This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/screen/glutil.c
Sergey Sharybin cabe929b2a Changes to image draw method options
It's now default to 2D textures, and no AUTO mode at this
moment, since detecting which method is the best not so
simple.

Image drawing could manually be switched to GLSL for tests
and feedback, but for default GLSL is not so much great.

Reason of this is huge images, where operations like panning
becomes dead slow comparing GLSL vs. 2D texture.
2013-04-29 15:50:12 +00:00

1214 lines
34 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/screen/glutil.c
* \ingroup edscr
*/
#include <stdio.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_userdef_types.h"
#include "DNA_vec_types.h"
#include "BLI_rect.h"
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BKE_blender.h"
#include "BKE_global.h"
#include "BKE_colortools.h"
#include "BKE_context.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "GPU_extensions.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf_types.h"
#ifndef GL_CLAMP_TO_EDGE
#define GL_CLAMP_TO_EDGE 0x812F
#endif
/* ******************************************** */
/* defined in BIF_gl.h */
const GLubyte stipple_halftone[128] = {
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};
/* repeat this pattern
*
* X000X000
* 00000000
* 00X000X0
* 00000000 */
const GLubyte stipple_quarttone[128] = {
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0,
136, 136, 136, 136, 0, 0, 0, 0, 34, 34, 34, 34, 0, 0, 0, 0};
const GLubyte stipple_diag_stripes_pos[128] = {
0x00, 0xff, 0x00, 0xff, 0x01, 0xfe, 0x01, 0xfe,
0x03, 0xfc, 0x03, 0xfc, 0x07, 0xf8, 0x07, 0xf8,
0x0f, 0xf0, 0x0f, 0xf0, 0x1f, 0xe0, 0x1f, 0xe0,
0x3f, 0xc0, 0x3f, 0xc0, 0x7f, 0x80, 0x7f, 0x80,
0xff, 0x00, 0xff, 0x00, 0xfe, 0x01, 0xfe, 0x01,
0xfc, 0x03, 0xfc, 0x03, 0xf8, 0x07, 0xf8, 0x07,
0xf0, 0x0f, 0xf0, 0x0f, 0xe0, 0x1f, 0xe0, 0x1f,
0xc0, 0x3f, 0xc0, 0x3f, 0x80, 0x7f, 0x80, 0x7f,
0x00, 0xff, 0x00, 0xff, 0x01, 0xfe, 0x01, 0xfe,
0x03, 0xfc, 0x03, 0xfc, 0x07, 0xf8, 0x07, 0xf8,
0x0f, 0xf0, 0x0f, 0xf0, 0x1f, 0xe0, 0x1f, 0xe0,
0x3f, 0xc0, 0x3f, 0xc0, 0x7f, 0x80, 0x7f, 0x80,
0xff, 0x00, 0xff, 0x00, 0xfe, 0x01, 0xfe, 0x01,
0xfc, 0x03, 0xfc, 0x03, 0xf8, 0x07, 0xf8, 0x07,
0xf0, 0x0f, 0xf0, 0x0f, 0xe0, 0x1f, 0xe0, 0x1f,
0xc0, 0x3f, 0xc0, 0x3f, 0x80, 0x7f, 0x80, 0x7f};
const GLubyte stipple_diag_stripes_neg[128] = {
0xff, 0x00, 0xff, 0x00, 0xfe, 0x01, 0xfe, 0x01,
0xfc, 0x03, 0xfc, 0x03, 0xf8, 0x07, 0xf8, 0x07,
0xf0, 0x0f, 0xf0, 0x0f, 0xe0, 0x1f, 0xe0, 0x1f,
0xc0, 0x3f, 0xc0, 0x3f, 0x80, 0x7f, 0x80, 0x7f,
0x00, 0xff, 0x00, 0xff, 0x01, 0xfe, 0x01, 0xfe,
0x03, 0xfc, 0x03, 0xfc, 0x07, 0xf8, 0x07, 0xf8,
0x0f, 0xf0, 0x0f, 0xf0, 0x1f, 0xe0, 0x1f, 0xe0,
0x3f, 0xc0, 0x3f, 0xc0, 0x7f, 0x80, 0x7f, 0x80,
0xff, 0x00, 0xff, 0x00, 0xfe, 0x01, 0xfe, 0x01,
0xfc, 0x03, 0xfc, 0x03, 0xf8, 0x07, 0xf8, 0x07,
0xf0, 0x0f, 0xf0, 0x0f, 0xe0, 0x1f, 0xe0, 0x1f,
0xc0, 0x3f, 0xc0, 0x3f, 0x80, 0x7f, 0x80, 0x7f,
0x00, 0xff, 0x00, 0xff, 0x01, 0xfe, 0x01, 0xfe,
0x03, 0xfc, 0x03, 0xfc, 0x07, 0xf8, 0x07, 0xf8,
0x0f, 0xf0, 0x0f, 0xf0, 0x1f, 0xe0, 0x1f, 0xe0,
0x3f, 0xc0, 0x3f, 0xc0, 0x7f, 0x80, 0x7f, 0x80};
void fdrawbezier(float vec[4][3])
{
float dist;
float curve_res = 24, spline_step = 0.0f;
dist = 0.5f * ABS(vec[0][0] - vec[3][0]);
/* check direction later, for top sockets */
vec[1][0] = vec[0][0] + dist;
vec[1][1] = vec[0][1];
vec[2][0] = vec[3][0] - dist;
vec[2][1] = vec[3][1];
/* we can reuse the dist variable here to increment the GL curve eval amount*/
