to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1);
}
else if(mface->v3) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1);
}
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
/* count final amount */
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) final++;
}
final++;
medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_CALLOC, NULL, final);
me->medge= medge;
me->totedge= final;
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) {
medge->v1= ed->v1;
medge->v2= ed->v2;
if(old==0 || ed->is_draw) medge->flag= ME_EDGEDRAW|ME_EDGERENDER;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
medge++;
}
else {
/* equal edge, we merge the drawflag */
(ed+1)->is_draw |= ed->is_draw;
}
}
/* last edge */
medge->v1= ed->v1;
medge->v2= ed->v2;
medge->flag= ME_EDGEDRAW;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
medge->flag |= ME_EDGERENDER;
MEM_freeN(edsort);
mesh_strip_loose_faces(me);
}
void mesh_strip_loose_faces(Mesh *me)
{
int a,b;
for (a=b=0; a<me->totface; a++) {
if (me->mface[a].v3) {
if (a!=b) {
memcpy(&me->mface[b],&me->mface[a],sizeof(me->mface[b]));
CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1);
CustomData_free_elem(&me->fdata, a, 1);
}
b++;
}
}
me->totface = b;
}
void mball_to_mesh(ListBase *lb, Mesh *me)
{
DispList *dl;
MVert *mvert;
MFace *mface;
float *nors, *verts;
int a, *index;
dl= lb->first;
if(dl==0) return;
if(dl->type==DL_INDEX4) {
me->flag= ME_NOPUNOFLIP;
me->totvert= dl->nr;
me->totface= dl->parts;
mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr);
mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, dl->parts);
me->mvert= mvert;
me->mface= mface;
a= dl->nr;
nors= dl->nors;
verts= dl->verts;
while(a--) {
VECCOPY(mvert->co, verts);
mvert->no[0]= (short int)(nors[0]*32767.0);
mvert->no[1]= (short int)(nors[1]*32767.0);
mvert->no[2]= (short int)(nors[2]*32767.0);
mvert++;
nors+= 3;
verts+= 3;
}
a= dl->parts;
index= dl->index;
while(a--) {
mface->v1= index[0];
mface->v2= index[1];
mface->v3= index[2];
mface->v4= index[3];
mface->flag= ME_SMOOTH;
if(mface->v3==mface->v4)
mface->v4= 0;
mface++;
index+= 4;
}
make_edges(me, 0); // all edges
}
}
/* this may fail replacing ob->data, be sure to check ob->type */
void nurbs_to_mesh(Object *ob)
{
Object *ob1;
DispList *dl;
Mesh *me;
Curve *cu;
MVert *mvert;
MFace *mface;
float *data;
int a, b, ofs, vertcount, startvert, totvert=0, totvlak=0;
int p1, p2, p3, p4, *index;
cu= ob->data;
/* count */
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_SEGM) {
totvert+= dl->parts*dl->nr;
totvlak+= dl->parts*(dl->nr-1);
}
else if(dl->type==DL_POLY) {
/* cyclic polys are filled. except when 3D */
if(cu->flag & CU_3D) {
totvert+= dl->parts*dl->nr;
totvlak+= dl->parts*dl->nr;
}
}
else if(dl->type==DL_SURF) {
totvert+= dl->parts*dl->nr;
totvlak+= (dl->parts-1+((dl->flag & DL_CYCL_V)==2))*(dl->nr-1+(dl->flag & DL_CYCL_U));
}
else if(dl->type==DL_INDEX3) {
totvert+= dl->nr;
totvlak+= dl->parts;
}
dl= dl->next;
}
if(totvert==0) {
/* error("can't convert"); */
/* Make Sure you check ob->data is a curve */
return;
}
/* make mesh */
me= add_mesh("Mesh");
me->totvert= totvert;
me->totface= totvlak;
me->totcol= cu->totcol;
me->mat= cu->mat;
cu->mat= 0;
cu->totcol= 0;
mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert);
mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface);
me->mvert= mvert;
me->mface= mface;
/* verts and faces */
vertcount= 0;
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_SEGM) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=1; b<dl->nr; b++) {
mface->v1= startvert+ofs+b-1;
mface->v2= startvert+ofs+b;
mface++;
}
}
}
else if(dl->type==DL_POLY) {
/* 3d polys are not filled */
if(cu->flag & CU_3D) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=0; b<dl->nr; b++) {
mface->v1= startvert+ofs+b;
if(b==dl->nr-1) mface->v2= startvert+ofs;
else mface->v2= startvert+ofs+b+1;
mface++;
}
}
}
}
else if(dl->type==DL_INDEX3) {
