492 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			492 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * Contributor(s): Dan Eicher, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/python/mathutils/mathutils_kdtree.c
 | |
|  *  \ingroup mathutils
 | |
|  *
 | |
|  * This file defines the 'mathutils.kdtree' module, a general purpose module to access
 | |
|  * blenders kdtree for 3d spatial lookups.
 | |
|  */
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "MEM_guardedalloc.h"
 | |
| 
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_kdtree.h"
 | |
| 
 | |
| #include "../generic/py_capi_utils.h"
 | |
| #include "../generic/python_utildefines.h"
 | |
| 
 | |
| #include "mathutils.h"
 | |
| #include "mathutils_kdtree.h"  /* own include */
 | |
| 
 | |
| #include "BLI_strict_flags.h"
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	KDTree *obj;
 | |
| 	unsigned int maxsize;
 | |
| 	unsigned int count;
 | |
| 	unsigned int count_balance;  /* size when we last balanced */
 | |
| } PyKDTree;
 | |
| 
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* Utility helper functions */
 | |
| 
 | |
| static void kdtree_nearest_to_py_tuple(const KDTreeNearest *nearest, PyObject *py_retval)
 | |
| {
 | |
| 	BLI_assert(nearest->index >= 0);
 | |
| 	BLI_assert(PyTuple_GET_SIZE(py_retval) == 3);
 | |
| 
 | |
| 	PyTuple_SET_ITEMS(py_retval,
 | |
| 	        Vector_CreatePyObject((float *)nearest->co, 3, NULL),
 | |
| 	        PyLong_FromLong(nearest->index),
 | |
| 	        PyFloat_FromDouble(nearest->dist));
 | |
| }
 | |
| 
 | |
| static PyObject *kdtree_nearest_to_py(const KDTreeNearest *nearest)
 | |
| {
 | |
| 	PyObject *py_retval;
 | |
| 
 | |
| 	py_retval = PyTuple_New(3);
 | |
| 
 | |
| 	kdtree_nearest_to_py_tuple(nearest, py_retval);
 | |
| 
 | |
| 	return py_retval;
 | |
| }
 | |
| 
 | |
| static PyObject *kdtree_nearest_to_py_and_check(const KDTreeNearest *nearest)
 | |
| {
 | |
| 	PyObject *py_retval;
 | |
| 
 | |
| 	py_retval = PyTuple_New(3);
 | |
| 
 | |
| 	if (nearest->index != -1) {
 | |
| 		kdtree_nearest_to_py_tuple(nearest, py_retval);
 | |
| 	}
 | |
| 	else {
 | |
| 		PyC_Tuple_Fill(py_retval, Py_None);
 | |
| 	}
 | |
| 
 | |
| 	return py_retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* KDTree */
 | |
| 
 | |
| /* annoying since arg parsing won't check overflow */
 | |
| #define UINT_IS_NEG(n) ((n) > INT_MAX)
 | |
| 
 | |
| static int PyKDTree__tp_init(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
| 	unsigned int maxsize;
 | |
| 	const char *keywords[] = {"size", NULL};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(
 | |
| 	        args, kwargs, "I:KDTree", (char **)keywords,
 | |
| 	        &maxsize))
 | |
| 	{
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (UINT_IS_NEG(maxsize)) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative 'size' given");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	self->obj = BLI_kdtree_new(maxsize);
 | |
| 	self->maxsize = maxsize;
 | |
| 	self->count = 0;
 | |
| 	self->count_balance = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void PyKDTree__tp_dealloc(PyKDTree *self)
 | |
| {
 | |
| 	BLI_kdtree_free(self->obj);
 | |
| 	Py_TYPE(self)->tp_free((PyObject *)self);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_insert_doc,
 | |
| ".. method:: insert(co, index)\n"
 | |
| "\n"
 | |
| "   Insert a point into the KDTree.\n"
 | |
| "\n"
 | |
| "   :arg co: Point 3d position.\n"
 | |
| "   :type co: float triplet\n"
 | |
| "   :arg index: The index of the point.\n"
 | |
| "   :type index: int\n"
 | |
| );
 | |
| static PyObject *py_kdtree_insert(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
| 	PyObject *py_co;
 | |
| 	float co[3];
 | |
| 	int index;
 | |
| 	const char *keywords[] = {"co", "index", NULL};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(
 | |
| 	        args, kwargs, (char *) "Oi:insert", (char **)keywords,
 | |