dist = 1.0f / curve_res;
cpack(0x0);
glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, vec[0]);
glBegin(GL_LINE_STRIP);
while (spline_step < 1.000001f) {
#if 0
if (do_shaded)
UI_ThemeColorBlend(th_col1, th_col2, spline_step);
#endif
glEvalCoord1f(spline_step);
spline_step += dist;
}
glEnd();
}
void fdrawline(float x1, float y1, float x2, float y2)
{
float v[2];
glBegin(GL_LINE_STRIP);
v[0] = x1; v[1] = y1;
glVertex2fv(v);
v[0] = x2; v[1] = y2;
glVertex2fv(v);
glEnd();
}
void fdrawbox(float x1, float y1, float x2, float y2)
{
float v[2];
glBegin(GL_LINE_STRIP);
v[0] = x1; v[1] = y1;
glVertex2fv(v);
v[0] = x1; v[1] = y2;
glVertex2fv(v);
v[0] = x2; v[1] = y2;
glVertex2fv(v);
v[0] = x2; v[1] = y1;
glVertex2fv(v);
v[0] = x1; v[1] = y1;
glVertex2fv(v);
glEnd();
}
void fdrawcheckerboard(float x1, float y1, float x2, float y2)
{
unsigned char col1[4] = {40, 40, 40}, col2[4] = {50, 50, 50};
GLubyte checker_stipple[32 * 32 / 8] = {
255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0,
255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0,
0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255,
0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255,
255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0,
255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0,
0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255,
0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 0, 255};
glColor3ubv(col1);
glRectf(x1, y1, x2, y2);
glColor3ubv(col2);
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(checker_stipple);
glRectf(x1, y1, x2, y2);
glDisable(GL_POLYGON_STIPPLE);
}
void sdrawline(short x1, short y1, short x2, short y2)
{
short v[2];
glBegin(GL_LINE_STRIP);
v[0] = x1; v[1] = y1;
glVertex2sv(v);
v[0] = x2; v[1] = y2;
glVertex2sv(v);
glEnd();
}
/*
* x1,y2
* | \
* | \
* | \
* x1,y1-- x2,y1
*/
static void sdrawtripoints(short x1, short y1, short x2, short y2)
{
short v[2];
v[0] = x1; v[1] = y1;
glVertex2sv(v);
v[0] = x1; v[1] = y2;
glVertex2sv(v);
v[0] = x2; v[1] = y1;
glVertex2sv(v);
}
void sdrawtri(short x1, short y1, short x2, short y2)
{
glBegin(GL_LINE_STRIP);
sdrawtripoints(x1, y1, x2, y2);
glEnd();
}
void sdrawtrifill(short x1, short y1, short x2, short y2)
{
glBegin(GL_TRIANGLES);
sdrawtripoints(x1, y1, x2, y2);
glEnd();
}
void sdrawbox(short x1, short y1, short x2, short y2)
{
short v[2];
glBegin(GL_LINE_STRIP);
v[0] = x1; v[1] = y1;
glVertex2sv(v);
v[0] = x1; v[1] = y2;
glVertex2sv(v);
v[0] = x2; v[1] = y2;
glVertex2sv(v);
v[0] = x2; v[1] = y1;
glVertex2sv(v);
v[0] = x1; v[1] = y1;
glVertex2sv(v);
glEnd();
}
/* ******************************************** */
void setlinestyle(int nr)
{
if (nr == 0) {
glDisable(GL_LINE_STIPPLE);
}
else {
glEnable(GL_LINE_STIPPLE);
if (U.pixelsize > 1.0f)
glLineStipple(nr, 0xCCCC);
else
glLineStipple(nr, 0xAAAA);
}
}
/* Invert line handling */
#define GL_TOGGLE(mode, onoff) (((onoff) ? glEnable : glDisable)(mode))
void set_inverted_drawing(int enable)
{
glLogicOp(enable ? GL_INVERT : GL_COPY);
GL_TOGGLE(GL_COLOR_LOGIC_OP, enable);
GL_TOGGLE(GL_DITHER, !enable);
}
void sdrawXORline(int x0, int y0, int x1, int y1)
{
if (x0 == x1 && y0 == y1) return;
set_inverted_drawing(1);
glBegin(GL_LINES);
glVertex2i(x0, y0);
glVertex2i(x1, y1);
glEnd();
set_inverted_drawing(0);
}
void sdrawXORline4(int nr, int x0, int y0, int x1, int y1)
{
static short old[4][2][2];
static char flags[4] = {0, 0, 0, 0};
/* with builtin memory, max 4 lines */