startvert= vertcount;
a= dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
a= dl->parts;
index= dl->index;
while(a--) {
mface->v1= startvert+index[0];
mface->v2= startvert+index[2];
mface->v3= startvert+index[1];
mface->v4= 0;
test_index_face(mface, NULL, 0, 3);
mface++;
index+= 3;
}
}
else if(dl->type==DL_SURF) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
VECCOPY(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
if( (dl->flag & DL_CYCL_V)==0 && a==dl->parts-1) break;
if(dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */
p1= startvert+ dl->nr*a; /* p4 -> p3 -> */
p2= p1+ dl->nr-1; /* -----> next row */
p3= p1+ dl->nr;
p4= p2+ dl->nr;
b= 0;
}
else {
p2= startvert+ dl->nr*a;
p1= p2+1;
p4= p2+ dl->nr;
p3= p1+ dl->nr;
b= 1;
}
if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) {
p3-= dl->parts*dl->nr;
p4-= dl->parts*dl->nr;
}
for(; b<dl->nr; b++) {
mface->v1= p1;
mface->v2= p3;
mface->v3= p4;
mface->v4= p2;
mface->mat_nr= (unsigned char)dl->col;
test_index_face(mface, NULL, 0, 4);
mface++;
p4= p3;
p3++;
p2= p1;
p1++;
}
}
}
dl= dl->next;
}
make_edges(me, 0); // all edges
mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL);
if(ob->data) {
free_libblock(&G.main->curve, ob->data);
}
ob->data= me;
ob->type= OB_MESH;
/* other users */
ob1= G.main->object.first;
while(ob1) {
if(ob1->data==cu) {
ob1->type= OB_MESH;
ob1->data= ob->data;
id_us_plus((ID *)ob->data);
}
ob1= ob1->id.next;
}
}
void mesh_delete_material_index(Mesh *me, int index) {
int i;
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (mf->mat_nr && mf->mat_nr>=index)
mf->mat_nr--;
}
}
void mesh_set_smooth_flag(Object *meshOb, int enableSmooth) {
Mesh *me = meshOb->data;
int i;
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (enableSmooth) {
mf->flag |= ME_SMOOTH;
} else {
mf->flag &= ~ME_SMOOTH;
}
}
DAG_object_flush_update(G.scene, meshOb, OB_RECALC_DATA);
}
void mesh_calc_normals(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float **faceNors_r)
{
float (*tnorms)[3]= MEM_callocN(numVerts*sizeof(*tnorms), "tnorms");
float *fnors= MEM_mallocN(sizeof(*fnors)*3*numFaces, "meshnormals");
int i;
for (i=0; i<numFaces; i++) {
MFace *mf= &mfaces[i];
float *f_no= &fnors[i*3];
if (mf->v4)
CalcNormFloat4(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co, f_no);
else
CalcNormFloat(mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, f_no);
VecAddf(tnorms[mf->v1], tnorms[mf->v1], f_no);
VecAddf(tnorms[mf->v2], tnorms[mf->v2], f_no);
VecAddf(tnorms[mf->v3], tnorms[mf->v3], f_no);
if (mf->v4)
VecAddf(tnorms[mf->v4], tnorms[mf->v4], f_no);
}
for (i=0; i<numVerts; i++) {
MVert *mv= &mverts[i];
float *no= tnorms[i];
if (Normalize(no)==0.0) {
VECCOPY(no, mv->co);
Normalize(no);
}
mv->no[0]= (short)(no[0]*32767.0);
mv->no[1]= (short)(no[1]*32767.0);
mv->no[2]= (short)(no[2]*32767.0);
}
MEM_freeN(tnorms);
if (faceNors_r) {
*faceNors_r = fnors;
} else {
MEM_freeN(fnors);
}
}
float (*mesh_getVertexCos(Mesh *me, int *numVerts_r))[3]
{
#ifdef WITH_VERSE
if(me->vnode) {
struct VLayer *vlayer;
struct VerseVert *vvert;
unsigned int i, numVerts;
float (*cos)[3];
vlayer = find_verse_layer_type((VGeomData*)((VNode*)me->vnode)->data, VERTEX_LAYER);
vvert = vlayer->dl.lb.first;
numVerts = vlayer->dl.da.count;
cos = MEM_mallocN(sizeof(*cos)*numVerts, "verse_vertexcos");
for(i=0; i<numVerts && vvert; vvert = vvert->next, i++) {
VECCOPY(cos[i], vvert->co);
}
return cos;
}
else {
#endif
int i, numVerts = me->totvert;
float (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "vertexcos1");
if (numVerts_r) *numVerts_r = numVerts;
for (i=0; i<numVerts; i++)
VECCOPY(cos[i], me->mvert[i].co);
return cos;
#ifdef WITH_VERSE
}
#endif
}
float (*mesh_getRefKeyCos(Mesh *me, int *numVerts_r))[3]
{
KeyBlock *kb;
float (*cos)[3] = NULL;
int totvert;
if(me->key && me->key->refkey) {
if(numVerts_r) *numVerts_r= me->totvert;
cos= MEM_mallocN(sizeof(*cos)*me->totvert, "vertexcos1");