| 	        &py_co, &index))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(co, 3, 3, py_co, "insert: invalid 'co' arg") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (index < 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative index given");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->count >= self->maxsize) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "Trying to insert more items than KDTree has room for");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	BLI_kdtree_insert(self->obj, index, co);
 | |
| 	self->count++;
 | |
| 
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_balance_doc,
 | |
| ".. method:: balance()\n"
 | |
| "\n"
 | |
| "   Balance the tree.\n"
 | |
| "\n"
 | |
| ".. note::\n"
 | |
| "\n"
 | |
| "   This builds the entire tree, avoid calling after each insertion.\n"
 | |
| );
 | |
| static PyObject *py_kdtree_balance(PyKDTree *self)
 | |
| {
 | |
| 	BLI_kdtree_balance(self->obj);
 | |
| 	self->count_balance = self->count;
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| struct PyKDTree_NearestData {
 | |
| 	PyObject *py_filter;
 | |
| 	bool is_error;
 | |
| };
 | |
| 
 | |
| static int py_find_nearest_cb(void *user_data, int index, const float co[3], float dist_sq)
 | |
| {
 | |
| 	UNUSED_VARS(co, dist_sq);
 | |
| 
 | |
| 	struct PyKDTree_NearestData *data = user_data;
 | |
| 
 | |
| 	PyObject *py_args = PyTuple_New(1);
 | |
| 	PyTuple_SET_ITEM(py_args, 0, PyLong_FromLong(index));
 | |
| 	PyObject *result = PyObject_CallObject(data->py_filter, py_args);
 | |
| 	Py_DECREF(py_args);
 | |
| 
 | |
| 	if (result) {
 | |
| 		bool use_node;
 | |
| 		int ok = PyC_ParseBool(result, &use_node);
 | |
| 		Py_DECREF(result);
 | |
| 		if (ok) {
 | |
| 			return (int)use_node;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	data->is_error = true;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_doc,
 | |
| ".. method:: find(co, filter=None)\n"
 | |
| "\n"
 | |
| "   Find nearest point to ``co``.\n"
 | |
| "\n"
 | |
| "   :arg co: 3d coordinates.\n"
 | |
| "   :type co: float triplet\n"
 | |
| "   :arg filter: function which takes an index and returns True for indices to include in the search.\n"
 | |
| "   :type filter: callable\n"
 | |
| "   :return: Returns (:class:`Vector`, index, distance).\n"
 | |
| "   :rtype: :class:`tuple`\n"
 | |
| );
 | |
| static PyObject *py_kdtree_find(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
| 	PyObject *py_co, *py_filter = NULL;
 | |
| 	float co[3];
 | |
| 	KDTreeNearest nearest;
 | |
| 	const char *keywords[] = {"co", "filter", NULL};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(
 | |
| 	        args, kwargs, (char *) "O|O:find", (char **)keywords,
 | |
| 	        &py_co, &py_filter))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(co, 3, 3, py_co, "find: invalid 'co' arg") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->count != self->count_balance) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	nearest.index = -1;
 | |
| 
 | |
| 	if (py_filter == NULL) {
 | |
| 		BLI_kdtree_find_nearest(self->obj, co, &nearest);
 | |
| 	}
 | |
| 	else {
 | |
| 		struct PyKDTree_NearestData data = {0};
 | |
| 
 | |
| 		data.py_filter = py_filter;
 | |
| 		data.is_error = false;
 | |
| 
 | |
| 		BLI_kdtree_find_nearest_cb(
 | |
| 		        self->obj, co,
 | |
| 		        py_find_nearest_cb, &data,
 | |
| 		        &nearest);
 | |
| 
 | |
| 		if (data.is_error) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return kdtree_nearest_to_py_and_check(&nearest);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_n_doc,
 | |
| ".. method:: find_n(co, n)\n"
 | |
| "\n"
 | |
| "   Find nearest ``n`` points to ``co``.\n"
 | |
| "\n"
 | |
| "   :arg co: 3d coordinates.\n"
 | |
| "   :type co: float triplet\n"
 | |
| "   :arg n: Number of points to find.\n"
 | |
| "   :type n: int\n"
 | |
| "   :return: Returns a list of tuples (:class:`Vector`, index, distance).\n"
 | |
| "   :rtype: :class:`list`\n"
 | |
| );
 | |
| static PyObject *py_kdtree_find_n(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
| 	PyObject *py_list;
 | |
| 	PyObject *py_co;
 | |
| 	float co[3];
 | |
| 	KDTreeNearest *nearest;
 | |
| 	unsigned int n;
 | |