set_inverted_drawing(1);
glBegin(GL_LINES);
if (nr == -1) { /* flush */
for (nr = 0; nr < 4; nr++) {
if (flags[nr]) {
glVertex2sv(old[nr][0]);
glVertex2sv(old[nr][1]);
flags[nr] = 0;
}
}
}
else {
if (nr >= 0 && nr < 4) {
if (flags[nr]) {
glVertex2sv(old[nr][0]);
glVertex2sv(old[nr][1]);
}
old[nr][0][0] = x0;
old[nr][0][1] = y0;
old[nr][1][0] = x1;
old[nr][1][1] = y1;
flags[nr] = 1;
}
glVertex2i(x0, y0);
glVertex2i(x1, y1);
}
glEnd();
set_inverted_drawing(0);
}
void fdrawXORellipse(float xofs, float yofs, float hw, float hh)
{
if (hw == 0) return;
set_inverted_drawing(1);
glPushMatrix();
glTranslatef(xofs, yofs, 0.0f);
glScalef(1.0f, hh / hw, 1.0f);
glutil_draw_lined_arc(0.0, M_PI * 2.0, hw, 20);
glPopMatrix();
set_inverted_drawing(0);
}
void fdrawXORcirc(float xofs, float yofs, float rad)
{
set_inverted_drawing(1);
glPushMatrix();
glTranslatef(xofs, yofs, 0.0);
glutil_draw_lined_arc(0.0, M_PI * 2.0, rad, 20);
glPopMatrix();
set_inverted_drawing(0);
}
void glutil_draw_filled_arc(float start, float angle, float radius, int nsegments)
{
int i;
glBegin(GL_TRIANGLE_FAN);
glVertex2f(0.0, 0.0);
for (i = 0; i < nsegments; i++) {
float t = (float) i / (nsegments - 1);
float cur = start + t * angle;
glVertex2f(cosf(cur) * radius, sinf(cur) * radius);
}
glEnd();
}
void glutil_draw_lined_arc(float start, float angle, float radius, int nsegments)
{
int i;
glBegin(GL_LINE_STRIP);
for (i = 0; i < nsegments; i++) {
float t = (float) i / (nsegments - 1);
float cur = start + t * angle;
glVertex2f(cosf(cur) * radius, sinf(cur) * radius);
}
glEnd();
}
int glaGetOneInteger(int param)
{
GLint i;
glGetIntegerv(param, &i);
return i;
}
float glaGetOneFloat(int param)
{
GLfloat v;
glGetFloatv(param, &v);
return v;
}
void glaRasterPosSafe2f(float x, float y, float known_good_x, float known_good_y)
{
GLubyte dummy = 0;
/* As long as known good coordinates are correct
* this is guaranteed to generate an ok raster
* position (ignoring potential (real) overflow
* issues).
*/
glRasterPos2f(known_good_x, known_good_y);
/* Now shift the raster position to where we wanted
* it in the first place using the glBitmap trick.
*/
glBitmap(0, 0, 0, 0, x - known_good_x, y - known_good_y, &dummy);
}
static int get_cached_work_texture(int *w_r, int *h_r)
{
static GLint texid = -1;
static int tex_w = 256;
static int tex_h = 256;
if (texid == -1) {
GLint ltexid = glaGetOneInteger(GL_TEXTURE_2D);
unsigned char *tbuf;
glGenTextures(1, (GLuint *)&texid);
glBindTexture(GL_TEXTURE_2D, texid);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
tbuf = MEM_callocN(tex_w * tex_h * 4, "tbuf");
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, tex_w, tex_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, tbuf);
MEM_freeN(tbuf);
glBindTexture(GL_TEXTURE_2D, ltexid);
}
*w_r = tex_w;
*h_r = tex_h;
return texid;
}
void glaDrawPixelsTexScaled(float x, float y, int img_w, int img_h, int format, int type, int zoomfilter, void *rect, float scaleX, float scaleY)
{
unsigned char *uc_rect = (unsigned char *) rect;
float *f_rect = (float *)rect;
float xzoom = glaGetOneFloat(GL_ZOOM_X), yzoom = glaGetOneFloat(GL_ZOOM_Y);
int ltexid = glaGetOneInteger(GL_TEXTURE_2D);
int lrowlength = glaGetOneInteger(GL_UNPACK_ROW_LENGTH);
int subpart_x, subpart_y, tex_w, tex_h;
int seamless, offset_x, offset_y, nsubparts_x, nsubparts_y;
int texid = get_cached_work_texture(&tex_w, &tex_h);
int components;
/* Specify the color outside this function, and tex will modulate it.