kb= me->key->refkey;
totvert= MIN2(kb->totelem, me->totvert);
memcpy(cos, kb->data, sizeof(*cos)*totvert);
}
return cos;
}
UvVertMap *make_uv_vert_map(struct MFace *mface, struct MTFace *tface, unsigned int totface, unsigned int totvert, int selected, float *limit)
{
UvVertMap *vmap;
UvMapVert *buf;
MFace *mf;
MTFace *tf;
unsigned int a;
int i, totuv, nverts;
totuv = 0;
/* generate UvMapVert array */
mf= mface;
tf= tface;
for(a=0; a<totface; a++, mf++, tf++)
if(!selected || (!(mf->flag & ME_HIDE) && (mf->flag & ME_FACE_SEL)))
totuv += (mf->v4)? 4: 3;
if(totuv==0)
return NULL;
vmap= (UvVertMap*)MEM_mallocN(sizeof(*vmap), "UvVertMap");
if (!vmap)
return NULL;
vmap->vert= (UvMapVert**)MEM_callocN(sizeof(*vmap->vert)*totvert, "UvMapVert*");
buf= vmap->buf= (UvMapVert*)MEM_mallocN(sizeof(*vmap->buf)*totuv, "UvMapVert");
if (!vmap->vert || !vmap->buf) {
free_uv_vert_map(vmap);
return NULL;
}
mf= mface;
tf= tface;
for(a=0; a<totface; a++, mf++, tf++) {
if(!selected || (!(mf->flag & ME_HIDE) && (mf->flag & ME_FACE_SEL))) {
nverts= (mf->v4)? 4: 3;
for(i=0; i<nverts; i++) {
buf->tfindex= i;
buf->f= a;
buf->separate = 0;
buf->next= vmap->vert[*(&mf->v1 + i)];
vmap->vert[*(&mf->v1 + i)]= buf;
buf++;
}
}
}
/* sort individual uvs for each vert */
tf= tface;
for(a=0; a<totvert; a++) {
UvMapVert *newvlist= NULL, *vlist=vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
float *uv, *uv2, uvdiff[2];
while(vlist) {
v= vlist;
vlist= vlist->next;
v->next= newvlist;
newvlist= v;
uv= (tf+v->f)->uv[v->tfindex];
lastv= NULL;
iterv= vlist;
while(iterv) {
next= iterv->next;
uv2= (tf+iterv->f)->uv[iterv->tfindex];
Vec2Subf(uvdiff, uv2, uv);
if(fabs(uv[0]-uv2[0]) < limit[0] && fabs(uv[1]-uv2[1]) < limit[1]) {
if(lastv) lastv->next= next;
else vlist= next;
iterv->next= newvlist;
newvlist= iterv;
}
else
lastv=iterv;
iterv= next;
}
newvlist->separate = 1;
}
vmap->vert[a]= newvlist;
}
return vmap;
}
UvMapVert *get_uv_map_vert(UvVertMap *vmap, unsigned int v)
{
return vmap->vert[v];
}
void free_uv_vert_map(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) MEM_freeN(vmap->vert);
if (vmap->buf) MEM_freeN(vmap->buf);
MEM_freeN(vmap);
}
}
/* Partial Mesh Visibility */
PartialVisibility *mesh_pmv_copy(PartialVisibility *pmv)
{
PartialVisibility *n= MEM_dupallocN(pmv);
n->vert_map= MEM_dupallocN(pmv->vert_map);
n->edge_map= MEM_dupallocN(pmv->edge_map);
n->old_edges= MEM_dupallocN(pmv->old_edges);
n->old_faces= MEM_dupallocN(pmv->old_faces);
return n;
}
void mesh_pmv_free(PartialVisibility *pv)
{
MEM_freeN(pv->vert_map);
MEM_freeN(pv->edge_map);
MEM_freeN(pv->old_faces);
MEM_freeN(pv->old_edges);
MEM_freeN(pv);
}
void mesh_pmv_revert(Object *ob, Mesh *me)
{
if(me->pv) {
unsigned i;
MVert *nve, *old_verts;
/* Reorder vertices */
nve= me->mvert;
old_verts = MEM_mallocN(sizeof(MVert)*me->pv->totvert,"PMV revert verts");
for(i=0; i<me->pv->totvert; ++i)
old_verts[i]= nve[me->pv->vert_map[i]];
/* Restore verts, edges and faces */
CustomData_free_layer_active(&me->vdata, CD_MVERT, me->totvert);
CustomData_free_layer_active(&me->edata, CD_MEDGE, me->totedge);
CustomData_free_layer_active(&me->fdata, CD_MFACE, me->totface);
CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, old_verts, me->pv->totvert);
CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, me->pv->old_edges, me->pv->totedge);
CustomData_add_layer(&me->fdata, CD_MFACE, CD_ASSIGN, me->pv->old_faces, me->pv->totface);
mesh_update_customdata_pointers(me);
me->totvert= me->pv->totvert;
me->totedge= me->pv->totedge;
me->totface= me->pv->totface;
me->pv->old_edges= NULL;
me->pv->old_faces= NULL;
/* Free maps */
MEM_freeN(me->pv->edge_map);
me->pv->edge_map= NULL;
MEM_freeN(me->pv->vert_map);
me->pv->vert_map= NULL;
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
}
}
void mesh_pmv_off(Object *ob, Mesh *me)
{
if(ob && me->pv) {
mesh_pmv_revert(ob, me);
MEM_freeN(me->pv);
me->pv= NULL;
}
}