| 	int i, found;
 | |
| 	const char *keywords[] = {"co", "n", NULL};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(
 | |
| 	        args, kwargs, (char *) "OI:find_n", (char **)keywords,
 | |
| 	        &py_co, &n))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(co, 3, 3, py_co, "find_n: invalid 'co' arg") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (UINT_IS_NEG(n)) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "negative 'n' given");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->count != self->count_balance) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find_n()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	nearest = MEM_mallocN(sizeof(KDTreeNearest) * n, __func__);
 | |
| 
 | |
| 	found = BLI_kdtree_find_nearest_n(self->obj, co, nearest, n);
 | |
| 
 | |
| 	py_list = PyList_New(found);
 | |
| 
 | |
| 	for (i = 0; i < found; i++) {
 | |
| 		PyList_SET_ITEM(py_list, i, kdtree_nearest_to_py(&nearest[i]));
 | |
| 	}
 | |
| 
 | |
| 	MEM_freeN(nearest);
 | |
| 
 | |
| 	return py_list;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_range_doc,
 | |
| ".. method:: find_range(co, radius)\n"
 | |
| "\n"
 | |
| "   Find all points within ``radius`` of ``co``.\n"
 | |
| "\n"
 | |
| "   :arg co: 3d coordinates.\n"
 | |
| "   :type co: float triplet\n"
 | |
| "   :arg radius: Distance to search for points.\n"
 | |
| "   :type radius: float\n"
 | |
| "   :return: Returns a list of tuples (:class:`Vector`, index, distance).\n"
 | |
| "   :rtype: :class:`list`\n"
 | |
| );
 | |
| static PyObject *py_kdtree_find_range(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
| 	PyObject *py_list;
 | |
| 	PyObject *py_co;
 | |
| 	float co[3];
 | |
| 	KDTreeNearest *nearest = NULL;
 | |
| 	float radius;
 | |
| 	int i, found;
 | |
| 
 | |
| 	const char *keywords[] = {"co", "radius", NULL};
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(
 | |
| 	        args, kwargs, (char *) "Of:find_range", (char **)keywords,
 | |
| 	        &py_co, &radius))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(co, 3, 3, py_co, "find_range: invalid 'co' arg") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (radius < 0.0f) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "negative radius given");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->count != self->count_balance) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find_range()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	found = BLI_kdtree_range_search(self->obj, co, &nearest, radius);
 | |
| 
 | |
| 	py_list = PyList_New(found);
 | |
| 
 | |
| 	for (i = 0; i < found; i++) {
 | |
| 		PyList_SET_ITEM(py_list, i, kdtree_nearest_to_py(&nearest[i]));
 | |
| 	}
 | |
| 
 | |
| 	if (nearest) {
 | |
| 		MEM_freeN(nearest);
 | |
| 	}
 | |
| 
 | |
| 	return py_list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyMethodDef PyKDTree_methods[] = {
 | |
| 	{"insert", (PyCFunction)py_kdtree_insert, METH_VARARGS | METH_KEYWORDS, py_kdtree_insert_doc},
 | |
| 	{"balance", (PyCFunction)py_kdtree_balance, METH_NOARGS, py_kdtree_balance_doc},
 | |
| 	{"find", (PyCFunction)py_kdtree_find, METH_VARARGS | METH_KEYWORDS, py_kdtree_find_doc},
 | |
| 	{"find_n", (PyCFunction)py_kdtree_find_n, METH_VARARGS | METH_KEYWORDS, py_kdtree_find_n_doc},
 | |
| 	{"find_range", (PyCFunction)py_kdtree_find_range, METH_VARARGS | METH_KEYWORDS, py_kdtree_find_range_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(py_KDtree_doc,
 | |
| "KdTree(size) -> new kd-tree initialized to hold ``size`` items.\n"
 | |
| "\n"
 | |
| ".. note::\n"
 | |
| "\n"
 | |
| "   :class:`KDTree.balance` must have been called before using any of the ``find`` methods.\n"
 | |
| );
 | |
| PyTypeObject PyKDTree_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"KDTree",                                    /* tp_name */
 | |
| 	sizeof(PyKDTree),                            /* tp_basicsize */
 | |
| 	0,                                           /* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)PyKDTree__tp_dealloc,            /* tp_dealloc */
 | |