* This is useful for changing alpha without using glPixelTransferf()
*/
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glPixelStorei(GL_UNPACK_ROW_LENGTH, img_w);
glBindTexture(GL_TEXTURE_2D, texid);
/* don't want nasty border artifacts */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, zoomfilter);
#ifdef __APPLE__
/* workaround for os x 10.5/10.6 driver bug: http://lists.apple.com/archives/Mac-opengl/2008/Jul/msg00117.html */
glPixelZoom(1.f, 1.f);
#endif
/* setup seamless 2=on, 0=off */
seamless = ((tex_w < img_w || tex_h < img_h) && tex_w > 2 && tex_h > 2) ? 2 : 0;
offset_x = tex_w - seamless;
offset_y = tex_h - seamless;
nsubparts_x = (img_w + (offset_x - 1)) / (offset_x);
nsubparts_y = (img_h + (offset_y - 1)) / (offset_y);
if (format == GL_RGBA)
components = 4;
else if (format == GL_RGB)
components = 3;
else if (format == GL_LUMINANCE)
components = 1;
else {
BLI_assert(!"Incompatible format passed to glaDrawPixelsTexScaled");
return;
}
if (type == GL_FLOAT) {
/* need to set internal format to higher range float */
/* NOTE: this could fail on some drivers, like mesa,
* but currently this code is only used by color
* management stuff which already checks on whether
* it's possible to use GL_RGBA16F_ARB
*/
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, tex_w, tex_h, 0, format, GL_FLOAT, NULL);
}
else {
/* switch to 8bit RGBA for byte buffer */
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, tex_w, tex_h, 0, format, GL_UNSIGNED_BYTE, NULL);
}
for (subpart_y = 0; subpart_y < nsubparts_y; subpart_y++) {
for (subpart_x = 0; subpart_x < nsubparts_x; subpart_x++) {
int remainder_x = img_w - subpart_x * offset_x;
int remainder_y = img_h - subpart_y * offset_y;
int subpart_w = (remainder_x < tex_w) ? remainder_x : tex_w;
int subpart_h = (remainder_y < tex_h) ? remainder_y : tex_h;
int offset_left = (seamless && subpart_x != 0) ? 1 : 0;
int offset_bot = (seamless && subpart_y != 0) ? 1 : 0;
int offset_right = (seamless && remainder_x > tex_w) ? 1 : 0;
int offset_top = (seamless && remainder_y > tex_h) ? 1 : 0;
float rast_x = x + subpart_x * offset_x * xzoom;
float rast_y = y + subpart_y * offset_y * yzoom;
/* check if we already got these because we always get 2 more when doing seamless*/
if (subpart_w <= seamless || subpart_h <= seamless)
continue;
if (type == GL_FLOAT) {
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, subpart_w, subpart_h, format, GL_FLOAT, &f_rect[subpart_y * offset_y * img_w * components + subpart_x * offset_x * components]);
/* add an extra border of pixels so linear looks ok at edges of full image. */
if (subpart_w < tex_w)
glTexSubImage2D(GL_TEXTURE_2D, 0, subpart_w, 0, 1, subpart_h, format, GL_FLOAT, &f_rect[subpart_y * offset_y * img_w * components + (subpart_x * offset_x + subpart_w - 1) * components]);
if (subpart_h < tex_h)
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, subpart_h, subpart_w, 1, format, GL_FLOAT, &f_rect[(subpart_y * offset_y + subpart_h - 1) * img_w * components + subpart_x * offset_x * components]);
if (subpart_w < tex_w && subpart_h < tex_h)
glTexSubImage2D(GL_TEXTURE_2D, 0, subpart_w, subpart_h, 1, 1, format, GL_FLOAT, &f_rect[(subpart_y * offset_y + subpart_h - 1) * img_w * components + (subpart_x * offset_x + subpart_w - 1) * components]);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, subpart_w, subpart_h, format, GL_UNSIGNED_BYTE, &uc_rect[subpart_y * offset_y * img_w * components + subpart_x * offset_x * components]);
if (subpart_w < tex_w)
glTexSubImage2D(GL_TEXTURE_2D, 0, subpart_w, 0, 1, subpart_h, format, GL_UNSIGNED_BYTE, &uc_rect[subpart_y * offset_y * img_w * components + (subpart_x * offset_x + subpart_w - 1) * components]);
if (subpart_h < tex_h)
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, subpart_h, subpart_w, 1, format, GL_UNSIGNED_BYTE, &uc_rect[(subpart_y * offset_y + subpart_h - 1) * img_w * components + subpart_x * offset_x * components]);
if (subpart_w < tex_w && subpart_h < tex_h)
glTexSubImage2D(GL_TEXTURE_2D, 0, subpart_w, subpart_h, 1, 1, format, GL_UNSIGNED_BYTE, &uc_rect[(subpart_y * offset_y + subpart_h - 1) * img_w * components + (subpart_x * offset_x + subpart_w - 1) * components]);
}
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
glTexCoord2f((float)(0 + offset_left) / tex_w, (float)(0 + offset_bot) / tex_h);
glVertex2f(rast_x + (float)offset_left * xzoom, rast_y + (float)offset_bot * yzoom);
glTexCoord2f((float)(subpart_w - offset_right) / tex_w, (float)(0 + offset_bot) / tex_h);
