This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_array.hh
Jacques Lucke ccc2a7996b BLI: add typedefs for containers that use raw allocators
Those are useful when you have to create containers with static
storage duration. If those would use Blender's guarded allocator,
it would report memory leaks, that are not actually leaks.
2020-07-20 16:03:14 +02:00

374 lines
9.0 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __BLI_ARRAY_HH__
#define __BLI_ARRAY_HH__
/** \file
* \ingroup bli
*
* A `blender::Array<T>` is a container for a fixed size array the size of which is NOT known at
* compile time.
*
* If the size is known at compile time, `std::array<T, N>` should be used instead.
*
* blender::Array should usually be used instead of blender::Vector whenever the number of elements
* is known at construction time. Note however, that blender::Array will default construct all
* elements when initialized with the size-constructor. For trivial types, this does nothing. In
* all other cases, this adds overhead.
*
* A main benefit of using Array over Vector is that it expresses the intent of the developer
* better. It indicates that the size of the data structure is not expected to change. Furthermore,
* you can be more certain that an array does not overallocate.
*
* blender::Array supports small object optimization to improve performance when the size turns out
* to be small at run-time.
*/
#include "BLI_allocator.hh"
#include "BLI_index_range.hh"
#include "BLI_memory_utils.hh"
#include "BLI_span.hh"
#include "BLI_utildefines.h"
namespace blender {
template<
/**
* The type of the values stored in the array.
*/
typename T,
/**
* The number of values that can be stored in the array, without doing a heap allocation.
*/
int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T)),
/**
* The allocator used by this array. Should rarely be changed, except when you don't want that
* MEM_* functions are used internally.
*/
typename Allocator = GuardedAllocator>
class Array {
private:
/** The beginning of the array. It might point into the inline buffer. */
T *data_;
/** Number of elements in the array. */
int64_t size_;
/** Used for allocations when the inline buffer is too small. */
Allocator allocator_;
/** A placeholder buffer that will remain uninitialized until it is used. */
TypedBuffer<T, InlineBufferCapacity> inline_buffer_;
public:
/**
* By default an empty array is created.
*/
Array()
{
data_ = inline_buffer_;
size_ = 0;
}
/**
* Create a new array that contains copies of all values.
*/
template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
Array(Span<U> values, Allocator allocator = {}) : allocator_(allocator)
{
size_ = values.size();
data_ = this->get_buffer_for_size(values.size());
uninitialized_convert_n<U, T>(values.data(), size_, data_);
}
/**
* Create a new array that contains copies of all values.
*/
template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
Array(const std::initializer_list<U> &values) : Array(Span<U>(values))
{
}
Array(const std::initializer_list<T> &values) : Array(Span<T>(values))
{
}
/**
* Create a new array with the given size. All values will be default constructed. For trivial
* types like int, default construction does nothing.
*
* We might want another version of this in the future, that does not do default construction
* even for non-trivial types. This should not be the default though, because one can easily mess
* up when dealing with uninitialized memory.
*/
explicit Array(int64_t size)
{
size_ = size;
data_ = this->get_buffer_for_size(size);
default_construct_n(data_, size);
}
/**
* Create a new array with the given size. All values will be initialized by copying the given
* default.
*/
Array(int64_t size, const T &value)
{
BLI_assert(size >= 0);
size_ = size;
data_ = this->get_buffer_for_size(size);
uninitialized_fill_n(data_, size_, value);
}
/**
* Create a new array with uninitialized elements. The caller is responsible for constructing the
* elements. Moving, copying or destructing an Array with uninitialized elements invokes
* undefined behavior.
*
* This should be used very rarely. Note, that the normal size-constructor also does not
* initialize the elements when T is trivially constructible. Therefore, it only makes sense to
* use this with non trivially constructible types.
*
* Usage:
* Array<std::string> my_strings(10, NoInitialization());
*/
Array(int64_t size, NoInitialization)
{
BLI_assert(size >= 0);
size_ = size;
data_ = this->get_buffer_for_size(size);
}
Array(const Array &other) : Array(other.as_span(), other.allocator_)
{
}
Array(Array &&other) noexcept : allocator_(other.allocator_)
{
size_ = other.size_;
if (!other.uses_inline_buffer()) {
data_ = other.data_;
}
else {
data_ = this->get_buffer_for_size(size_);
uninitialized_relocate_n(other.data_, size_, data_);
}
other.data_ = other.inline_buffer_;
other.size_ = 0;
}
~Array()
{
destruct_n(data_, size_);
if (!this->uses_inline_buffer()) {
allocator_.deallocate((void *)data_);
}
}
Array &operator=(const Array &other)
{
if (this == &other) {
return *this;
}
this->~Array();
new (this) Array(other);
return *this;
}
Array &operator=(Array &&other)
{
if (this == &other) {
return *this;
}
this->~Array();
new (this) Array(std::move(other));
return *this;
}
T &operator[](int64_t index)
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
const T &operator[](int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
operator Span<T>() const
{
return Span<T>(data_, size_);
}
operator MutableSpan<T>()
{
return MutableSpan<T>(data_, size_);
}
template<typename U, typename std::enable_if_t<is_convertible_pointer_v<T, U>> * = nullptr>
operator Span<U>() const
{
return Span<U>(data_, size_);
}
template<typename U, typename std::enable_if_t<is_convertible_pointer_v<T, U>> * = nullptr>
operator MutableSpan<U>()
{
return MutableSpan<U>(data_, size_);
}
Span<T> as_span() const
{
return *this;
}
MutableSpan<T> as_mutable_span()
{
return *this;
}
/**
* Returns the number of elements in the array.
*/
int64_t size() const
{
return size_;
}
/**
* Returns true when the number of elements in the array is zero.
*/
bool is_empty() const
{
return size_ == 0;
}
/**
* Copies the given value to every element in the array.
*/
void fill(const T &value) const
{
initialized_fill_n(data_, size_, value);
}
/**
* Get a pointer to the beginning of the array.
*/
const T *data() const
{
return data_;
}
T *data()
{
return data_;
}
const T *begin() const
{
return data_;
}
const T *end() const
{
return data_ + size_;
}
T *begin()
{
return data_;
}
T *end()
{
return data_ + size_;
}
/**
* Get an index range containing all valid indices for this array.
*/
IndexRange index_range() const
{
return IndexRange(size_);
}
/**
* Sets the size to zero. This should only be used when you have manually destructed all elements
* in the array beforehand. Use with care.
*/
void clear_without_destruct()
{
size_ = 0;
}
/**
* Access the allocator used by this array.
*/
Allocator &allocator()
{
return allocator_;
}
/**
* Get the value of the InlineBufferCapacity template argument. This is the number of elements
* that can be stored without doing an allocation.
*/
static int64_t inline_buffer_capacity()
{
return InlineBufferCapacity;
}
private:
T *get_buffer_for_size(int64_t size)
{
if (size <= InlineBufferCapacity) {
return inline_buffer_;
}
else {
return this->allocate(size);
}
}
T *allocate(int64_t size)
{
return (T *)allocator_.allocate((size_t)size * sizeof(T), alignof(T), AT);
}
bool uses_inline_buffer() const
{
return data_ == inline_buffer_;
}
};
/**
* Same as a normal Array, but does not use Blender's guarded allocator. This is useful when
* allocating memory with static storage duration.
*/
template<typename T, int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T))>
using RawArray = Array<T, InlineBufferCapacity, RawAllocator>;
} // namespace blender
#endif /* __BLI_ARRAY_HH__ */