| 	NULL,                                        /* tp_print */
 | |
| 	NULL,                                        /* tp_getattr */
 | |
| 	NULL,                                        /* tp_setattr */
 | |
| 	NULL,                                        /* tp_compare */
 | |
| 	NULL,                                        /* tp_repr */
 | |
| 	NULL,                                        /* tp_as_number */
 | |
| 	NULL,                                        /* tp_as_sequence */
 | |
| 	NULL,                                        /* tp_as_mapping */
 | |
| 	NULL,                                        /* tp_hash */
 | |
| 	NULL,                                        /* tp_call */
 | |
| 	NULL,                                        /* tp_str */
 | |
| 	NULL,                                        /* tp_getattro */
 | |
| 	NULL,                                        /* tp_setattro */
 | |
| 	NULL,                                        /* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,                          /* tp_flags */
 | |
| 	py_KDtree_doc,                               /* Documentation string */
 | |
| 	NULL,                                        /* tp_traverse */
 | |
| 	NULL,                                        /* tp_clear */
 | |
| 	NULL,                                        /* tp_richcompare */
 | |
| 	0,                                           /* tp_weaklistoffset */
 | |
| 	NULL,                                        /* tp_iter */
 | |
| 	NULL,                                        /* tp_iternext */
 | |
| 	(struct PyMethodDef *)PyKDTree_methods,      /* tp_methods */
 | |
| 	NULL,                                        /* tp_members */
 | |
| 	NULL,                                        /* tp_getset */
 | |
| 	NULL,                                        /* tp_base */
 | |
| 	NULL,                                        /* tp_dict */
 | |
| 	NULL,                                        /* tp_descr_get */
 | |
| 	NULL,                                        /* tp_descr_set */
 | |
| 	0,                                           /* tp_dictoffset */
 | |
| 	(initproc)PyKDTree__tp_init,                 /* tp_init */
 | |
| 	(allocfunc)PyType_GenericAlloc,              /* tp_alloc */
 | |
| 	(newfunc)PyType_GenericNew,                  /* tp_new */
 | |
| 	(freefunc)0,                                 /* tp_free */
 | |
| 	NULL,                                        /* tp_is_gc */
 | |
| 	NULL,                                        /* tp_bases */
 | |
| 	NULL,                                        /* tp_mro */
 | |
| 	NULL,                                        /* tp_cache */
 | |
| 	NULL,                                        /* tp_subclasses */
 | |
| 	NULL,                                        /* tp_weaklist */
 | |
| 	(destructor) NULL                            /* tp_del */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_doc,
 | |
| "Generic 3-dimentional kd-tree to perform spatial searches."
 | |
| );
 | |
| static struct PyModuleDef kdtree_moduledef = {
 | |
| 	PyModuleDef_HEAD_INIT,
 | |
| 	"mathutils.kdtree",                          /* m_name */
 | |
| 	py_kdtree_doc,                               /* m_doc */
 | |
| 	0,                                           /* m_size */
 | |
| 	NULL,                                        /* m_methods */
 | |
| 	NULL,                                        /* m_reload */
 | |
| 	NULL,                                        /* m_traverse */
 | |
| 	NULL,                                        /* m_clear */
 | |
| 	NULL                                         /* m_free */
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC PyInit_mathutils_kdtree(void)
 | |
| {
 | |
| 	PyObject *m = PyModule_Create(&kdtree_moduledef);
 | |
| 
 | |
| 	if (m == NULL) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Register the 'KDTree' class */
 | |
| 	if (PyType_Ready(&PyKDTree_Type)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyModule_AddObject(m, "KDTree", (PyObject *) &PyKDTree_Type);
 | |
| 
 | |
| 	return m;
 | |
| }
 |