glVertex2f(rast_x + (float)(subpart_w - offset_right) * xzoom * scaleX, rast_y + (float)offset_bot * yzoom);
glTexCoord2f((float)(subpart_w - offset_right) / tex_w, (float)(subpart_h - offset_top) / tex_h);
glVertex2f(rast_x + (float)(subpart_w - offset_right) * xzoom * scaleX, rast_y + (float)(subpart_h - offset_top) * yzoom * scaleY);
glTexCoord2f((float)(0 + offset_left) / tex_w, (float)(subpart_h - offset_top) / tex_h);
glVertex2f(rast_x + (float)offset_left * xzoom, rast_y + (float)(subpart_h - offset_top) * yzoom * scaleY);
glEnd();
glDisable(GL_TEXTURE_2D);
}
}
glBindTexture(GL_TEXTURE_2D, ltexid);
glPixelStorei(GL_UNPACK_ROW_LENGTH, lrowlength);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
#ifdef __APPLE__
/* workaround for os x 10.5/10.6 driver bug (above) */
glPixelZoom(xzoom, yzoom);
#endif
}
void glaDrawPixelsTex(float x, float y, int img_w, int img_h, int format, int type, int zoomfilter, void *rect)
{
glaDrawPixelsTexScaled(x, y, img_w, img_h, format, type, zoomfilter, rect, 1.0f, 1.0f);
}
void glaDrawPixelsSafe(float x, float y, int img_w, int img_h, int row_w, int format, int type, void *rect)
{
float xzoom = glaGetOneFloat(GL_ZOOM_X);
float yzoom = glaGetOneFloat(GL_ZOOM_Y);
/* The pixel space coordinate of the intersection of
* the [zoomed] image with the origin.
*/
float ix = -x / xzoom;
float iy = -y / yzoom;
/* The maximum pixel amounts the image can be cropped
* at the lower left without exceeding the origin.
*/
int off_x = floor(max_ff(ix, 0.0f));
int off_y = floor(max_ff(iy, 0.0f));
/* The zoomed space coordinate of the raster position
* (starting at the lower left most unclipped pixel).
*/
float rast_x = x + off_x * xzoom;
float rast_y = y + off_y * yzoom;
GLfloat scissor[4];
int draw_w, draw_h;
/* Determine the smallest number of pixels we need to draw
* before the image would go off the upper right corner.
*
* It may seem this is just an optimization but some graphics
* cards (ATI) freak out if there is a large zoom factor and
* a large number of pixels off the screen (probably at some
* level the number of image pixels to draw is getting multiplied
* by the zoom and then clamped). Making sure we draw the
* fewest pixels possible keeps everyone mostly happy (still
* fails if we zoom in on one really huge pixel so that it
* covers the entire screen).
*/
glGetFloatv(GL_SCISSOR_BOX, scissor);
draw_w = min_ii(img_w - off_x, ceil((scissor[2] - rast_x) / xzoom));
draw_h = min_ii(img_h - off_y, ceil((scissor[3] - rast_y) / yzoom));
if (draw_w > 0 && draw_h > 0) {
int old_row_length = glaGetOneInteger(GL_UNPACK_ROW_LENGTH);
/* Don't use safe RasterPos (slower) if we can avoid it. */
if (rast_x >= 0 && rast_y >= 0) {
glRasterPos2f(rast_x, rast_y);
}
else {
glaRasterPosSafe2f(rast_x, rast_y, 0, 0);
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, row_w);
if (format == GL_LUMINANCE || format == GL_RED) {
if (type == GL_FLOAT) {
float *f_rect = (float *)rect;
glDrawPixels(draw_w, draw_h, format, type, f_rect + (off_y * row_w + off_x));
}
else if (type == GL_INT || type == GL_UNSIGNED_INT) {
int *i_rect = (int *)rect;
glDrawPixels(draw_w, draw_h, format, type, i_rect + (off_y * row_w + off_x));
}
}
else { /* RGBA */
if (type == GL_FLOAT) {
float *f_rect = (float *)rect;
glDrawPixels(draw_w, draw_h, format, type, f_rect + (off_y * row_w + off_x) * 4);
}
else if (type == GL_UNSIGNED_BYTE) {
unsigned char *uc_rect = (unsigned char *) rect;
glDrawPixels(draw_w, draw_h, format, type, uc_rect + (off_y * row_w + off_x) * 4);
}
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, old_row_length);
}
}
/* uses either DrawPixelsSafe or DrawPixelsTex, based on user defined maximum */
void glaDrawPixelsAuto(float x, float y, int img_w, int img_h, int format, int type, int zoomfilter, void *rect)
{
if (U.image_draw_method != IMAGE_DRAW_METHOD_DRAWPIXELS) {
glColor4f(1.0, 1.0, 1.0, 1.0);
glaDrawPixelsTex(x, y, img_w, img_h, format, type, zoomfilter, rect);
}
else {
glaDrawPixelsSafe(x, y, img_w, img_h, img_w, format, type, rect);
}
}
/* 2D Drawing Assistance */
void glaDefine2DArea(rcti *screen_rect)
{
const int sc_w = BLI_rcti_size_x(screen_rect) + 1;
const int sc_h = BLI_rcti_size_y(screen_rect) + 1;
glViewport(screen_rect->xmin, screen_rect->ymin, sc_w, sc_h);
glScissor(screen_rect->xmin, screen_rect->ymin, sc_w, sc_h);
/* The GLA_PIXEL_OFS magic number is to shift the matrix so that
* both raster and vertex integer coordinates fall at pixel
* centers properly. For a longer discussion see the OpenGL
* Programming Guide, Appendix H, Correctness Tips.
*/
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, sc_w, 0.0, sc_h, -1, 1);
glTranslatef(GLA_PIXEL_OFS, GLA_PIXEL_OFS, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
#if 0 /* UNUSED */
struct gla2DDrawInfo {
int orig_vp[4], orig_sc[4];
float orig_projmat[16], orig_viewmat[16];
rcti screen_rect;
rctf world_rect;
float wo_to_sc[2];
};
void gla2DGetMap(gla2DDrawInfo *di, rctf *rect)
{
*rect = di->world_rect;
}
void gla2DSetMap(gla2DDrawInfo *di, rctf *rect)
{
int sc_w, sc_h;
float wo_w, wo_h;
di->world_rect = *rect;
sc_w = BLI_rcti_size_x(&di->screen_rect);
sc_h = BLI_rcti_size_y(&di->screen_rect);
wo_w = BLI_rcti_size_x(&di->world_rect);
wo_h = BLI_rcti_size_y(&di->world_rect);
di->wo_to_sc[0] = sc_w / wo_w;
di->wo_to_sc[1] = sc_h / wo_h;
}
/** Save the current OpenGL state and initialize OpenGL for 2D
* rendering. glaEnd2DDraw should be called on the returned structure
* to free it and to return OpenGL to its previous state. The
* scissor rectangle is set to match the viewport.
*
* See glaDefine2DArea for an explanation of why this function uses integers.
*
* \param screen_rect The screen rectangle to be used for 2D drawing.
* \param world_rect The world rectangle that the 2D area represented
* by \a screen_rect is supposed to represent. If NULL it is assumed the
* world has a 1 to 1 mapping to the screen.
*/
gla2DDrawInfo *glaBegin2DDraw(rcti *screen_rect, rctf *world_rect)
{
gla2DDrawInfo *di = MEM_mallocN(sizeof(*di), "gla2DDrawInfo");
int sc_w, sc_h;
float wo_w, wo_h;
glGetIntegerv(GL_VIEWPORT, (GLint *)di->orig_vp);
glGetIntegerv(GL_SCISSOR_BOX, (GLint *)di->orig_sc);
glGetFloatv(GL_PROJECTION_MATRIX, (GLfloat *)di->orig_projmat);
glGetFloatv(GL_MODELVIEW_MATRIX, (GLfloat *)di->orig_viewmat);
di->screen_rect = *screen_rect;
if (world_rect) {
di->world_rect = *world_rect;
}
else {
di->world_rect.xmin = di->screen_rect.xmin;
di->world_rect.ymin = di->screen_rect.ymin;
di->world_rect.xmax = di->screen_rect.xmax;
di->world_rect.ymax = di->screen_rect.ymax;
}
sc_w = BLI_rcti_size_x(&di->screen_rect);
sc_h = BLI_rcti_size_y(&di->screen_rect);
wo_w = BLI_rcti_size_x(&di->world_rect);
wo_h = BLI_rcti_size_y(&di->world_rect);
di->wo_to_sc[0] = sc_w / wo_w;
di->wo_to_sc[1] = sc_h / wo_h;
glaDefine2DArea(&di->screen_rect);
return di;
}
/**
* Translate the (\a wo_x, \a wo_y) point from world coordinates into screen space.
*/
void gla2DDrawTranslatePt(gla2DDrawInfo *di, float wo_x, float wo_y, int *sc_x_r, int *sc_y_r)
{
*sc_x_r = (wo_x - di->world_rect.xmin) * di->wo_to_sc[0];
*sc_y_r = (wo_y - di->world_rect.ymin) * di->wo_to_sc[1];
}
/**
* Translate the \a world point from world coordiantes into screen space.
*/
void gla2DDrawTranslatePtv(gla2DDrawInfo *di, float world[2], int screen_r[2])
{
screen_r[0] = (world[0] - di->world_rect.xmin) * di->wo_to_sc[0];
screen_r[1] = (world[1] - di->world_rect.ymin) * di->wo_to_sc[1];
}
/**
* Restores the previous OpenGL state and free's the auxilary gla data.
*/
void glaEnd2DDraw(gla2DDrawInfo *di)
{
glViewport(di->orig_vp[0], di->orig_vp[1], di->orig_vp[2], di->orig_vp[3]);
glScissor(di->orig_vp[0], di->orig_vp[1], di->orig_vp[2], di->orig_vp[3]);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(di->orig_projmat);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(di->orig_viewmat);
MEM_freeN(di);
}
#endif
/* **************** GL_POINT hack ************************ */
static int curmode = 0;
static int pointhack = 0;
static GLubyte Squaredot[16] = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff};
void bglBegin(int mode)
{
curmode = mode;
if (mode == GL_POINTS) {
float value[4];
glGetFloatv(GL_POINT_SIZE_RANGE, value);
if (value[1] < 2.0f) {
glGetFloatv(GL_POINT_SIZE, value);
pointhack = floor(value[0] + 0.5f);
if (pointhack > 4) pointhack = 4;
}
else {
glBegin(mode);
}
}
}
#if 0 /* UNUSED */
int bglPointHack(void)
{
float value[4];
int pointhack_px;
glGetFloatv(GL_POINT_SIZE_RANGE, value);
if (value[1] < 2.0f) {
glGetFloatv(GL_POINT_SIZE, value);
pointhack_px = floorf(value[0] + 0.5f);
if (pointhack_px > 4) pointhack_px = 4;
return pointhack_px;
}
return 0;
}
#endif
void bglVertex3fv(const float vec[3])
{
switch (curmode) {
case GL_POINTS:
if (pointhack) {
glRasterPos3fv(vec);
glBitmap(pointhack, pointhack, (float)pointhack / 2.0f, (float)pointhack / 2.0f, 0.0, 0.0, Squaredot);
}
else {
glVertex3fv(vec);
}
break;
}
}
void bglVertex3f(float x, float y, float z)
{
switch (curmode) {
case GL_POINTS:
if (pointhack) {
glRasterPos3f(x, y, z);
glBitmap(pointhack, pointhack, (float)pointhack / 2.0f, (float)pointhack / 2.0f, 0.0, 0.0, Squaredot);
}
else {
glVertex3f(x, y, z);
}
break;
}
}
void bglVertex2fv(const float vec[2])
{
switch (curmode) {
case GL_POINTS:
if (pointhack) {
glRasterPos2fv(vec);
glBitmap(pointhack, pointhack, (float)pointhack / 2, pointhack / 2, 0.0, 0.0, Squaredot);
}
else {
glVertex2fv(vec);
}
break;
}
}
void bglEnd(void)
{
if (pointhack) pointhack = 0;
else glEnd();
}
/* Uses current OpenGL state to get view matrices for gluProject/gluUnProject */
void bgl_get_mats(bglMats *mats)
{
const double badvalue = 1.0e-6;
glGetDoublev(GL_MODELVIEW_MATRIX, mats->modelview);
glGetDoublev(GL_PROJECTION_MATRIX, mats->projection);
glGetIntegerv(GL_VIEWPORT, (GLint *)mats->viewport);
/* Very strange code here - it seems that certain bad values in the
* modelview matrix can cause gluUnProject to give bad results. */
if (mats->modelview[0] < badvalue &&
mats->modelview[0] > -badvalue)
{
mats->modelview[0] = 0;
}
if (mats->modelview[5] < badvalue &&
mats->modelview[5] > -badvalue)
{
mats->modelview[5] = 0;
}
/* Set up viewport so that gluUnProject will give correct values */
mats->viewport[0] = 0;
mats->viewport[1] = 0;
}
/* *************** glPolygonOffset hack ************* */
/* dist is only for ortho now... */
void bglPolygonOffset(float viewdist, float dist)
{
static float winmat[16], offset = 0.0;
if (dist != 0.0f) {
float offs;
// glEnable(GL_POLYGON_OFFSET_FILL);
// glPolygonOffset(-1.0, -1.0);
/* hack below is to mimic polygon offset */
glMatrixMode(GL_PROJECTION);
glGetFloatv(GL_PROJECTION_MATRIX, (float *)winmat);
/* dist is from camera to center point */
if (winmat[15] > 0.5f) offs = 0.00001f * dist * viewdist; // ortho tweaking
else offs = 0.0005f * dist; // should be clipping value or so...
winmat[14] -= offs;
offset += offs;
glLoadMatrixf(winmat);
glMatrixMode(GL_MODELVIEW);
}
else {
glMatrixMode(GL_PROJECTION);
winmat[14] += offset;
offset = 0.0;
glLoadMatrixf(winmat);
glMatrixMode(GL_MODELVIEW);
}
}
#if 0 /* UNUSED */
void bglFlush(void)
{
glFlush();
#ifdef __APPLE__
// if (GPU_type_matches(GPU_DEVICE_INTEL, GPU_OS_MAC, GPU_DRIVER_OFFICIAL))
// XXX myswapbuffers(); //hack to get mac intel graphics to show frontbuffer
#endif
}
#endif
/* **** Color management helper functions for GLSL display/transform ***** */
/* Draw given image buffer on a screen using GLSL for display transform */
void glaDrawImBuf_glsl(ImBuf *ibuf, float x, float y, int zoomfilter,
ColorManagedViewSettings *view_settings,
ColorManagedDisplaySettings *display_settings)
{
bool force_fallback = false;
bool need_fallback = true;
/* Early out */
if (ibuf->rect == NULL && ibuf->rect_float == NULL)
return;
/* Dithering is not supported on GLSL yet */
force_fallback |= ibuf->dither != 0.0f;
/* Single channel images could not be transformed using GLSL yet */
force_fallback |= ibuf->channels == 1;
/* If user decided not to use GLSL, fallback to glaDrawPixelsAuto */
force_fallback |= (U.image_draw_method != IMAGE_DRAW_METHOD_GLSL);
/* This is actually lots of crap, but currently not sure about
* more clear way to bypass partial buffer update crappyness
* while rendering.
*
* The thing is -- render engines are only updating byte and
* display buffers for active render result opened in image
* editor. This works fine to show render progress without
* switching render layers in image editor user, but this is
* completely useless for GLSL display, where we need to have
* original buffer which we could color manage.
*
* For the time of rendering, we'll stick back to slower CPU
* display buffer update. GLSL could be used as soon as some
* fixes (?) are done in render itself, so we'll always have
* image buffer with relevant float buffer opened while
* rendering.
*
* On the other hand, when using Cycles, stressing GPU with
* GLSL could backfire on a performance.
* - sergey -
*/
if (G.is_rendering) {
/* Try to detect whether we're drawing render result,
* other images could have both rect and rect_float
* but they'll be synchronized
*/
if (ibuf->rect_float && ibuf->rect &&
((ibuf->mall & IB_rectfloat) == 0))
{
force_fallback = true;
}
}
/* Try to draw buffer using GLSL display transform */
if (force_fallback == false) {
int ok;
if (ibuf->rect_float) {
if (ibuf->float_colorspace) {
ok = IMB_colormanagement_setup_glsl_draw_from_space(view_settings, display_settings,
ibuf->float_colorspace, TRUE);
}
else {
ok = IMB_colormanagement_setup_glsl_draw(view_settings, display_settings, TRUE);
}
}
else {
ok = IMB_colormanagement_setup_glsl_draw_from_space(view_settings, display_settings,
ibuf->rect_colorspace, FALSE);
}
if (ok) {
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glColor4f(1.0, 1.0, 1.0, 1.0);
if (ibuf->rect_float) {
int format = 0;
if (ibuf->channels == 3)
format = GL_RGB;
else if (ibuf->channels == 4)
format = GL_RGBA;
else
BLI_assert(!"Incompatible number of channels for GLSL display");
if (format != 0) {
glaDrawPixelsTex(x, y, ibuf->x, ibuf->y, format, GL_FLOAT,
zoomfilter, ibuf->rect_float);
}
}
else if (ibuf->rect) {
/* ibuf->rect is always RGBA */
glaDrawPixelsTex(x, y, ibuf->x, ibuf->y, GL_RGBA, GL_UNSIGNED_BYTE,
zoomfilter, ibuf->rect);
}
IMB_colormanagement_finish_glsl_draw();
need_fallback = false;
}
}
/* In case GLSL failed or not usable, fallback to glaDrawPixelsAuto */
if (need_fallback) {
unsigned char *display_buffer;
void *cache_handle;
display_buffer = IMB_display_buffer_acquire(ibuf, view_settings, display_settings, &cache_handle);
if (display_buffer)
glaDrawPixelsAuto(x, y, ibuf->x, ibuf->y, GL_RGBA, GL_UNSIGNED_BYTE,
zoomfilter, display_buffer);
IMB_display_buffer_release(cache_handle);
}
}
void glaDrawImBuf_glsl_ctx(const bContext *C, ImBuf *ibuf, float x, float y, int zoomfilter)
{
ColorManagedViewSettings *view_settings;
ColorManagedDisplaySettings *display_settings;
IMB_colormanagement_display_settings_from_ctx(C, &view_settings, &display_settings);
glaDrawImBuf_glsl(ibuf, x, y, zoomfilter, view_settings, display_settings);
}
/* Transform buffer from role to scene linear space using GLSL OCIO conversion
*
* See IMB_colormanagement_setup_transform_from_role_glsl description for
* some more details
*
* NOTE: this only works for RGBA buffers!
*/
int glaBufferTransformFromRole_glsl(float *buffer, int width, int height, int role)
{
GPUOffScreen *ofs;
char err_out[256];
rcti display_rect;
ofs = GPU_offscreen_create(width, height, err_out);
if (!ofs)
return FALSE;
GPU_offscreen_bind(ofs);
if (!IMB_colormanagement_setup_transform_from_role_glsl(role, TRUE)) {
GPU_offscreen_unbind(ofs);
GPU_offscreen_free(ofs);
return FALSE;
}
BLI_rcti_init(&display_rect, 0, width, 0, height);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glaDefine2DArea(&display_rect);
glaDrawPixelsTex(0, 0, width, height, GL_RGBA, GL_FLOAT,
GL_NEAREST, buffer);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
GPU_offscreen_read_pixels(ofs, GL_FLOAT, buffer);
IMB_colormanagement_finish_glsl_transform();
/* unbind */
GPU_offscreen_unbind(ofs);
GPU_offscreen_free(ofs);
return TRUE;
}